

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

H4.SMR/1574-13

"VII School on Non-Accelerator Astroparticle Physics"

26 July - 6 August 2004

Standard Model and Beyond - III

A. Bartl

University of Vienna Institute for Theoretical Physics Vienna, Austria

Minimal Supersymmetric Standard Model (MSSM) que Exe V $q_{L,R} l_{L,R} v$ 9 W[±], Z°, g $\widetilde{W}^{\pm}, \widetilde{Z}^{\circ}, \widetilde{g}^{\circ} \\ \widetilde{H}^{\pm}, \widetilde{H}^{\circ}_{1}, \widetilde{H}^{\circ}_{2}$ $\left\{ \begin{array}{c} \widetilde{\chi}^{\pm}_{2}, i=1,2\\ \widetilde{\chi}^{\circ}_{2}, i=1,-4 \end{array} \right. \\ \widetilde{\chi}^{\circ}_{2}, i=1,-4 \end{array} \right\}$ charginos H[±], h, A, H° neutraling Parameters: $M, M', \mu, tan \beta = \frac{v_2}{v_1}$ $m_{w}^{2} = \frac{1}{2}q^{2}(v_{1}^{2} + v_{1}^{2})$ $m\tilde{q}_{L,R}$, $m\tilde{e}_{L,R}$, $m\tilde{y}$, m_{o} m_A , A, m_t , m_b Unification relations: $m_{\tilde{g}} = \frac{d_s}{d_u} \cdot M \approx 3M$ $M' = \frac{5}{3} \tan^2 \theta_w \cdot M \approx \frac{M}{2}$ $m_{\tilde{f}_{LR}}^{2} = m_{f}^{2} + m_{sof\pm}(\tilde{f}) \pm m_{D}^{2}(f)$ $m_{soft}^{2}(\tilde{f}) = m_{0}^{2} + C(\tilde{f}) \cdot M^{2}$ $m_p^2(\tilde{f}) = m_z^2 \cos 2\beta \left(T_{sL}^{f} - \partial_f \sin^2 \Theta_w \right)$ R-parity conserved, $\tilde{\chi}_1^\circ$ assumed LSP Further constraints: RGE & boundary conditions (GUT

+ 4-Boson coupling:

Gauge interactions

Yukawa Interactions from Superpotential ても t Ĩ $-H_2^\circ$ H2 \widetilde{H}_2° Ł と Ł b \widetilde{b} H_2^+ H_2^+ ã. H Ł Ę t

etc

bene 2073 00

Theoretical "merits" of SUSY:

- SUSY algebra is only non-trivial extension of space-time symmetry in relativistic quantum field theory
- Local SUSY ⇒ supergravity

 (hope for a finite theory of quantum gravity)
- Superstrings (+) fermions

-> SUSY below Mplanck

· Non-renormalization theorems

From these follow the specific motivations for weak-scale SUSY

Supersymmetric extension of Standard Model.

Eliminates quadratic divergencies of scalar Higgs field.

Mass of an <u>elementary</u> scalar field would "naturally" be $O(M_{GUT}) \div O(M_{Planck})$. SUSY is the **best** way we know that render $M_{Higgs} \leq 1 \text{TeV}$, maybe even $M_{Higgs} \approx M_{Weak}$ (in 4-dim space-time)

SUSY => Cancellation of quadratic divergence

Large m_{top} (≥60 GeV) ⇒ M²_{Higgs} <0 for one of the Higgs states Radiative breaking of SU(2)×U(1) is a derived consequence of SUSY breaking

Experimental hint: gauge coupling unification

<u>Extra bonus</u>: good candidate for cold dark matte (lightest SUSY particle **LSP** is stable if Rp is conserved) New SP complex couplings SUSY can solve hierarchy problem and can stabilize Higgs mass

If Nature is SUSY at weak scale, LHC, [Tevatron(upgraded)] will detect SUSY (and Higgs) particles At LHC: SUSY parameter determination only within specific models will be possible.

At an e^{*}e⁻ Linear Collider with Vs = 500 GeV - 1.5 TeV detection of SUSY particles and precision determination of the parameters will be possible.

Charginos, neutralinos, ^{3rd} generation sfermions may be light.

Higgs Sector in MSSM $H_{1}^{i} = \begin{pmatrix} H_{1}^{\circ} \\ H_{1}^{-} \end{pmatrix} \qquad H_{2}^{i} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{\circ} \end{pmatrix}$ Spont. EW Sym. Breaking $H_{1}^{\circ} = \begin{pmatrix} H_{1}^{\circ} \\ H_{2}^{\circ} \end{pmatrix}$ $H_{2}^{i} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{\circ} \end{pmatrix}$ $H_{2}^{i} = \begin{pmatrix} H_{2}^{i} \\ H_{2}^{\circ} \end{pmatrix}$

At tree level two free parameters:

$$m_A$$
, $tanB = \frac{V_2}{V_1}$

We take ma independent of mo etc, not restricted by m SUGRA

1-loop rad. corr. in Higgs sector are important, $(\Delta m_{h^0}^2 \approx \frac{m_{t}^4}{m_{w}^2})$

J.Ellis-Ridolfi-Zwirner, Dabelstein, Pokorski et al. Mho & 140 GeV LEP: mho > 91.5GeV Higgs Sector:

 $V_{H} = \mu_{1}^{2} |H_{1}|^{2} + \mu_{2}^{2} |H_{2}|^{2} + B\mu m_{0} (H_{1}H_{2} + h.c)$ $+ \frac{g^{2}}{8 \cos^{2} \theta_{W}} (|H_{2}|^{2} - |H_{1}|^{2})^{2}$

At scale $M_{x}: \mu_{1}^{2} = \mu_{2}^{2} = \mu^{2} + m_{0}^{2}$ $\frac{SU(2) \times U(1) \text{ breaking: } \mu_{1}^{2} \cdot \mu_{2}^{2} < B^{2} \mu^{2} m_{0}^{2}}{\text{ stability: } \mu_{1}^{2} + \mu_{2}^{2} > 2|B_{\mu} m_{0}}$

Sparticle Mass (GeV)

Specific mechanism for Higgs producti in hadronic reactions

Papier u. Buro S I LINUL 23 347467 1090 Wien Währingerstraße 48

MSSM Higgs Search at LHC

In MSSM: 5 Higgs states. Neutral {h,H scalar, CP-even A pseudoscalar, CP-odd Basic principle of MSSM particle searches:

 $R_p = (-1)^{3B+L+2S}$ conserved

SUSY particles produced in pairs Lightest SUSY particle is stable and only weakly interacting (like neutrino)

A SUSY particle decays into LSP and known particles (maybe in cascades) Signal for SUSY: Events with <u>missing energy-momentum</u> carried by the invisible LSP.

<u>Machines:</u>

ete: LEP, SLC, ete-LC (NLC, JLC, CLIC, TESLA)

pp: Tevatron p-p, LHC, Eloisatron, VLHC e-p: HERA, LEP/LHC m⁺m⁻? Strategy:

Look for <u>excess of events</u> for characteristic final states (compared to SM prediction)

SUSY at hadron colliders p-p: Tevatron, 75≈2TeV (CERNSppS) p-p: LHC, Vs≈14Tev (Eloisatron?) (VLHC?) $pp \rightarrow \tilde{q}\tilde{q} + X, pp \rightarrow \tilde{q}\tilde{\tilde{q}} + X, pp \rightarrow \tilde{q}\tilde{\tilde{q}} + X$ have largest cross sections of all SUSY particles Barnett et al., Baer et al. Gluino q, squarks q, decay into charginos X: and neutralinos X?, until X: (LSP) is reached A.B. et al

-Also associated production with $\widetilde{X}_{:}^{*}, \widetilde{Y}_{:}^{*}$ is possible: $pp \rightarrow \widetilde{g} \widetilde{X}_{:}^{*} + X, \widetilde{g} \widetilde{X$

= Drell-Yan production: $pp \rightarrow \hat{\chi}^{\pm} \hat{\chi}_{i}^{\circ} + \chi, \hat{\chi}_{i}^{\ast} \hat{\chi}_{i}^{\circ} + \chi, \hat{\chi}_{i}^{\circ} \hat{\chi}_{i}^{\circ} + \chi$ $pp \rightarrow \tilde{\ell}^{\pm} \tilde{\ell}_{i}^{-} + \chi$

Barbieri etal Baer etal

May be detectable at LHC if m & 200 GeV, large to background

 $p+p \rightarrow \tilde{g} + \tilde{g} + X$ $p+p \rightarrow \tilde{q} + \tilde{\tilde{q}} + X$

q

LHC TS=14TeV

TEVATRON 75=1.8TeV

9

flavour dependence

9

Decays:

$$\begin{split} \widetilde{g} \rightarrow q + \overline{q} + \widetilde{\chi}_{i}^{\circ}, \quad t + \overline{t} + \widehat{\chi}_{i}^{\circ}, \quad if \quad M_{\widetilde{g}} > m_{\widetilde{g}} \\ q + \overline{q}' + \widetilde{\chi}_{i}^{\dagger}, \quad t + \overline{b} + \widetilde{\chi}_{i}^{\dagger}, \quad \overline{t} + b + \widetilde{\chi}_{i}^{\dagger} \end{split}$$

 $\begin{array}{ll} \text{if } \underline{mg} > \underline{Mg}: \\ \widetilde{q}_{L,\overline{R}} \rightarrow q + \widetilde{\chi}_{i}^{\circ} \\ \widetilde{u}_{L} \rightarrow d + \widetilde{\chi}_{i}^{+} \\ \widetilde{d}_{L} \rightarrow u + \widetilde{\chi}_{i}^{-} \end{array} & \begin{array}{ll} \widetilde{t}_{L,\overline{R}} \rightarrow t + \widetilde{\chi}_{i}^{\circ} \\ \widetilde{t}_{R} \rightarrow b + \widetilde{\chi}_{i}^{+} \\ \widetilde{b}_{L} \rightarrow t + \widetilde{\chi}_{i}^{-} \end{array} & \begin{array}{ll} \widetilde{t}_{L} - \widetilde{t}_{R} \text{ mixing} \\ \widetilde{b}_{L} - \widetilde{b}_{R} \text{ mixing} \\ \widetilde{t}_{n}, \widetilde{b}_{n} \text{ may be} \\ \text{much lighter} \end{array} \\ \end{array} \\ \begin{array}{ll} \overbrace{L} = t + \widetilde{\chi}_{i}^{-} \end{array} & \begin{array}{ll} \overbrace{L} = \widetilde{t}_{R} \text{ mixing} \\ \widetilde{t}_{n}, \widetilde{b}_{n} \text{ may be} \\ \text{much lighter} \end{array} \\ \end{array}$

A.B., W. Majerotto, B. Mößlacher, N.Oshimo, S. Stippel Also: H. Baer et al., R. Barbieriet al. R.M. Barnett et al.

Signatures of gg pairs: 9 9 \widetilde{g} \hat{q} 4 jets, large p_{T miss} $\widetilde{\chi}_1^o$ ~°

Possible TEVATRON Upgrades

Run "1B": Peak Luminosity $\approx 2 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ 18 months $\implies 100 \text{ pb}^{-1}$

 $\frac{\text{Main Injector:}}{\text{CDF, D\phi: proposed upgrades carried out}} \frac{\text{Run "I": 2fb^{-1}}}{\text{CDF, D\phi: proposed upgrades carried out}}$ Ideas how to bridge time between LEP and LHC: $\frac{2 \text{ TeV*:}}{\text{Run I - stretch"}} \Rightarrow 10 \text{ fb}^{-1} \text{ }^{2}$

? Incremental CDF and DØ upgrades?

? <u>TeV33</u>: $\& \approx 10^{33} \text{ cm}^{-2} \text{s}^{-1} \implies 25 \text{fb}^{-1} \div 100 \text{fb}^{-1}$? ? CDF, D\$\$\$ D\$\$\$?

SUSY mass reach expected: $\int \mathcal{L} = 2fb^{-1}$: $m_{\mathfrak{F}/\mathfrak{F}} \leq 350 \text{ GeV}, m_{\mathfrak{F}} \leq 150 \text{ GeV}, m_{\mathfrak{F}} \leq 210 \text{ GeV}$ $\int \mathcal{L} = 25fb^{-1}$: $m_{\mathfrak{F}/\mathfrak{F}} \leq 400 \text{ GeV}, m_{\mathfrak{F}} \leq 180 \text{ GeV}, m_{\mathfrak{F}} \leq 250 \text{ GeV}$

tev 2000 Study Group

□ A: BR($\tilde{\chi}_2^{\circ} \rightarrow invisible$) > 90% * B: Large destructive interference in leptonic decays × C: BR($\tilde{\chi}_2^{\circ} \rightarrow h^{\circ} \tilde{\chi}_1^{\circ}$) > 50%

The All - second

Production X sections in pp:

(La Pinile)

<u>LHC</u> , $V\overline{s} = 14 \text{ TeV}$, $\int \mathcal{L}dt \approx 10^5 \text{ pb}^{-1}$ $pp \rightarrow \widetilde{g} + \widetilde{g} + X$;
$m_{\tilde{g}} = 500 GeV: \mathfrak{S} \approx 50 pb 5 \times 10^6 ev/y$ $m_{\tilde{g}} = 1 TeV: \mathfrak{S} \approx 1 pb 10^5 ev/y$
$pp \rightarrow \tilde{q} + \tilde{q} + X;$
$M_{\tilde{q}} = 500 \text{ GeV}: \ \sigma \approx 15 \text{ pb} \qquad 10^6 \text{ ev/y}$ $M_{\tilde{q}} = 1 \text{ TeV}: \ \sigma \approx 0.4 \text{ pb} \qquad 4 \times 10^4 \text{ ev/y}$ summed over flavours
Eloisatron, VS=200 TeV, Sildt ~ 10 5 pb-1
$pp \rightarrow \tilde{g} + \tilde{g} + \chi$:
$m_{a} = 1 \text{TeV}$: $\sigma \approx 900 \text{ pb}$ $\qquad \qquad \qquad$
$pp \rightarrow \tilde{q} + \tilde{q} + \chi;$
$M_{a} = 1 \text{ TeV}$: $6 \approx 200 \text{ pb}$ $2 \times 10^{3} \text{ ev/y}$

In addition; pp→g+g+X, pp→gqX Results depend on details, like <u>mg</u>, nucleon structure functions etc

Strong dependence on s and maig

Meff: first indication for SUSY in events with jets + Emiss

$$M_{eff} = E_{Tmiss} + \sum_{j} E_{Tj}$$

M₀ (GeV)

SUSY in ete- collisions

LEP, LC

 $e^{+}e^{-} \longrightarrow \widetilde{\chi}_{1}^{\circ} \widetilde{\chi}_{1}^{\circ}, \widetilde{\chi}_{1}^{\circ} \widetilde{\chi}_{2}^{\circ}, \widetilde{\chi}_{1}^{\circ} \widetilde{\chi}_{3}^{\circ}, \widetilde{\chi}_{2}^{\circ} \widetilde{\chi}_{2}^{\circ} \ldots$ $e^{+}e^{-} \longrightarrow \widetilde{\chi}_{1}^{\circ} \widetilde{\chi}_{1}^{\circ}$ $e^{+}e^{-} \longrightarrow \widetilde{e}_{L,R}^{+} \widetilde{e}_{L,R}^{-}, \widetilde{\mu}_{L,R}^{+} \widetilde{\mu}_{L,R}^{-} \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{2}^{-}, \widetilde{\chi}_{2}^{-}, \widetilde{\chi}_{1}^{-} \widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{2}^{-}, \widetilde{\chi}_{1}^{-}, \widetilde$

Characteristic signatures from SUSY particle decays:

 $\begin{aligned} \widetilde{\chi}^{\pm} &\longrightarrow \ell^{\pm} + \widetilde{\chi}^{\circ} + \widetilde{\chi}^{\circ}_{1} & \widetilde{\ell}_{R} \to \ell + \widetilde{\chi}^{\circ}_{1} \\ &\longrightarrow q + \widetilde{q}' + \widetilde{\chi}^{\circ}_{1} & \widetilde{\ell}_{L} \to \ell + \widetilde{\chi}^{\circ}_{1}, \nu_{L} + \widetilde{\chi}^{\pm}_{1} \end{aligned}$

 $\widetilde{\chi}_{i}^{\circ} \longrightarrow \ell^{+} \ell^{-} + \widetilde{\chi}_{1}^{\circ}$ $\rightarrow q + \overline{q} + \widetilde{\chi}_{1}^{\circ}$ $\rightarrow \nu + \overline{\nu} + \widetilde{\chi}_{1}^{\circ}$ $\rightarrow \delta + \widetilde{\chi}_{1}^{\circ}$ $\rightarrow h (A) + \widetilde{\chi}_{1}^{\circ}$

i = 2, 3, 4

Barbieri et al. J. Ellis et al. K. Hidaka et al. A.B. et al. Chen et al. (Phys. Rep)

Canditates for lightest visible SUSY particle (LVSP) $\tilde{\chi}_{1}^{\pm}, \tilde{e}_{R_{1}}, \tilde{\mu}_{R}, \tilde{\tilde{\chi}}_{1}, \tilde{t}_{1}, \tilde{b}_{1}, [\tilde{\chi}_{2}^{\circ}]$ $e^{\dagger}e^{-} \rightarrow \tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-} \rightarrow \ell^{\dagger} + \ell^{-} + \tilde{\chi}_{1}^{\circ} + \tilde{\chi}_{1}^{\circ}$ two-sided events $e^{\dagger}e^{-} \rightarrow \tilde{\chi}_{2}^{\circ}\tilde{\chi}_{1}^{\circ} \rightarrow \ell^{\dagger}e^{-} + \tilde{\chi}_{1}^{\circ} + \tilde{\chi}_{1}^{\circ}$ one-sided events $e^{\dagger}e^{-} \rightarrow \tilde{\chi}_{2}^{\circ}\tilde{\chi}_{1}^{\circ} \rightarrow \ell^{\dagger}e^{-} + \tilde{\chi}_{1}^{\circ} + \tilde{\chi}_{1}^{\circ}$ one-sided events Canonicul signature for 20 SUSY: Missing E, \tilde{P}

M_{1/2} (GeV)

HO-PA 225 PVC FREI

Indirect SUSY Searches

Contributions of <u>virtual</u> SUSY particle to precisely measured observables

 $\underline{b} \rightarrow \underline{s} + \underline{y} : measured in B \rightarrow K^* \underline{y} etc.$

 $2 \times 10^{-4} < BR(b \rightarrow s_8) < 4.5 \times 10^{-4}$

■ g-2 of muon: recently measured BNL

 $a_{\mu}(exp) = 116592037(78) \times 10^{-11}$ $a_{\mu}(SM) = 116591883(49) \times 10^{-11}$

Electric Dipole Moment of e and n Idel < 4.0 × 10⁻²⁷ e cm Constraints from relic $\widetilde{\chi}_{1}^{\circ}$ density [WMAP] on mSUGRA parameters

Constraints from relic & density [WMAT] on mSUGRA parameters

Extra Dimensions

ADD Modelprototype exampleN. Arkadi-Hamed, S. Dimopoulos, G.R. Dvali (1998)Gravity acts in 4+δ dimensional "bulk"δ=1,2,3,---- extra dimensions, compactifiedwith a Radius R

SM fields restricted to 4-dim. brane

In 4-dim space-time: Planck mass $M_{Pl} = 1.2 \times 10^{13} \text{ GeV}$ In4+S dim.: Planck mass $M_D^{2+\delta} \propto \frac{M_{Pl}^2}{R^{\delta}}$ Take $R \gg M_{Pl}^{-1}$, adjust R, δ that $M_D \approx O(1 \text{ TeV})$ \implies no hierarchy problem

More precisely:
$$R^{S} = \frac{1}{27\pi} \frac{(M_{Pl})^{2}}{M_{D}}$$

Take
$$M_{D} = 1 \text{TeV} \implies R = \begin{cases} 8 \times 10^{12} \text{ m} & \delta = 1\\ 0.7 \text{ mm} & \delta = 2\\ 3 \text{ nm} & \delta = 3\\ 6 \times 10^{-12} \text{ m} & \delta = 4 \end{cases}$$

We could have $M_{D} \approx 1 \text{ TeV}$ for $\delta \geqslant 2$.

Expect deviations from Newton's Law for small r. For $r \leq 1$ mm experimentally not tested.

Gravity is strong force in 4+S dimensions, on the brane its effect is diluted by the volume of the bulk.

Compactification ⇒ Kaluza-Klein modes of graviton may be excited in the bulk.

Other models:

Universal extra dimensions (UED): Gravity and SM fields in the bulk have also KK states

<u>Randall-Sundrum</u> (RS) model: 5-dim AdS with two branes and scalar field in bulk. SM fields on "TeV brane", gravity on "Planck brane". Strength of gravity on TeV brane reduced by "warp facture e-TKR

III-93

Figure 4.2.1: Total cross sections for $e^+e^- \rightarrow \gamma G$ at $\sqrt{s} = 800$ GeV as a function of the scale M_D for different numbers δ of extra dimensions. These signal cross-sections take into account 80% electron and 60% positron polarisation [14]. The three horizontal lines indicate the background cross-sections from $e^+e^- \rightarrow \nu \overline{\nu} \gamma$ for both beams polarised (solid), only electron beam polarisation (dashed) and no polarisation (dot-dashed). Signal cross-sections are reduced by a factor of 1.48 for the latter two scenarios.

34

35

Figure 4.2.2: Determining δ from anomalous single photon cross-section measurements at $\sqrt{s} = 500 \text{ GeV}$ and 800 GeV. The sensitivity shown corresponds to integrated luminosities of 500 fb^{-1} at $\sqrt{s} = 500 \text{ GeV}$ and 1 ab^{-1} at $\sqrt{s} = 800 \text{ GeV}$ with 80% electron and 60% positron polarisation with a cross-section at 500 GeV equivalent to $M_D = 5 \text{ TeV}$ if $\delta = 2$. The points with error bars show the measurements one could expect. The smooth curves show the cross-section dependence on \sqrt{s} for the central value of the 500 GeV cross-section measurement under the hypotheses of $\delta = 2,3,4,5$ and 6. The vertical lines adjacent to the 800 GeV measurements indicate the range that would be consistent within $\pm 1\sigma$ with the 500 GeV measurement.

Randall-Sundrum model

Figure 4.2.5: The cross section for $e^+e^- \rightarrow \mu^+\mu^-$ including the exchange of a KK tower of gravitons with $m_1 = 600$ GeV. From top to bottom the curves correspond to $k/M_{Pl} = 1.0, 0.7, 0.5, 0.3, 0.2$ and 0.1.

AdS5 with 2 branes: SM on one brane, gravity on the other one. "Strength" of gravity on SM brane reduced by exp {-2kr.} conveture compactification 2 parameters determine phenomenology ⇒ $\frac{1}{M_{\rm PL}}$ and m. (1st KK excitation of graviton) Two classes of signatures:

- (i) Emission of real gravitons plus KK modes
- (ii) Modification of SM reactions
 by exchange of virtual graviton
 plus KK modes

Searches at LEP, Tevatron, LHC, Linear Collider.

Mo reach at Linear Collider;

 $M_{3} = 10 \text{ TeV}, 6.9 \text{ TeV}, 5.1 \text{ TeV}, 4 \text{ TeV}$ for $\delta = 2$, 3, 4, 5

e⁺e⁻→g+Gn ⁺graviton plus KK states, not seen in detector ⇒ Emiss

Detailed analyses of angular distributions to distinguish Emiss signature from SUSY

Final remark

There are good prospects that we will find interesting new results in

Accelerator Particle Physics and

Non-Accelerator Astroparticle Physics