

# international atomic

#### the

#### abdus salam

international centre for theoretical physics

ICTP 40th Anniversary

SMR 1564 - 25

# SPRING COLLEGE ON SCIENCE AT THE NANOSCALE (24 May - 11 June 2004)

\_\_\_\_\_

**BIOCHIPS - Part III** 

## Rashid BASHIR

School of Electrical & Computer Engineering, Purdue University West Lafayette, IN, USA

These are preliminary lecture notes, intended only for distribution to participants.

# PURDUE **Key Topics Biochips/Biosensors and Device Fabrication**

- Cells, DNA, Proteins
- Micro-fluidics
- **Biochip Sensors & Detection Methods**
- **Micro-arrays**
- Lab-on-a-chip Devices









### PURDUE



## **DNA Biochips (Nanogen)**

### **Technology Features:**

- Biochips for DNA detection, antigen-antibody, enzyme-substrate, cell-receptor and cell separation techniques.
- · Takes advantage of charges on biological molecules.
- Small sequences of DNA capture probes to be electronically placed at, or "addressed" to, specific sites on the microchip.



www.nanogen.com

5 |











### PURDUE



# Note: Sensor Arrays

- Any of the individual sensors described earlier can be used in an array format to make micro/nano sensor arrays.
- · The sensors in the array need addressing
- Each sensor can be functionalized with different bio-receptor molecule to detect different entities
- Examples, cantilever array, electrochemical detection in electrode arrays, cellular arrays for chemical detection, etc.

11



### PURDUE **CD Format Biochips** · Micro-fluidic devices on a CD type platform Wash 2 using centrifugal and Wash 1 capillary forces for liquid transport Waste Optode · Cheap plastic CDs Optical detection Flow order: Cal. 1→ Wash 1→ Cal. 2→Wash 2→Sample systems Madou et al., 2001, Biomedical MicroDevices, v 3, n 3, 2001, p 245-54











#### PURDUE

#### **Future Directions**

- Integrated device for analysis of single cells - applications and fundamental science
- Building cell by cell/tissue engineering using micro and nano fabrication techniques
- Integrated diagnostics and therapeutics (drug delivery)
- · Tools for genetic manipulation of microorganisms and viruses – synthetic biology







#### PURDUE

# **Acknowledgements**



#### Research Scientists/Post-docs:

- Dr. Demir Akin
- Dr. Dallas Morisette
- Dr. Rafael Gomez

#### **Graduate Students:**

- Sangwoo Lee
- Haibo Li
- **Amit Gupta**
- **Hung Chang**
- Yi-Shao Liu
- Samir Iqbal
- **Oguz Elibol**
- **Angelica Davilia**
- **Kidong Park**

BioVitesse, Inc. Co-Founder



#### **Funding Agencies**

- **US Department of Agriculture (Food** Safety Engineering Center)
- NASA Institute on Nano-electronics and Computing
- **NSF, NSF Career Award**
- **National Institute of Health**
- **DARPA Nanotechnology Research**
- **Discovery Park at Purdue University**

#### **Faculty Collaborators**

- Prof. D. Bergstrom (Med Chem)
- Prof. A. Bhunia (Food Science)
- Prof. M. Ladisch (Ag& Bio Engr)

#### **Special Thanks**

- Prof. S. Broyles (BioChem)
- Profs. D. Datta, D. Janes (ECE, NASA INAC), J. Cooper (BNC)