

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1564 - 18

SPRING COLLEGE ON SCIENCE AT THE NANOSCALE (24 May - 11 June 2004)

ELECTRONIC / THERMAL TRANSPORT - Part II

Philip KIM Columbia University, Dept. of Physics, New York, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

Electric and Thermal Transport in Nanoscale Materials –Part II

Philip Kim

Department of Physics Columbia University

Outline

Charge Transport and Energy Dissipation

- Mesoscopic Heat Transport Measurements
- Mesoscopic Thermoelectric Effects
- Field Effect Transport in 2D Crystallites (Thr)

Charge, Energy and Entropy Transport

Linear Response Regime $\Delta V = R \ \Delta I - S \ \Delta T$ $\Delta I_Q = \Pi \ \Delta I - K_{th} \ \Delta T$ *R* : electric resistance (electron)

 K_{th} : thermal conductance (electron&phonon)

S : Thermopower (electron+phonon)

 Π : Peltier Coefficient

Ballistic to Diffusive Transport

Measurement of Energy Flow

Thermal Conductivity

$$K_{th} = \frac{dQ}{dT}$$

Phonon Thermal Conductivity of Materials

Thermal Conductivity of Carbon Nanotubes

From Bulk To Individual SWNTs

Bulk Nanotube Sample

- Ensemble average over different tubes
- Uncontrolled tube-tube junctions

Mesoscopic Experiments (Individual SWNTs)

Thermal Conductivity Measurement

$$Q = K_s (T_h - T_c) = K_d (T_c - T_0)$$

Requirement for mesoscopic measurement

• Thermal isolation from environment $(Q < 1 \mu W)$

•
$$K_d \sim K_s$$
 (single wall nanotube $K_s \sim 10^{-9}$ W/K)

Suspended Device For Thermal Measurement

- 1. SiN/SiO/Si substrate
- 2. Pt metal structures (Electron beam lithography)
- 3. Spin coat photo resist
- 4. Etching mask definition (photolithography)
- 5. Reactive ion etching of SiN
- 6. SiO sacrificial layer etching

Nanotube MEMS Hybrid Device

Multiwall nanotube bundle diameter 100 nm mechanically manipulated Single multiwall nanotube diameter 14 nm mechanically manipulated Single singlewall nanotube diameter < 2nm CVD grown

Mesoscopic Nanotube Thermal Transport

Thermal Conductivity of Single Multiwall Nanotube

A single multiwall nanotube diameter ~ 14 nm length ~ 2.5 μm

• Room temperature thermal conductivity ~ 3000 W/mK

•Umklapp scattering above 320 K

$$k = \frac{1}{3} C v_s l$$

$$l \sim 0.5 \,\mu m$$

Kim et al. PRL (2001)

Low Temperature Thermal Conductance

Bundles to isolated tubes

Silicon Nanowire

* Thermal conductivity is order of magnitude lower than bulk value.

* No Umklapp scattering peak —boundary scattering dominant, l_{ph} ~ diameter.

Li, Ying, Kim, Yang and Majumdar APL (2002)

Measuring Entropy Flow

Thermo Electricity

Maxwell's demon

Thermoelectric Effects

Linear Response Regime $\Delta V = R \ \Delta I - S \ \Delta T$ $\Delta I_Q = \Pi \ \Delta I - K_{th} \ \Delta T$

Energy transport per charge !

Peltier Coefficient: $\Pi = \Delta I_Q / \Delta I \quad (\Delta T = 0)$

Seebeck Coefficient (Thermopower): $S = -\Delta V / \Delta T$ ($\Delta I = 0$)

Onsager relation

$$\Pi = S T \longrightarrow S = -\left(\frac{dV}{dT}\right)_{I=0} = \Pi / T$$

Entropy transport per charge!!

Thermopower of Bulk Systems

Sign of thermopower = Sign of major carrier

Thermopower in 1D Mesoscopic Systems

Landauer formula:

$$G = \frac{2e}{h}t_{r} \qquad \longrightarrow \qquad S_{d} = \frac{-\pi^{2}k_{B}^{2}T}{3|e|} \frac{1}{t_{r}} \frac{dt_{r}}{dE}\Big|_{E_{f}}$$

Sivan and Imry (1986)

Quantum point contact

Thermopower of Nanotube Bulk Samples

Bradley et al. PRL (2000)

In bulk materials, sign of S = sign of majority charge carrier.

Thermopower measurement in suspended device

Small bundles of MWNTs (diameter ~ 50 nm)

Kim *et al.* PRL (2001)

Thermopower measurement on silicon oxide substrate

Mesoscopic Thermopower measurement of Nanotube

Microfabricated devices for electric and thermal transport

Small and Kim, PRL (2003)

Conductance and Thermopower of Metallic Tube

Electrical Conductance and TEP

Coulomb Blockade Physics

Electrostatics: Relation between E_f and V_g

Quantitative Comparison with Mott Formula

TEP in Quantum Dot (electron-electron interaction)

TEP Oscillation in Semicondutor Quantum Dot

T = 40 mK : Lattice temperature

 $\Delta T \sim 8 \text{ mK}$: indirect measurements

FIG. 2. (a) Experimental traces of the thermovoltage of the quantum dot for a heating current of 40 nA. The transmission probability of point contact *CD* was 0.06, 0.19, 0.29, 0.38, 0.43, and 0.82 from top to bottom. (b) Calculated curves of the thermopower of a quantum dot. The values of k_BT/E_c are 0.22, 0.25, 0.30, 0.33, 0.37, and 0.45 from top to bottom (solid line). The experimental thermovoltage measurements from (a) are added as dashed lines.

SWNT TEP in Coulomb Blockade Regime

TEP with electron-electron interaction

$$S = -\frac{1}{2eT} \left[\left(N_{\min} - \frac{1}{2} \right) \frac{e^2}{C} - e\phi_{ext} \right]$$

Beenakker, Staring PRB (1992)

Charging Energy and TEP Oscillations

Thermopower in Semiconducting Nanotube

Thermopower in Semiconducting Nanotube

III off-region

Multiwalled Nanotube Thermopower

T=150K

With Marine Marine

 $S_{d} = \frac{-\pi^{2}k_{B}^{2}T}{3|e|} \frac{d\ln G}{dE} = \frac{-\pi^{2}k_{B}^{2}T}{3|e|} \frac{d\ln G}{dV} \left(\frac{dV}{dE}\right)$

-9

Current flows many shells...

inner tubes begin to freeze out...

 $V_{g}[V]$

Š_{meas}

9

Current flows outter shell only

Thermoelectric Cooling

Solid state heat pump

$$\Delta T_{max} \sim 70 \text{ K}$$

Thermodynamic Figure of Merit

Efficiency of Peltier Refrigerator

 $ZT = \frac{S^2 GT}{K_{th}} < 2 : \text{Practical limit}$ where $K_{th} = K^e_{th} + K^{ph}_{th}$

All Quantum limit transport:

Wiedemann-Franz Law

$$G = n g_{el}^{0} \qquad K_{th}^{e} = n g_{th}^{0} \qquad K_{th}^{ph} = p g_{th}^{0}$$

 $\frac{g_{th}^{0}}{g_{el}^{0}} = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 T$

(*n*, *p* :# of mode)

 $ZT \sim n/(p+n)[S(\mu V/K)/100]^2$

High ZT materials at nanometer scale!

Conclusions

- Mesoscopic thermal conductance measurements in individual nanotubes
- Extremely high thermal conductivity
- Mesoscopic thermopower measurements in SWNTs
- Thermopower of SWNTs can be controlled by a gate electrode

