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Abstract
This tutorial article presents a ‘bottom-up’ view of electrical resistance
starting from something really small, like a molecule, and then discussing
the issues that arise as we move to bigger conductors. Remarkably, no
serious quantum mechanics is needed to understand electrical conduction
through something really small, except for unusual things like the Kondo
effect that are seen only for a special range of parameters. This article starts
with energy level diagrams (section 2), shows that the broadening that
accompanies coupling limits the conductance to a maximum of q2/h per
level (sections 3, 4), describes how a change in the shape of the
self-consistent potential profile can turn a symmetric current–voltage
characteristic into a rectifying one (sections 5, 6), shows that many
interesting effects in molecular electronics can be understood in terms of a
simple model (section 7), introduces the non-equilibrium Green function
(NEGF) formalism as a sophisticated version of this simple model with
ordinary numbers replaced by appropriate matrices (section 8) and ends with
a personal view of unsolved problems in the field of nanoscale electron
transport (section 9). Appendix A discusses the Coulomb blockade regime
of transport, while appendix B presents a formal derivation of the NEGF
equations. MATLAB codes for numerical examples are listed in
appendix C. (The appendices are available in the online version only.)

(Some figures in this article are in colour only in the electronic version)

M Supplementary data files are available from the article’s abstract page in
the online journal; see www.iop.org.
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1. Introduction

It is common to differentiate between two ways of building
a small device: a top-down approach where we start from
something big and chisel out what we want and a bottom-up
approach where we start from something small such as atoms
or molecules and assemble what we want. When it comes to
describing electrical resistance, the standard approach could
be called a ‘top-down’ one. We start in college by learning
that the conductance, G (inverse of the resistance), of a large
macroscopic conductor is directly proportional to its cross-
sectional area (A) and inversely proportional to its length (L):

G = σ A/L (Ohm’s law)

where the conductivity σ is a material property of the
conductor. Years later in graduate school we learn about the
factors that determine the conductivity and if we stick around
long enough we eventually talk about what happens when the
conductor is so small that one cannot define its conductivity. In
this article I will try to turn this approach around and present a
different view of electrical conduction, one that could be called
a bottom-up viewpoint [1].

I will try to describe the conductance of something really
small, such as a molecule, and then explain the issues that
arise as we move to bigger conductors. This is not the way
the subject is commonly taught, but I believe the reason is that
until recently, no one was sure how to describe the conductance
of a really small object, or if it even made sense to talk about
the conductance of something really small. To measure the
conductance of anything we need to attach two large contact
pads to it, across which voltage can be applied. No one knew
how to attach contact pads to a small molecule until the late
twentieth century, and so no one knew what the conductance
of a really small object was. But now that we are able to
do so, the answers look fairly clear, and in this article I will
try to convey all the essential principles. Remarkably, no
serious quantum mechanics is needed to understand electrical
conduction through something really small, except for unusual
things such as the Kondo effect that are seen only for a special
range of parameters. Of course, it is quite likely that new
effects will be discovered as we experiment more on small
conductors and the description presented here is certainly not
intended to be the last word. But I think it should be the ‘first
word’ since the traditional top-down approach tends to obscure
the simple physics of very small conductors.

Outline

To model the flow of current, the first step is to
draw an equilibrium energy level diagram and locate the
electrochemical potential µ (also called the Fermi level
or Fermi energy) set by the source and drain contacts
(section 2). Current flows when an external device such as a
battery maintains the two contacts at different electrochemical
potentials µ1 and µ2, driving the channel into a non-
equilibrium state (section 3). The current through a really
small device with only one energy level in the range of interest
is easily calculated and, as we might expect, it depends on the
quality of the contacts. But what is not obvious (and was not
appreciated before the late 1980s) is that there is a maximum

conductance for a one-level device which is a fundamental
constant related to the charge on an electron, −q, and the
Planck’s constant h:

G0 ≡ q2/h = 38.7 µS = (25.8 k�)−1. (1.1)

Actually small devices typically have two levels (one
for up spin and one for down spin) making the maximum
conductance equal to 2G0. One can always measure
conductances lower than this, if the contacts are bad. But
the point is that there is an upper limit to the conductance
that can be achieved even with the most perfect of contacts as
explained in section 4. We will then discuss how the shape of
the current–voltage (I–V ) characteristics depends crucially on
the electrostatic potential profile which requires a solution of
the equations for electrostatics that is self-consistent with those
for quantum transport (section 5). Section 6 represents a brief
detour, where we discuss the concept of quantum capacitance
which can be useful in guessing the electrostatic potential
profile without a full self-consistent solution.

Section 7 presents several toy examples to illustrate how
the model can be used to understand different current–voltage
(I–V ) characteristics that are observed for small conductors.
This model, despite its simplicity (I use it to introduce an
undergraduate course on nanoelectronics), has a rigorous
formal foundation. It is really a special case of the non-
equilibrium Green function (NEGF) formalism applied to
a conductor so small that its electrical conduction can be
described in terms of a single energy level. More generally,
one needs a Hamiltonian matrix to describe the energy levels
and the full NEGF equations can be viewed as a sophisticated
version of the simple model with ordinary numbers replaced
by appropriate matrices as described in section 8. Finally
in section 9 I will conclude by listing what I view as open
questions in the field of nanoscale electron transport. Three
supplementary appendices are also included. Appendix A
describes the multielectron viewpoint needed to describe the
new physics (single-electron charging effects) that can arise
if a device is coupled weakly to both contacts. Appendix B
provides a formal derivation of the NEGF equations for
advanced readers using the second-quantized formalism, while
appendix C provides a listing of MATLAB codes that can
be used to reproduce the numerical examples presented in
section 7 and in appendices A, B.

2. Energy level diagram

Consider a simple version of a ‘nanotransistor’ consisting
of a semiconducting channel separated by an insulator layer
(typically silicon dioxide) from the metallic gate surrounding
the channel (figure 2.1). The voltage VG on the gate is used
to control the electron density in the channel and hence its
conductance. The regions marked source and drain are the
two contact pads which are assumed to be highly conducting.
The resistance of the channel determines the current that flows
from the source to the drain when a voltage VD is applied
between them. Such a voltage-controlled resistor is the essence
of any field effect transistor (FET) although the details differ
from one version to another. The channel length, L , has been
progressively reduced from ∼10 µm in 1960 to ∼0.1 µm in
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Figure 2.1. A sketch of a nanoscale field effect transistor. The
insulator should be thick enough to ensure that no current flows into
the gate terminal, but thin enough to ensure that the gate voltage can
control the electron density in the channel.

2000, allowing circuit designers to pack (100)2 = 10 000 times
more transistors (and hence that much more computing power)
into a chip with a given surface area. Laboratory devices have
been demonstrated with L = 0.06 µm which corresponds to
approximately 30 atoms! How do we describe current flow
through something this small?

The first step in understanding the operation of any
inhomogeneous device structure is to draw an equilibrium
energy level diagram (sometimes called a ‘band diagram’)
assuming that there is no voltage applied between the source
and the drain. Electrons in a semiconductor occupy a set
of energy levels that form bands as sketched in figure 2.2.
Experimentally, one way to measure the occupied energy levels
is to find the minimum energy of a photon required to knock an
electron out into vacuum (photoemission or PE experiments).
We can describe the process symbolically as

S + hν → S+ + e−

where ‘S’ stands for the semiconductor device (or any material
for that matter!).

The empty levels, of course, cannot be measured the same
way since there is no electron to knock out. We need an inverse
photoemission (IPE) experiment where an incident electron is
absorbed with the emission of photons:

S + e− → S− + hν.

Other experiments such as those using optical absorption
also provide information regarding energy levels. All these
experiments would be equivalent if electrons did not interact
with each other and we could knock one electron around
without affecting everything else around it. In the real world
this is not the case and subtle considerations are needed to
relate the measured energies to those we use, but we will not
get into this question [2].

We will assume that the large contact regions (labelled
source and drain in figure 2.1) have a continuous distribution
of states. This is true if the contacts are metallic, but
not exactly true of semiconducting contacts and interesting
effects, such as a decrease in the current with an increase

Figure 2.2. Allowed energy levels that can be occupied by electrons
in the active region of the device such as the channel in figure 2.1. A
positive gate voltage VG moves the energy levels down while the
electrochemical potentialµ is fixed by the source and drain contacts
which are assumed to be in equilibrium with each other (VD = 0).

in the voltage (sometimes referred to as negative differential
resistance, NDR), can arise as we will see in section 7 (see
also the article by Hersam et al [6]). But for the moment let
us ignore this possibility and assume the distribution of states
to be continuous. They are occupied up to some energy µ
(called the electrochemical potential) which also can be located
using photoemission measurements. The work function is
defined as the minimum energy of a photon needed to knock
a photoelectron out of the metal and it tells us how far below
the vacuum level µ is located.

Fermi function

If the source and drain regions are coupled to the channel
(with VD held at zero), then electrons will flow in and
out of the device bringing them all into equilibrium with a
common electrochemical potential, µ, just as two materials
in equilibrium acquire a common temperature, T . In this
equilibrium state, the average (over time) number of electrons
in any energy level is typically not an integer, but is given by
the Fermi function:

f0(E − µ) = 1

1 + exp((E − µ)/kBT )
(2.1)

which is 1 for energies far below µ and 0 for energies far
above µ.

n-type operation

A positive gate voltage VG applied to the gate lowers the
energy levels in the channel. However, the energy levels
in the source and drain contacts are unchanged and hence
the electrochemical potential µ (which must be the same
everywhere) remains unaffected. As a result the energy levels
move with respect toµ drivingµ into the empty band as shown
in figure 2.2. This makes the channel more conductive and
turns the transistor ON, since, as we will see in the next section,
the current flow under bias depends on the number of energy
levels available around E = µ. The threshold gate voltage
VT needed to turn the transistor ON is thus determined by
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Figure 2.3. An example of p-type or hole conduction. A negative
gate voltage (VG < 0) reduces the number of electrons in the
channel. Nevertheless the channel will become more conductive
once the electrochemical potentialµ is driven into the filled band
since conduction depends on the availability of states around E = µ
and not on the total number of electrons.

the energy difference between the equilibrium electrochemical
potential µ and the lowest available empty state (figure 2.2) or
what is called the conduction band edge.

p-type operation

Note that the number of electrons in the channel is not what
determines the current flow. A negative gate voltage (VG < 0),
for example, reduces the number of electrons in the channel.
Nevertheless the channel will become more conductive once
the electrochemical potential is driven into the filled band as
shown in figure 2.3, due to the availability of states (filled or
otherwise) around E = µ.

This is an example of p-type or ‘hole’ conduction as
opposed to the example of n-type or electron conduction shown
in figure 2.2. The point is that for current flow to occur states
are needed near E = µ, but they need not be empty states.
Filled states are just as good and it is not possible to tell from
this experiment whether conduction is n-type (figure 2.2) or
p-type (figure 2.3). This point should get clearer in the next
section when we discuss why current flows in response to a
voltage applied across the source and drain contacts.

Figures 2.2 and 2.3 suggest that the same device can be
operated as an n-type or a p-type device simply by reversing
the polarity of the gate voltage. This is true for short devices
if the contacts have a continuous distribution of states as we
have assumed. But in general this need not be so: for example,
long devices can build up ‘depletion layers’ near the contacts
whose shape can be different for n- and p-type devices.

3. What makes electrons flow?

We have stated that conduction depends on the availability of
states around E = µ; it does not matter if they are empty
or filled. To understand why, let us ask what makes electrons
flow from the source to the drain. The battery lowers the energy
levels in the drain contact with respect to the source contact
(assuming VD to be positive) and maintains them at distinct
electrochemical potentials separated by qVD (see figure 3.1):

µ1 − µ2 = qVD (3.1)

Figure 3.1. A positive voltage VD applied to the drain with respect
to the source lowers the electrochemical potential at the drain:
µ2 = µ1 − qVD. Source and drain contacts now attempt to impose
different Fermi distributions as shown and the device goes into a
state intermediate between the two.

giving rise to two different Fermi functions:

f1(E) ≡ 1

1 + exp((E − µ1)/kBT )
= f0(E − µ1) (3.2a)

f2(E) ≡ 1

1 + exp((E − µ2)/kBT )
= f0(E − µ2). (3.2b)

Each contact seeks to bring the active device into equilibrium
with itself. The source keeps pumping electrons into it hoping
to establish equilibrium. But equilibrium is never achieved as
the drain keeps pulling electrons out in its bid to establish
equilibrium with itself. The device is thus forced into a
balancing act between two reservoirs with different agendas
which sends it into a non-equilibrium state intermediate
between what the source would like to see and what the drain
would like to see.

Rate equations for a one-level model

This balancing act is easy to see if we consider a simple one-
level system, biased such that its energy ε lies between the
electrochemical potentials in the two contacts (figure 3.2).
Contact 1 would like to see f1(ε) electrons, while contact 2
would like to see f2(ε) electrons occupying the state where
f1 and f2 are the source and drain Fermi functions defined
in equation (3.1). The average number of electrons N at the
steady state will be something intermediate between f1 and f2.
There is a net flux I1 across the left junction that is proportional
to f1 − N , dropping the argument ε for clarity:

I1 = (−q)
γ1

h̄
( f1 − N) (3.3a)

where −q is the charge per electron. Similarly the net flux I2

across the right junction is proportional to f2 − N and can be
written as

I2 = (−q)
γ2

h̄
( f2 − N). (3.3b)

We can interpret the rate constants γ1/h̄ and γ2/h̄ as the rates
at which an electron placed initially in the level ε will escape
into the source and drain contacts respectively. In principle,
we could experimentally measure these quantities which have
the dimension per second (γ1 and γ2 have the dimension of
energy). At the end of this section I will say a few more words
about the physics behind these equations. But for the moment,
let us work out the consequences.
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Figure 3.2. The flux of electrons into and out of a one-level device
at the source and drain ends: the simple rate equation picture.

Current in a one-level model

At steady state there is no net flux into or out of the device:
I1 + I2 = 0, so from equations (3.2a), (3.2b) we obtain the
reasonable result

N = γ1 f1 + γ2 f2

γ1 + γ2
(3.4)

(that the occupation N is a weighted average of what contacts 1
and 2 would like to see). Substituting this result into
equations (3.3a) or (3.3b) we obtain an expression for the
steady-state current:

I = I1 = −I2 = q

h̄

γ1γ2

γ1 + γ2
[ f1(ε)− f2(ε)]. (3.5)

This is the current per spin. We should multiply it by 2 if there
are two spin states with the same energy.

This simple result serves to illustrate certain basic facts
about the process of current flow. Firstly, no current will flow if
f1(ε) = f2(ε). A level that is way below both electrochemical
potentials µ1 and µ2 will have f1(ε) = f2(ε) = 1 and will not
contribute to the current, just like a level that is way above both
potentials µ1 and µ2 and has f1(ε) = f2(ε) = 0. It is only
when the level lies within a few kBT of the potentials µ1 and
µ2 that we have f1(ε) �= f2(ε) and a current flows as a result
of the ‘difference in agenda’ between the contacts. Contact 1
keeps pumping in electrons striving to bring the number up
from N to f1 while contact 2 keeps pulling them out striving
to bring it down to f2. The net effect is a continuous transfer
of electrons from contact 1 to 2 corresponding to a current
I in the external circuit (figure 3.2). Note that the current is
in a direction opposite to that of the flux of electrons, since
electrons have negative charge.

It should now be clear why the process of conduction
requires the presence of states around E = µ. It does not
matter if the states are empty (n-type, figure 2.2) or filled
(p-type, figure 2.3) in equilibrium, before a drain voltage is
applied. With empty states, electrons are first injected by the
negative contact and subsequently collected by the positive
contact. With filled states, electrons are first collected by
the positive contact and subsequently refilled by the negative
contact. Either way, we have current flowing in the external
circuit in the same direction.

Inflow/outflow

Equations (3.3a), (3.3b) look elementary and I seldom hear
anyone question them. But they hide many subtle issues that
could bother more advanced readers and so I feel obliged to
mention these issues briefly at the risk of confusing satisfied
readers. The right-hand sides of equations (3.3a), (3.3b) can be
interpreted as the difference between the inflow and the outflow
from the source and drain respectively (see figure 3.2). For
example, consider the source. The outflow of γ1N/h̄ is easy
to explain since γ1/h̄ represents the rate at which an electron
placed initially in the level εwill escape into the source contact.
But the inflow γ1 f1/h̄ is harder to explain since there are many
electrons in many states in the contacts, all seeking to fill up
one state inside the channel, and it is not obvious how to sum
up the inflow from all these states. A convenient approach is
to use a thermodynamic argument as follows: if the channel
were in equilibrium with the source, there would be no net flux,
so the inflow would equal the outflow. But the outflow under
equilibrium conditions would equal γ1 f1/h̄ since N would
equal f1. Under non-equilibrium conditions, N differs from
f1 but the inflow remains unchanged since it depends only on
the condition in the contacts which remains unchanged (note
that the outflow does change, giving a net current that we have
calculated above).

‘Pauli blocking’?

Advanced readers may disagree with the statement I have just
made, namely that the inflow ‘depends only on the condition in
the contacts’. Should the inflow not be reduced by the presence
of electrons in the channel due to the exclusion principle (‘Pauli
blocking’)? Specifically one could argue that the inflow and
outflow (at the source contact) be identified respectively as

γ1 f1(1 − N) and γ1N(1 − f1)

instead of
γ1 f1 and γ1 N

as we have indicated in figure 3.2. It is easy to see that
the net current given by the difference between inflow and
outflow is the same in either case, so the argument might
appear ‘academic’. What is not academic, however, is the
level broadening that accompanies the process of coupling to
the contacts, something we need to include in order to get
quantitatively correct results (as we will see in the next section).
I have chosen to define inflow and outflow in such a way that the
outflow per electron (γ1 = γ1 N/N) is equal to the broadening
(in addition to their difference being equal to the net current).
Whether this broadening (due to the source) is γ1 or γ1(1− f1)

or something else is not an academic question. It can be shown
that as long as energy relaxing or inelastic interactions are not
involved in the inflow/outflow process, the broadening is γ1

independent of the occupation factor f1 in the contact.

4. The quantum of conductance

Consider a device with a small voltage applied across it
causing a splitting of the source and drain electrochemical
potentials (figure 4.1(a)). We can write the current through
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(a)

(b)

Figure 4.1. (a) A device with a small voltage applied across it
causing a splitting of the source and drain electrochemical potentials
µ1 > ε > µ2. (b) The process of coupling to the device inevitably
broadens it thereby spreading part of the energy level outside the
energy range between µ1 and µ2 where current flows.

this device from equation (3.5) and simplify it by assuming
that µ1 > ε > µ2 and the temperature is low enough that
f1(ε) ≡ f0(ε − µ1) ≈ 1 and f2(ε) ≡ f0(ε − µ2) ≈ 0 (see
equation (3.2)):

I = q

h̄

γ1γ2

γ1 + γ2
= qγ1

2h̄
if γ2 = γ1. (4.1a)

This suggests that we could pump unlimited current through
this one-level device by increasing γ1 (=γ2), that is by
coupling it more and more strongly to the contacts. However,
one of the seminal results of mesoscopic physics is that the
maximum conductance of a one-level device is equal to G0

(see equation (1.1)). What have we missed?
What we have missed is the broadening of the level

that inevitably accompanies any process of coupling to it.
This causes part of the energy level to spread outside the
energy range between µ1 and µ2 where current flows. The
actual current is then reduced below what we expect from
equation (4.1) by a factor (µ1 − µ2)/Cγ1 representing the
fraction of the level that lies in the window between µ1 and
µ2, where Cγ1 is the effective width of the level, C being
a numerical constant. Since µ1 − µ2 = qVD, we see from
equation (4.1)

I = qγ1

2h̄

qVD

Cγ1
→ G = I

VD
= q2

2Ch̄
(4.1b)

that the conductance indeed approaches a constant value
independent of the strength of the coupling (γ1 = γ2) to the
contacts. We will now carry out this calculation a little more
quantitatively so as to obtain a better estimate for ‘C’.

One way to understand this broadening is to note that,
before we couple the channel to the source and the drain, the

density of states (DOS), D(E), looks something like this (dark
indicates a high DOS):

We have one sharp level in the channel and a continuous
distribution of states in the source and drain contacts. On
coupling, these states ‘spill over’: the channel ‘loses’ part of
its state as it spreads into the contacts, but it also ‘gains’ part of
the contact states that spread into the channel. Since the loss
occurs at a fixed energy while the gain is spread out over a range
of energies, the overall effect is to broaden the channel DOS
from its initial sharp structure into a more diffuse structure:

There is a ‘sum rule’ that requires the loss to be exactly
offset by the gain, so that integrated over all energy, the level
can still hold only one electron. It is common to represent
the broadened DOS by a Lorentzian function centred around
E = ε (whose integral over all energy is equal to one):

Dε(E) = γ /2π

(E − ε)2 + (γ /2)2
. (4.2)

The initial delta function can be represented as the limiting
case of Dε(E) as the broadening tends to zero: γ → 0. The
broadening γ is proportional to the strength of the coupling
as we might expect. Indeed it turns out that γ = γ1 + γ2,
where γ1/h̄ and γ2/h̄ are the escape rates introduced in the
last section. This comes out of a full quantum mechanical
treatment, but we could rationalize it as a consequence of the
‘uncertainty principle’ that requires the product of the lifetime
(=h̄/γ ) of a state and its spread in energy (γ ) to equal h̄ [3].

Another way to explain the broadening that accompanies
the coupling is to note that the coupling to the surroundings
makes energy levels acquire a finite lifetime, since an electron
inserted into a state with energy E = ε at time t = 0 will
gradually escape from that state making its wavefunction look
like

exp(−iεt/h̄) exp(−|t |/2τ)

instead of just
exp(−iεt/h̄).

This broadens its Fourier transform from a delta function at
E = ε to the Lorentzian function of width γ = h̄/τ centred
around E = ε given in equation (4.2). There is thus a
simple relationship between the lifetime of a state and its
broadening: a lifetime of one picosecond (ps) corresponds to
approximately 1.06e−22 J or 0.7 meV. In general the escape
of electrons from a level need not follow a simple exponential
and the corresponding lineshape need not be Lorentzian. This
is usually reflected in an energy-dependent broadening γ (E).

S438



Tutorial: Electrical resistance: an atomistic view

The coupling to the contacts thus broadens a single
discrete energy level into a continuous density of states given
by equation (4.2) and we can include this effect by modifying
our expression for the current

I = q

h̄

γ1γ2

γ1 + γ2
[ f1(ε)− f2(ε)] (same as equation (3.5))

to account for it:

I = q

h̄

∫ +∞

−∞
dE Dε(E)

γ1γ2

γ1 + γ2
[ f1(E)− f2(E)]. (4.3)

Equation (4.3) for the current extends our earlier result in
equation (3.5) to include the effect of broadening. We could
write it in the form

I = q

h

∫ +∞

−∞
dE T̄ (E)[ f1(E) − f2(E)] (4.4)

where the transmission T̄ (E) is defined as (making use of
equation (4.2))

T̄ (E) ≡ 2πDε(E)
γ1γ2

γ1 + γ2
= γ1γ2

(E − ε)2 + (γ /2)2
. (4.5)

At low temperatures, we can write

f1(E)− f2(E) =
{

1 if µ1 > E > µ2

0 otherwise

so the current is given by

I = q

h

∫ µ1

µ2

dE T̄ (E).

If the bias is small enough that we can assume the density of
states and hence the transmission to be constant over the range
µ1 > E > µ2, so using equation (4.5) we can write

I = q

h
[µ1 − µ2]

γ1γ2

(µ− ε)2 + ((γ1 + γ2)/2)2
.

The maximum current is obtained if the energy level ε
coincides with µ, the average of µ1 and µ2. Noting that
µ1 − µ2 = qVD, we can write the maximum conductance
as

G ≡ I

VD
= q2

h

4γ1γ2

(γ1 + γ2)2
= q2

h
if γ1 = γ2.

We can also extend the expression for the number of electrons
N (see equation (3.4)) to account for the broadened density of
states:

N =
∫ +∞

−∞
dE n(E)

where n(E) ≡ Dε(E)
γ1 f1(E) + γ2 f2(E)

γ1 + γ2
. (4.6)

5. Potential profile

Now that we have included the effect of level broadening, there
is one other factor that we should include in order to complete
our model for a one-level conductor. This has to do with the
fact that the voltages applied to the external electrodes (source,

drain and gate) change the electrostatic potential in the channel
and hence the energy levels. It is easy to see that this can
play an important role in determining the shape of the current–
voltage characteristics [4]. Consider a one-level device with an
equilibrium electrochemical potentialµ located slightly above
the energy level ε as shown:

When we apply a voltage between the source and drain,
the electrochemical potentials separate by qV : µ1 −µ2 = qV .
We know that a current flows (at low temperatures) only if the
level ε lies between µ1 and µ2. Depending on how the energy
level ε moves we have different possibilities.

If we ignore the gate we might expect the potential in the
channel to be lie halfway between the source and the drain:
ε → ε − (V/2), leading to the picture shown in figure 5.1
for positive and negative voltages (note that we are assuming
the source potential, relative to which the other potentials are
changing, to be held constant). It is apparent that the energy
level lies halfway between µ1 and µ2 for either bias polarity
(V > 0 or V < 0), leading to a current–voltage characteristic
that is symmetric in V .

A different picture emerges, if we assume that the gate is
so closely coupled to the channel that the energy level follows
the gate potential and is unaffected by the drain voltage or,
in other words, ε remains fixed (figure 5.2). In this case the
energy level lies between µ1 and µ2 for positive bias (V > 0)
but not for negative bias (V < 0), leading to a current–voltage
characteristic that can be very asymmetric in V .

The point I wish to make is that the shape of the current–
voltage characteristic is affected strongly by the potential
profile and even the simplest model needs to account for it.
One often hears the question: how do we design a molecule
that will rectify? The above example shows that the same
molecule could rectify or not rectify depending on how close
the gate electrode is located!

So how do we calculate the potential inside the channel?
If the channel were an insulator, we could solve Laplace’s
equation (εr: relative permittivity which could be spatially
varying)

�∇ · (εr �∇V ) = 0

subject to the boundary conditions that V = 0 (source
electrode), V = VG (gate electrode) and V = VD (drain
electrode). We could visualize the solution to this equation
in terms of the capacitive circuit model shown in figure 5.3, if
we treat the channel as a single point ignoring any variation in
the potential inside it.

The potential energy in the channel is obtained by
multiplying the electrostatic potential, V , by the electronic
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e e

Figure 5.1. If the channel potential lies halfway between the source and drain potentials, significant current will flow for either bias polarity
and the current–voltage characteristics will look symmetric.

e e

Figure 5.2. If the channel potential is tied to the source and unaffected by the drain potential, significant current will flow (a) for V > 0, but
not (b) for V < 0, making the current–voltage characteristics look rectifying.

charge, −q:

UL = CG

CE
(−qVG) +

CD

CE
(−qVD). (5.1a)

Here we have labelled the potential energy with a subscript ‘L’
as a reminder that it is calculated from the Laplace equation
ignoring any change in the electronic charge, which is justified
if there are very few electronic states in the energy range around
µ1 and µ2.

Otherwise there is a change �ρ in the electron density in
the channel and we need to solve the Poisson equation

�∇ · (εr �∇V ) = −�ρ/ε0

for the potential. In terms of our capacitive circuit model, we
could write the change in the charge as a sum of the charges
on the three capacitors:

−q�N = CSV + CG(V − VG) + CD(V − VD)

so the potential energy U = −qV is given by the sum of the
Laplace potential and an additional term proportional to the
change in the number of electrons:

U = UL +
q2

CE
�N . (5.1b)

The constant q2/CE ≡ U0 tells us the change in the potential
energy due to one extra electron and is called the single-
electron charging energy, whose significance we will discuss

further in the next section. The change �N in the number of
electrons is calculated with respect to the reference number
of electrons, N0, originally in the channel, corresponding to
which its energy level ε is known.

Iterative procedure for self-consistent solution

For a small device, the effect of the potential U is to raise
the density of states in energy and can be included in our
expressions for the number of electrons, N (equation (4.6)),
and the current, I (equation (4.3)), in a straightforward manner:

N =
∫ +∞

−∞
dE Dε(E − U )

γ1 f1(E) + γ2 f2(E)

γ1 + γ2
(5.2)

I = q

h̄

∫ +∞

−∞
dE Dε(E − U )

γ1γ2

γ1 + γ2
[ f1(E)− f2(E)]. (5.3)

Equation (5.2) has a U appearing on its right-hand side
which in turn is a function of N through the electrostatic
relation (equation (5.1)). This requires a simultaneous or
‘self-consistent’ solution of the two equations which is usually
carried out using the iterative procedure depicted in figure 5.4.
We start with an initial guess for U , calculate N from
equation (5.2) with Dε(E) given by equation (4.2), calculate
an appropriate U from equation (5.1b), with UL given by
equation (5.1a), and compare with our starting guess for U .
If this new U is not sufficiently close to our original guess, we
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e

Figure 5.3. A simple capacitive circuit model for the ‘Laplace’ potential UL of the active region in response to the external gate and drain
voltages, VG and VD. The actual potential ‘U ’ can be different from UL if there is a significant density of electronic states in the energy range
around µ1 and µ2. The total capacitance is denoted as CE, where ‘E’ stands for electrostatic.

Figure 5.4. The iterative procedure for calculating N and U
self-consistently.

revise our guess using a suitable algorithm, say something like

(5.4)

where α is a positive number (typically <1) that is adjusted to
be as large as possible without causing the solution to diverge
(which is manifested as an increase in Uc − Uo from one
iteration to the next). The iterative process has to be repeated
till we find a U that yields an ‘N ’ that leads to a new U which is
sufficiently close (say within a fraction of kBT ) to the original
value. Once a converged U has been found, the current can be
calculated from equation (5.3).

The self-consistent charging model based on the
Poisson equation that we have just discussed represents
a good zero-order approximation (sometimes called the
Hartree approximation) to the problem of electron–electron
interactions, but it is generally recognized that it tends to
overestimate the effect. Corrections for the so-called exchange
and correlation effects are often added, but the description
is still within the one-electron picture which assumes that
a typical electron feels some average potential, U , due to
the other electrons. Failure of this one-electron picture is
known to give rise to profound effects such as magnetism.
As we may expect, related effects can manifest themselves in
nanoscale transport as well and will continue to be discovered
as the field progresses. Such effects are largely outside the

scope of this article. However, there is one aspect that is
fairly well understood and can affect our picture of current
flow even for a simple one-level device putting it in the so-
called Coulomb blockade or single-electron charging regime.
A proper treatment of this regime requires the multielectron
picture described in appendix A.

6. Quantum capacitance

As we have seen, the actual potential U inside the channel
plays an important role in determining the shape of the
I–V characteristics. Of course, this comes out automatically
from the self-consistent calculation described above, but it is
important not merely to calculate but also to understand the
result. Quantum capacitance is a very useful concept that helps
in this understanding [5].

We are performing a simultaneous solution of two
relations connecting the potential, U , to the number of
electrons, N : an electrostatic relation (equation (5.1)) which
is strictly linear and is based on freshman physics, and a
transport relation (equation (5.2)) which is non-linear and in
general could involve advanced quantum statistical mechanics,
although we have tried to keep it fairly simple so far. It is this
latter equation that is relatively unfamiliar and one could get
some insight by linearizing it around an appropriate point. For
example, we could define a potential U = UN , which makes
N = N0 and keeps the channel exactly neutral:

N0 =
∫ +∞

−∞
dE Dε(E − UN )

γ1 f1(E) + γ2 f2(E)

γ1 + γ2
.

Any increase in U will raise the energy levels and reduce N ,
while a decrease in U will lower the levels and increase N .
So, for small deviations from the neutral condition, we could
write

�N ≡ N − N0 ≈ CQ[UN − U ]/q2

where CQ ≡ −q2[dN/dU ]U=UN (6.1)

is called the quantum capacitance and depends on the density
of states around the energy range of interest, as we will show.
We can substitute this linearized relation into equation (5.1b)
to obtain

U = UL +
CQ

CE
[UN − U ] → U = CEUL + CQUN

CE + CQ
(6.2)
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Figure 6.1. Extension of the capacitive network in figure 5.1 to
include the quantum capacitance.

showing that the actual channel potential U is intermediate
between the Laplace potential, UL, and the neutral potential,
UN . How close it is to one or the other depends on the
relative magnitudes of the electrostatic capacitance, CE, and
the quantum capacitance, CQ. This is easily visualized in terms
of a capacitive network obtained by extending figure 5.1 to
include the quantum capacitance, as shown in figure 6.1.

We will now show that a channel with a low density of
states in the energy range of interest has a low CQ making
U = UL as we expect for an insulator. A channel with a high
density of states in the energy range of interest has a high CQ,
making U = UN as we expect for a metal.

Relation between CQ and the density of states

To establish the connection between the quantum capacitance
and the density of states, we rewrite equation (5.2) in the form

N =
∫ +∞

−∞
dE Dε(E)

γ1 f0(E + U − µ1) + γ2 f0(E + U − µ2)

γ1 + γ2

and then make use of equation (6.1) for CQ:

CQ ≡ −q2[dN/dU ]U=UN

= q2
∫ +∞

−∞
dE [D1(E)FT(E + UN − µ1)

+ D2(E)FT(E + UN − µ2)] (6.3)

where
D1(E) ≡ Dε(E)

γ1

γ1 + γ2

and
D2(E) ≡ Dε(E)

γ2

γ1 + γ2

and we have introduced the thermal broadening function FT

defined as

FT(E) ≡ −d f0

dE
= 1

4kBT
sech2

(
E

2kBT

)
. (6.4)

Its maximum value is (1/4kBT )while its width is proportional
to kBT . It is straightforward to show that the area obtained
by integrating this function is equal to one, independently of
kBT . This means that at low temperatures FT(E)becomes very
large but very narrow while maintaining a constant area of one
and can be idealized as a delta function: FT(E) → δ(E),

which allows us to simplify the expression for the quantum
capacitance:

CQ ≈ q2[D1(µ1 − UN ) + D2(µ2 − UN )]. (6.5)

This expression, valid at low temperatures, shows that the
quantum capacitance depends on the density of states around
the electrochemical potentials µ1 and µ2, after shifting by the
potential UN .

7. Toy examples

In this section I will first summarize the model that we have
developed here and then illustrate it with a few toy examples.
We started by calculating the current through a device with a
single discrete level (ε) in section 3, and then extended it to
include the broadening of the level into a Lorentzian density
of states

Dε(E) = 2(for spin)× γ /2π

(E − ε)2 + (γ /2)2
γ ≡ γ1 + γ2

(7.1)
in section 4 and the self-consistent potential in section 5:

U = UL + U0(N − N0) (7.2)

UL = CG

CE
(−qVG) +

CD

CE
(−qVD)

U0 = q2/CE CE = CG + CS + CD.

(7.3)

The function Dε(E) in equation (7.1) is intended to denote
the density of states (DOS) obtained by broadening a single
discrete level ε. What about a multilevel conductor with many
energy levels looking something like this?

If we make the rather cavalier assumption that all levels
conduct independently, then we could use exactly the same
equations as for the one-level device, replacing the one-level
DOS, Dε(E), in equation (7.1) with the total DOS, D(E). With
this in mind, I will use D(E) instead of Dε(E) to denote the
density of states and refer to the results summarized below as
the independent level model rather than the single-level model.

Independent level model: summary

In this model, the number of electrons, N , is given by

N =
∫ +∞

−∞
dE n(E)

where n(E) = D(E − U )

(
γ1

γ
f1(E) +

γ2

γ
f2(E)

)
(7.4)

while the currents at the two terminals are given by

I1 = q

h̄

∫ +∞

−∞
dE γ1[D(E − U ) f1(E)− n(E)] (7.5a)
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(a)

(b)

Figure 7.1. Current versus voltage calculated using equations (7.1)–(7.8) with µ = 0, ε = 0.2 eV, VG = 0, kBT = 0.025 eV, U0 = 0.25 eV,
CD/CE = 0.5 and γ1 = γ2 = 0.005 eV. The only difference between (a) and (b) is that in (a) γ1 is independent of energy, while in (b) γ is
zero for energies less than zero. In either case γ2 is assumed to be independent of the energy.

Figure 7.2. We can define (a) n- and (b) p-type conduction depending on whether the electrochemical potential lies on an up slope or a
down slope of the DOS.

I2 = q

h̄

∫ +∞

−∞
dE γ2[D(E − U ) f2(E)− n(E)]. (7.5b)

At steady state, the sum of the two currents is equated to zero
to eliminate n(E):

I = q

h

∫ +∞

−∞
dE T̄ (E − U )[ f1(E)− f2(E)]

where T̄ (E) = D(E)2πγ1γ2/γ (7.6)

is called the transmission, a concept that plays a central role
in the transmission formalism widely used in mesoscopic
physics [9]. Note that the Fermi functions f1 and f2 are given
by

f1(E) = f0(E − µ1) f2(E) = f0(E − µ2)

where f0(E) ≡ (1 + exp(E/kBT ))−1 (7.7)

where the electrochemical potentials in the source and drain
contacts are given by

µ1 = µ µ2 = µ− qVD (7.8)

where µ is the equilibrium electrochemical potential.

7.1. Negative differential resistance (NDR)

To see how the model works, consider first a one-level device
with a broadened DOS given by equation (7.1) with parameters
as listed in figure 7.1. As we might expect, the current
increases once the applied drain voltage is large enough that
the energy level comes within the energy window between
µ1 and µ2. The current then increases towards a maximum
value of (2q/h̄)γ1γ2/(γ1 +γ2) over a voltage range ∼(γ1 +γ2 +
kBT )CE/CD as shown in figure 7.1(a). Here we have assumed

S443



S Datta

Figure 7.3. The thermoelectric current reverses direction from
p-type (µ1 < 0) to n-type (µ1 > 0) samples. γ1 = γ2 = 0.005 eV,
kB T1 = 0.026 eV and kB T2 = 0.025 eV.

the broadening due to the two contacts γ1 and γ2 to be constants
equal to 0.005 eV.

Now suppose γ1 is equal to 0.005 eV for E > 0, but is
zero for E < 0 (γ2 is still independent of energy and equal
to 0.005 eV). The current–voltage characteristics now show
negative differential resistance (NDR), that is, a drop in the
current with an increase in the voltage, in one direction of
applied voltage but not the other, as shown in figure 7.1(b).
This simple model may be relevant to the experiment described
in [6] though the nature and location of the molecular energy
levels remain to be established quantitatively.

7.2. Thermoelectric effect

We have discussed the current that flows when a voltage is
applied between the two contacts. In this case the current
depends on the density of states near the Fermi energy and it
does not matter whether the equilibrium Fermi energy µ1 lies
at the (a) lower end (n-type) or at the (b) upper end (p-type) of
the density of states (see figure 7.2).

However, if we simply heat up one contact relative to
the other so that T1 > T2 (with no applied voltage), a
thermoelectric current will flow to which the direction will
be different in case (a) and in case (b). To see this we could
calculate the current from our model with U = 0 (there is
no need to perform a self-consistent solution), VD = 0 and
VG = 0, and with

f1(E) ≡ 1

1 + exp
( E−µ1

kBT1

)
and

f2(E) ≡ 1

1 + exp
( E−µ1

kBT2

) .
As shown in figure 7.3 the direction of the current is different
for n- and p-type samples. This is of course a well-known
result for bulk solids where hot point probes are routinely used
to identify the type of conduction. But the point I am trying
to make is that it is true even for ballistic samples and can be
described by the elementary model described here [7].

7.3. Nanotransistor

As another example of the independent level model, let
us model a nanotransistor [8] by writing the DOS as (see

figure 7.4; W : width in the y-direction)

D(E) = mcW L/πh̄2ϑ(E − Ec) (7.9)

making use of the well-known result that the DOS per unit area
in a large 2D conductor described by an electron effective mass
is equal to mc/πh̄2, for energies greater than the energy Ec of
the conduction band edge. The escape rates can be written
down assuming that electrons are removed by the contact with
a velocity vR:

γ1 = γ2 = h̄vR/L . (7.10)

The current–voltage relations shown in figure 7.5 were
obtained using these model parameters: Ec = 0, µ1 =
−0.2 eV, mc = 0.25 m, CG = 2εrε0W L/t , CS = CD =
0.05 CG, W = 1 µm, L = 10 nm, insulator thickness
t = 1.5 nm, vR = 107 cm s−1. At high drain voltages (VD)
the current saturates when µ2 drops below Ec since there are
no additional states to contribute to the current. Note that the
gate capacitance CG is much larger than the other capacitances,
which helps to hold the channel potential fixed relative to the
source as the drain voltage is increased (see equation (7.3)).
Otherwise, the bottom of the channel density of states, Ec,
will ‘slip down’ with respect to µ1 when the drain voltage is
applied, so the current will not saturate. The essential feature
of a well-designed transistor is that the gate is much closer to
the channel than ‘L’ allowing it to hold the channel potential
constant despite the voltage VD on the drain.

I should mention that our present model ignores the profile
of the potential along the length of the channel, treating it as
a little box with a single potential U given by equation (7.2).
Nonetheless the results (figure 7.5) are surprisingly close to
those of experiments/realistic models, because the current in
well-designed nanotransistors is controlled by a small region
in the channel near the source whose length can be a small
fraction of the actual length L . Luckily we do not need to pin
down the precise value of this fraction, since the present model
gives the same current independently of L [8].

Ohm’s law

It is natural to ask whether the independent level model
would lead to Ohm’s law if we were to calculate the low
bias conductance of a large conductor of length L and cross-
sectional area S. Since the current is proportional to the DOS,
D(E) (see equation (7.5)), which is proportional to the volume
SL of the conductor, it might seem that the conductance
G ∼ SL . However, the coupling to the contacts decreases
inversely with the length L of the conductor, since the longer
a conductor is, the smaller is its coupling to the contact (see
equation (7.10)). While the DOS goes up as the volume, the
coupling to the contact goes down as 1/L , so the conductance

G ∼ SL/L = S.

But Ohm’s law tells us that the conductance should scale
as S/L; we are predicting that it should scale as ‘S’. The
reason is that we are really modelling a ballistic conductor,
where electrons propagate freely, the only resistance arising
from the contacts. The conductance of such a conductor is
indeed independent of its length. The length dependence of
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Figure 7.4. A nanotransistor: the physical structure and assumed density of states (DOS) in the channel region.
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Figure 7.5. (a) The drain current (I ) as a function of the gate voltage (VG) for different values of the drain voltage (VD); (b) the drain current
as a function of the drain voltage for different values of the gate voltage.

the conductance comes from scattering processes within the
conductor that are not yet included in our thinking [9].

For example, in a uniform channel the electronic
wavefunction is spread out uniformly. But a scatterer in the
middle of the channel could split up the wavefunctions into
two pieces, one on the left and one on the right, with different
energies. One has a small γ2 while the other has a small
γ1, and so neither conducts very well. This localization of
wavefunctions would seem to explain why the presence of
a scatterer contributes to the resistance, but to get the story
quantitatively correct it is in general necessary to go beyond the
independent level model to account for interference between
multiple paths. This requires a model that treats γ as a matrix
rather than as simple numbers.

Such ‘coherent’ scatterers lead to many interesting
phenomena, but not to Ohm’s law: R ∼ 1/L . The full story
requires us to include phase-breaking scattering processes that
cause a change in the state of an external object. For example,
if an electron gets deflected by a rigid (that is unchangeable)
defect in the lattice, the scattering is said to be coherent. But, if
the electron transfers some energy to the atomic lattice causing
it to start vibrating, that would constitute a phase-breaking
or incoherent process. Purely coherent scatterers can give
rise to a measurable resistance R, but cannot give rise to any
dissipation, since no energy is removed from the electrons.
Indeed there is experimental evidence that the associated Joule
heating (I 2 R) occurs in the contacts outside the channel,
allowing experimentalists to pump a lot more current through
a small conductor without burning it up.

Much of the work on small conductors is usually in the
coherent limit, but it is clear that including phase-breaking
scattering will be important in developing quantitative models.
In section 7.4 I will show how this can be done within our
simple one-level model. This will lead naturally to the non-
equilibrium Green function (NEGF) formalism described in
section 8.

7.4. Inelastic spectroscopy

For the purpose of including phase breaking it is useful to recast
the equations listed at the beginning of this section in a slightly
different form by defining a Green function G:

G = 1

E − ε − U + (iγ /2)
where γ = γ1 + γ2 (7.11)

such that

2πD(E) = G(E)γ (E)G∗(E) = i[G − G∗]. (7.12)

The electron density can then be written as (cf equation (7.4))

2πn(E) = G(E)γ in(E)G∗(E) (7.13)

in terms of the in-scattering function defined as γ in = γ in
1 +γ in

2 ,
where

γ in
1 = γ1 f1 and γ in

2 = γ2 f2. (7.14a)

S445



S Datta

Figure 7.6. Phase-breaking scattering processes can be visualized
as a fictitious terminal ‘s’ with its own in-scattering and
out-scattering functions.

It is also useful to define an out-scattering function γ out =
γ out

1 + γ out
2 , where

γ out
1 = γ1(1− f1) and γ out

2 = γ2(1− f2). (7.14b)

Note that
γi = γ out

i + γ in
i . (7.15)

Subtracting equation (7.13) from (7.12) we obtain

2πp(E) = G(E)γ out(E)G∗(E) (7.16)

for the hole density

p(E) = D(E) − n(E) (7.17)

obtained by subtracting the electron density from the density
of states.

Phase-breaking scattering processes can be visualized as
a fictitious terminal ‘s’ with its own in-scattering and out-
scattering functions, so

γ in = γ in
1 + γ in

2 + γ in
s (7.18a)

γ out = γ out
1 + γ out

2 + γ out
s . (7.18b)

The current (per spin) at any terminal ‘i ’ can be calculated
from

Ii = (q/h̄)
∫ +∞

−∞
dE Ĩi(E) (7.19)

with
Ĩi = [γ in

i D] − [γin]. (7.20)

To find γ in
s and γ out

s , one approach is to view the scattering
terminal ‘s’ like a real terminal whose electrochemical
potential µs is adjusted to make the current Is = 0, following
the phenomenological approach widely used in mesoscopic
physics [9e]. The scattering terminal, however, cannot in
general be described by a Fermi function that we can use in
equations (7.14a), (7.14b). The NEGF formalism allows us
to evaluate γ in

s and γ out
s to any desired approximation from a

microscopic theory. In the self-consistent Born approximation,

γ in
s (E) =

∫
d(h̄ω) Dph(h̄ω)n(E + h̄ω) (7.21a)

and

γ out
s (E) =

∫
d(h̄ω) Dph(h̄ω)p(E − h̄ω) (7.21b)

where the ‘phonon’ spectral function can be written as the sum
of an emission term (positive frequencies) and an absorption
term (negative frequencies):

Dph(h̄ω) =
∑

i

Di[(Ni + 1)δ(h̄ω − h̄ωi) + Niδ(h̄ω + h̄ωi)]

(7.22)
with Ni representing the number of phonons of frequency
h̄ωi, and Di its coupling. We assume Ni to be given by the
Bose–Einstein factor, but it is conceivable that the phonons
could be driven off equilibrium, requiring Ni to be evaluated
from a transport equation for the phonons. Low frequency
phonons with h̄ωi much smaller than other relevant energy
scales can be treated as elastic scatterers with h̄ωi ∼ 0,
Di(Ni + 1) ≈ Di Ni ≡ Dph

0 . Equations (7.21) then simplify to

γ in
s = Dph

0 n(E) and γ out
s = Dph

0 p(E)

so γs = γ in
s + γ out

s = Dph
0 D(E). (7.23)

Figure 7.7 shows a simple example where the energy level
ε = 5 eV lies much above the equilibrium electrochemical
potential µ = 0, so current flows by tunnelling. The currents
calculated without any phonon scattering (all Di = 0) and
with phonon scattering (D1 = 0.5, h̄ω1 = 0.075 eV and
D2 = 0.7, h̄ω2 = 0.275 eV) show no discernible difference.
The difference, however, shows up in the conductance dI/dV
where there is a discontinuity proportional to Di when the
applied voltage equals the phonon frequency h̄ωi. This
discontinuity shows up as peaks in d2 I/dV 2 whose location
along the voltage axis corresponds to molecular vibration
quanta, and this is the basis of the field of inelastic electron
tunnelling spectroscopy (IETS) [10].

Note that the above prescription for including inelastic
scattering (equations (7.21), (7.22)) is based on the NEGF
formalism. This is different from many common theories
where exclusion principle factors (1 − f ) appropriate to the
contacts are inserted somewhat intuitively and as such cannot
be applied to long devices; by contrast the NEGF prescription
can be extended to long devices by replacing numbers with
matrices as we will describe in the next section. Indeed as we
mentioned in the introduction, what we have described so far
can be viewed as a special case of the NEGF formalism applied
to a device so small that it is described by a single energy level
or a ‘(1 × 1) Hamiltonian matrix’. Let us now look at the
general formalism.

8. From numbers to matrices: NEGF formalism

The one-level model serves to identify the important concepts
underlying the flow of current through a conductor, such as
the location of the equilibrium electrochemical potential µ
relative to the density of states D(E), the broadening of the
level γ1,2 due to the coupling to contacts 1 and 2 etc. In
the general model for a multilevel conductor with ‘n’ energy
levels, all the quantities we have introduced are replaced by a
corresponding matrix of size (n × n):
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Figure 7.7. (a) Current (I ), (b) conductance (dI/dV ) and (c) d2 I/dV 2 as a function of voltage calculated without phonon scattering (dashed
line) and with scattering by phonons (solid curve) with two distinct frequencies having slightly different coupling strengths (D1 = 0.5,
h̄ω1 = 0.075 eV and D2 = 0.7, h̄ω2 = 0.275 eV).

ε → [H ] Hamiltonian matrix
γi → [�i(E)] Broadening matrix
2πD(E) → [A(E)] Spectral function
2πn(E) → [Gn(E)] Correlation

function
2πp(E) → [G p(E)] Hole correlation

function
U → [U ] Self-consistent

potential matrix
N → [ρ] = ∫

(dE/2π)[Gn(E)] Density matrix
γ in

i → [�in
i (E)] In-scattering matrix

γ out
i → [�out

i (E)] Out-scattering matrix

Actually, the effect of the contacts is described by a ‘self-
energy’ matrix, [�1,2(E)], whose anti-Hermitian part is the
broadening matrix: �1,2 = i[�1,2 −�+

1,2]. The Hermitian part
effectively adds to [H ], thereby shifting the energy levels—
an effect we ignored in the simple model. The Hermitian and
anti-Hermitian parts are Hilbert transform pairs. Also, I should
mention that I have used

Gn(E), G p(E), �in(E), �out(E)

to denote what is usually written in the literature [11, 12] as

−iG<(E), +iG>(E), −i�<(E), +i�>(E),

in order to emphasize their physical significance.
The NEGF equations for dissipative quantum transport

look much like those discussed in section 7.4, but with numbers
replaced by matrices:

Gn = G�inG+ (8.1)

G = [E I − H0 − U −�]−1 (8.2)

A = i[G − G+] � = i[� −�+] (8.3)

where
�in = �in

1 +�in
2 +�in

s

� = �1 +�2 +�s.
(8.4)

These equations can be used to calculate the correlation
function Gn and hence the density matrix ρ whose diagonal
elements give us the electron density:

ρ =
∫

dE Gn(E)/2π. (8.5)

The current (per spin) at any terminal ‘i ’ can be calculated
from

Ii = (q/h̄)
∫ +∞

−∞
dE Ĩi(E)/2π (8.6)

with
Ĩi = Tr[�in

i A] − Tr[�iG
n] (8.7)

which is shown in figure 8.1 in terms of an inflow (�in
i A) and

an outflow (�iGn). The full time-dependent versions of these
equations are derived in sections B.2, B.3 and B.4 from which
the steady-state versions stated above are obtained.

Input parameters

To use these equations, we need a channel Hamiltonian [H0]
and the in-scattering [�in] and broadening [�] functions. For
the two contacts, these are related:

�in
1 = �1 f1 and �in

2 = �2 f2 (8.8)

and the broadening/self-energy for each contact can be
determined from a knowledge of the surface spectral
function (a)/surface Green function (g) of the contact and the
matrices [τ ] describing the channel contact coupling:

� = τaτ+ and � = τgτ+. (8.9)

Finally one needs a model (Hartree–Fock, density functional
theory etc) for relating the self-consistent potential U to the
density matrix. This aspect of the problem needs further work,
since not much of the work in quantum chemistry has been
geared towards transport problems.

Scattering contact

The NEGF equations without the ‘s’ contact are often used
to analyse small devices and in this form it is identical to
the result obtained by Meir and Wingreen (see equation (6)
of [12b]). The third ‘contact’ labelled ‘s’ represents scattering
processes, without which we cannot make the transition to
Ohm’s law. Indeed it is only with the advent of mesoscopic
physics in the 1980s that the importance of the contacts (�1 and
�2) in interpreting experiments became widely recognized.

Prior to that, it was common to ignore the contacts as
minor experimental distractions and try to understand the
physics of conduction in terms of the ‘s’ contact, though no
one (to my knowledge) thought of scattering as a ‘contact’
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Figure 8.1. (See figure 7.6.) From numbers to matrices: the general matrix model, based on the NEGF formalism. Without the ‘s contact’
this model is equivalent to equation (6) of [12b]. The ‘s contact’ distributed throughout the channel describes incoherent scattering
processes [12c]. In general this ‘contact’ cannot be described by a Fermi function unlike the real contacts.

until Buttiker introduced the idea phenomenologically in the
mid-1980s (see [9e]). Subsequently, it was shown [12c] from
a microscopic model that incoherent scattering processes in
the NEGF method act like a fictitious ‘contact’ distributed
throughout the channel that extracts and reinjects electrons.
Like the real contacts, coupling to this ‘contact’ too can
be described by a broadening matrix �s. However, unlike
the real contacts, the scattering contact in general cannot be
described by a Fermi function so, although the outflow is given
by Tr[�sGn/2π], the inflow is more complicated. For the
scattering ‘terminal’, unlike the contacts, there is no simple
connection between �in

s and �s (or �s). Moreover, these
quantities are related to Gn and have to be computed self-
consistently. The relevant equations derived in section B.4
can be viewed as the matrix versions of equations (7.21a)
and (7.21b) [17].

Derivation of NEGF equations

The full set of equations are usually derived using the non-
equilibrium Green function (NEGF) formalism, also called
the Keldysh or the Kadanoff–Baym formalism initiated by
the works of Schwinger, Baym, Kadanoff and Keldysh in the
1960s. However, their work was motivated largely by the
problem of providing a systematic perturbative treatment of
electron–electron interactions, a problem that demands the full
power of this formalism. By contrast, we are discussing a much
simpler problem, with interactions treated only to lowest order.

Indeed it is quite common to ignore interactions
completely (except for the self-consistent potential) assuming
‘coherent transport’. The NEGF equations for coherent
transport can be derived from a one-electron Schrödinger
equation without the advanced formal machinery [12d]. We
start by partitioning the Schrödinger equation into three parts,
the channel and the source and drain contacts (figure 8.2):

ih̄
d

dt

{
�s

ψ

�D

}
=

[ Hs + iη τ+
S 0

τS H τD

0 τ+
D HD + iη

] {
�s

ψ

�D

}
(8.10)

Figure 8.2. A channel connected to two contacts.

with an infinitesimal iη added to represent the extraction and
injection of electrons from each of the contacts.

It is possible to eliminate the contacts, to write a
Schrödinger-like equation for the channel alone:

ih̄
dψ

dt
− Hψ − �ψ︸︷︷︸

Outflow

= S︸︷︷︸
Inflow

(8.11)

with an additional self-energy term ‘�ψ’ and a source term
‘S’ that give rise to outflow and inflow respectively. Note
that unlike [H ], the self-energy [�] is non-Hermitian and
gives rise to an outflow of electrons. The additional terms
in equation (8.11) are reminiscent of the frictional term and
the noise term added to Newton’s law to obtain the Langevin
equation

m
dv

dt
+ γ v︸︷︷︸

Friction

= F︸︷︷︸
External force

+ N(t)︸︷︷︸
Noise

describing a Brownian particle [13]. Equivalently, one can
move to a collective picture and balance inflow with outflow
to obtain the Boltzmann equation. With quantum dynamics
too we can express the inflow and outflow in terms of the
correlation functions: Gn ∼ ψψ+,�in ∼ SS+ and relate them
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to obtain the NEGF equations (sometimes called the quantum
Boltzmann equation).

Beyond the one-electron picture

A proper derivation of the NEGF equations, however, requires
us to go beyond this one-electron picture, especially if non-
coherent processes are involved. For example, the self-energy
term ‘�ψ’ in equation (8.11) represents the outflow of the
electrons and it is natural to ask whether � (whose imaginary
part gives the broadening or the inverse lifetime) should depend
on whether the final state (to which outflow occurs) is empty
or full. Such exclusion principle factors do not appear as long
as purely coherent processes are involved. But they do arise
for non-coherent interactions in a non-obvious way that is hard
to rationalize from the one-electron picture.

In the one-electron picture, individual electrons are
described by a one-electron wavefunction ψ and the electron
density is obtained by summing ψ∗ψ from different electrons.
A more comprehensive viewpoint describes the electrons in
terms of field operators ‘c’ such that ‘c+c’ is the number
operator which can take on one of two values ‘0’ or ‘1’
indicating whether a state is empty or full. These ‘second-
quantized’ operators obey differential equations

ih̄
d

dt
c − Hc −�c = S (8.12)

that look much like the ones describing one-electron
wavefunctions (see equation (8.11)). But unlike ψ∗ψ which
can take on any value, operators such as c+c can only take on
one of two values ‘0’ or ‘1’, thereby reflecting a particulate
aspect that is missing from the Schrödinger equation. This
advanced formalism is needed to progress beyond coherent
quantum transport to inelastic interactions and onto more
subtle many-electron phenomena such as the Kondo effect.

A derivation of equation (8.12) leading to the NEGF
equations is provided in appendix B using second quantization
for the benefit of advanced readers. However, in this
derivation I have not used advanced concepts such as the
‘Keldysh contour’ which are needed for a systematic treatment
of higher order processes. While future works in the
field will undoubtedly require us to go beyond the lowest
order treatment discussed here, it is not clear whether a
higher order perturbative treatment will be useful or whether
non-perturbative treatments will be required that describe
the transport of composite or dressed particles obtained
by appropriate unitary transformations of the bare electron
operator ‘c’.

9. Open questions

Let me end by listing what I see as the open questions in the
field of nanoscale electronic transport.

Model Hamiltonian

Once the matrices [H ] and [�] are known the NEGF equations
provide a well-defined prescription for calculating the current–
voltage characteristics. For concrete calculations one needs to
adopt a suitable basis such as tight-binding/Huckel/extended
Huckel/Gaussian described in the literature [14] in order to
write down the matrices [H ] and [�].

We could visualize the Hamiltonian [H ] as a network of
unit cells described by matrices Hnn whose size (b × b) is
determined by the number of basis functions (b) per unit cell.
Different unit cells are coupled through the ‘bond matrices’
[Hnm ].

The overall size of [H ] is (Nb× Nb), N being the number
of unit cells. The self-energy matrix [�] is also of the same size
as [H ], although it represents the effect of the infinite contacts.
It can be evaluated from a knowledge of the coupling matrices
[τs] and [τD] (see figure 8.2) and the surface properties of the
contacts, as expressed through its surface Green function (see
equation (8.9)). The matrices [H ] and [�] thus provide a kind
of intellectual partitioning: [H ] expresses the properties of the
channel while [�] depends on the interface with the contacts.
In specific problems it may be desirable to borrow [H ] and [�]
from two different communities (such as quantum chemists and
surface physicists), but the process is made difficult by the fact
that they often use different basis functions and self-consistent
fields (see below). Much work remains to be done along these
lines. Indeed, sometimes it may not even be clear where the
channel ends and the contact begins!

Transient transport

Most of the current work to date has been limited to steady-
state transport, but it is likely that future experiments will
reveal transient effects whose time constants are controlled by
the quantum dynamics, rather than circuit or RC effects [18].
The time-dependent NEGF equations [19] should be useful in
modelling such phenomena.

Self-consistent field

An important conceptual issue in need of clarification is the
treatment of electron–electron interactions. Discovering an
appropriate self-consistent field U (N) to replace our simple
ansatz (cf equation (5.1b))

U (N) = q2[N − N0]/CE

is arguably one of the central topics in many-electron physics.
Quantum chemists have developed sophisticated models for
the self-consistent field such as Hartree–Fock (HF) and density
functional theory (DFT) in addition to a host of semi-empirical
approaches which can all give very different energy level
structures. A lot of work has gone into optimizing these models
but largely with respect to ground-state calculations and it is not
clear what the best choice is for electron transport problems.

One could argue that electron transport involves adding
and removing electrons and as such one should be looking at
difference between the energies of the (N ±1)-electron system
relative to the ground state of the N -electron system. However,
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Figure 9.1. A large conductor can be viewed as an array of unit
cells. If the conductor is extended in the transverse plane, we should
view each unit cell as representing an array of unit cells in the
transverse direction.

for large broadening, the wavefunctions are significantly
delocalized from the channel into the contacts, so the number
of electrons in the channel can change by fractional amounts.
The best choice of a self-consistent field for transport problems
requires a careful consideration of the degree of delocalization
as measured by the relative magnitudes of the broadening and
the charging.

Transport regimes

In this context it is useful to distinguish broadly between three
different transport regimes for small conductors depending on
the degree of delocalization.

Self-consistent field (SCF) regime. If the thermal energy kBT
and/or the broadening γ are comparable to the single-electron
charging energy U0, we can use the SCF method described
in this article. However, the optimum choice of the self-
consistent potential needs to be clarified.

Coulomb blockade (CB) regime. If U0 is well in excess of
both kBT and γ , the SCF method is not adequate, at least
not the restricted one. More correctly, one could use (if
practicable) the multielectron master equation described in
appendix A [15].

Intermediate regime. If U0 is comparable to the larger of
kBT , γ , there is no simple approach: the SCF method does not
do justice to the charging, while the master equation does not
do justice to the broadening and a different approach is needed
to capture the observed physics [16].

With large conductors too we can envision three regimes
of transport that evolve out of these three regimes. We could
view a large conductor as an array of unit cells as shown in
figure 9.1. The inter-unit coupling energy ‘t’ has an effect
somewhat (but not exactly) similar to the broadening ‘γ ’ that
we have associated with the contacts. If t � U0, the overall
conduction will be in the SCF regime and can be treated using
the method described here. If t 
 U0, it will be in the CB
regime and can in principle be treated using the multielectron
master equation under certain conditions (specifically if ‘t’ is
much less than the level broadening γs). On the other hand,
large conductors with γs 
 t � U0 belong to an intermediate
regime that presents major theoretical challenges [20], giving
rise to intriguing possibilities. Indeed many believe that the
high Tc superconductors (whose microscopic theory is yet to be
discovered) consist of unit cells whose coupling is delicately
balanced at the borderline of the SCF and the CB regimes.

I believe that the field of nanoelectronics is currently
at a very exciting stage where important advances can be

expected from both applied and basic points of view. We
will continue to acquire a better quantitative understanding of
nanoscale devices based on nanowires, nanotubes, molecules
and other nanostructured materials. Although many of the
observations appear to be described well within the basic
self-consistent field model discussed here, much remains to
be done in terms of discovering better basis functions for
representing the Hamiltonian [H ] and self-energy [�] matrices
(see figure 8.1), including inelastic scattering processes and
implementing more efficient algorithms for the solution of
the quantum transport equations. At the same time we can
hope to discover new quantum transport phenomena (both
steady state and time dependent) involving strong electron–
phonon and electron–electron interactions, which are largely
unexplored. A notable exception is the Coulomb blockade
arising from strong electron–electron interactions which is
fairly well understood. In appendix A, I have tried to provide
a brief introduction to this transport regime and relate it to
the self-consistent field regime that forms the core of this
tutorial. But all this I believe represents the ‘tip of the
iceberg’. The progress of molecular electronics should lead
to greater control of the degree of hybridization between
the localized strongly interacting molecular states and the
delocalized contact states, thereby allowing a systematic study
of different transport regimes. Such a study should reveal
many more subtle phenomena involving electrons ‘dressed’
by a variety of strong interactions that require non-perturbative
treatments far beyond those described here.
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In keeping with the tutorial spirit of this article, I have
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of quantum transport.
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