the
abdus salam international centre for theoretical physics

"VII School on Non-Accelerator Astroparticle Physics"

26 July - 6 August 2004

Short and Long Baseline
 Neutrino Experiments

D. Autiero

Outline

Two lectures on the past and current neutrino oscillation experiments with manmade neutrino sources: Accelerators (mainly) and nuclear Reactors

Presented following an historical approach:
Lecture 1
\checkmark Introduction: neutrino oscillations and experiments
\checkmark The CERN Short Baseline experiments NOMAD, CHORUS
\checkmark LNSD and KARMEN
\checkmark MINIBOONE
$\checkmark \mathrm{CHOOZ}$
Lecture 2
\checkmark K2K
\checkmark MINOS
\checkmark The CNGS program OPERA, ICARUS
\checkmark Outlook

Neutrino oscillations

Neutrino mixing (Pontecorvo 1958; Maki, Nakagawa, Sakata 1962):
3 neutrinos framework, neutrinos are massive particles and they mix similarly to quarks; the flavour eigenstates $v_{\mathrm{e}}, v_{\mu}, v_{\tau}$ are not mass eigenstates but linear superpositions of the mass eigenstates v_{1}, v_{2}, v_{3}
with eigenvalues m_{1}, m_{2}, m_{3} :

$$
\left|\nu_{\alpha}\right\rangle=\sum_{i} U U_{\alpha i}\left|v_{i}\right\rangle \quad \begin{aligned}
& \alpha=\mathrm{e}, \mu, \tau \text { (flavor index) } \\
& i=1,2,3 \text { (mass index) } \\
& U_{\alpha i}=\text { unitary mixing matrix }
\end{aligned}
$$

Today favorite parametrization of U : in terms of 3 mixing angles $\theta_{12} \theta_{23} \theta_{13}$ and one Dirac-like CP phase δ (two extra phases in case of Majorana neutrinos):

$$
\begin{gathered}
U \equiv U_{23} U_{13} U_{12} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)
\end{gathered} \begin{gathered}
\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
\text { Atmospheric } v \text { oscillations } \\
U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta} & c_{13} s_{23} \\
s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta} & -c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta} & c_{13} c_{23}
\end{array}\right)
\end{gathered}
$$

where: $s_{i j} \equiv \sin \theta_{i j}, c_{i j} \equiv \cos \theta_{i j}$.

Considering the time evolution of a flavour eigentstate v_{α} produced at t = 0 :

$$
|v(t)\rangle=e^{i \mathbf{p} \cdot \mathbf{r}} \sum_{k} U_{\alpha k} e^{-i E_{k} t}\left|v_{k}\right\rangle \quad E_{k}=\sqrt{p^{2}+m_{k}^{2}}
$$

The phases: $e^{-i E_{k} t}$ will be different if $\boldsymbol{m}_{\mathrm{j}} \neq \boldsymbol{m}_{\mathrm{k}}$
Projecting $v(t)$ on the flavor basis one can obtain the probability of finding other flavours:
\longrightarrow Appearance of the flavour $v_{\beta} \neq v_{\alpha}$ for $t>0$

Simplified case: two neutrinos mixing

Only one mixing angle θ is needed

$$
\left|v_{\alpha}\right\rangle=\cos \theta\left|v_{1}\right\rangle+\sin \theta\left|v_{2}\right\rangle
$$

$$
\left|v_{\beta}\right\rangle=-\sin \theta\left|v_{1}\right\rangle+\cos \theta\left|v_{2}\right\rangle
$$

If $v=v_{\alpha}$ at $(t=0)$:

$$
|v(t)\rangle=e^{i\left(\mathbf{p} \cdot \mathbf{r}-E_{1} t\right)}\left[\cos \theta\left|v_{1}\right\rangle+e^{-i\left(E_{2}-E_{1}\right) t} \sin \theta\left|v_{2}\right\rangle\right]
$$

Probability of detecting v_{β} at the instant t if $v(0)=v_{\alpha}$:

$$
P_{\alpha \beta}(t)=\left|\left\langle v_{\beta} \mid v(t)\right\rangle\right|^{2}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2} t}{4 E}\right) \quad \begin{aligned}
& \hbar=c=1 \\
& \Delta m^{2} \equiv m_{2}^{2}-m_{1}^{2}
\end{aligned}
$$

Oscillatory behaviour of $P_{\alpha \beta}$ with time ruled by two parameters:
θ is related to the amplitude of the oscillation Δm^{2} is related to the wavelength

$$
E_{2}-E_{1} \approx \frac{m_{2}^{2}-m_{1}^{2}}{2 p} \approx \frac{m_{2}^{2}-m_{1}^{2}}{2 E} \equiv \frac{\Delta m^{2}}{2 E}
$$

For $m \ll p$, and assuming
propagation in vacuum:
$E=\sqrt{p^{2}+m^{2}} \approx p+\frac{m^{2}}{2 p}$

In more empirical units: $\Delta m^{2}\left[\mathrm{eV}{ }^{2}\right]$

$$
P_{\alpha \beta}(L)=\sin ^{2}(2 \theta) \sin ^{2}\left(1.267 \Delta m^{2} \frac{L}{E}\right)
$$

$L=c t[k m]$ (distance among the neutrino source and the detector) $E[\mathrm{GeV}]$ (neutrino energy)

Given Δm^{2} the experimental quantity for the study of neutrino oscillations is the ratio $L / E[k m / G e V]:$ first oscillation maximum at $L / E \sim 1.24 / \Delta m^{2}$

$$
\mathrm{P}_{\alpha \beta}(L)=\sin ^{2}(2 \theta) \sin ^{2}\left(\pi \frac{L}{\lambda}\right) \quad \lambda=2.48 \frac{E}{\Delta m^{2}} \quad \text { Oscillation wavelength }
$$

For very large $\Delta \boldsymbol{m}^{2}$ the oscillations become very fast and average over the dimensions of the source and of the detector:

$$
\left\langle\sin ^{2}\left(1.267 \Delta m^{2} L / E\right)\right\rangle=1 / 2 \quad P=(1 / 2) \sin ^{2}(2 \theta)
$$

The baseline is related to the L/E ratio of the experimental setup:
Short Baseline experiments: sensistive to large $\Delta \boldsymbol{m}^{2}\left(>1 \mathrm{eV}^{2}\right)$
Long Baseline experiments: sensitive at least to $\Delta \boldsymbol{m}^{2}$ of interest for the atmospheric neutrino anomaly ($<10^{-2} \mathrm{eV}^{2}$), L/E $>100 \mathrm{Km} / \mathrm{GeV}$
Reactors: $\quad L>0.3 \mathrm{Km}, \mathrm{E} \sim 3 \mathrm{MeV}$
Accelerators: L>100 Km, E~1 GeV

Most important neutrino interactions with matter in the accelerators energy range
(CC) Charged current interactions ($\mathrm{W}^{ \pm}$exchange) Quasi elastic scattering
$v_{\mathrm{e}}+\mathbf{n} \rightarrow \mathbf{e}^{-}+\mathbf{p} \quad \bar{v}_{\mathrm{e}}+\mathbf{p} \rightarrow \mathbf{e}^{+}+\mathbf{n}$
$v_{\mu}+\mathbf{n} \rightarrow \mu^{-}+\mathbf{p} \quad \bar{v}_{\mu}+\mathbf{p} \rightarrow \mu^{+}+\mathbf{n} E_{\text {Threshold: }}: \sim 112 \mathrm{MeV}$
$v_{\tau}+\mathbf{n} \rightarrow \tau^{-}+\mathbf{p} \quad \bar{v}_{\tau}+\mathbf{p} \rightarrow \tau^{+}+\mathbf{n} \quad E_{\text {Threshold: }}: 3.46 \mathrm{GeV}$

$\sigma_{\text {QE }}\left(v_{\mu}+n\right) \sim 0.9 \times 10^{-38} \mathrm{~cm}^{2}$ (far from threshold) Deep inelastic scattering (DIS)
$v_{\mathrm{e}}+\mathbf{N} \rightarrow \mathrm{e}^{-}+$hadrons
$\overline{\mathrm{v}_{\mathrm{e}}}+\mathbf{N} \rightarrow \mathrm{e}^{+}+$hadrons
$v_{\mu}+\mathbf{N} \rightarrow \mu^{-}+$hadrons
$\overline{\mathrm{v}}_{\mu}+\mathbf{N} \rightarrow \mu^{+}+$hadrons
$v_{\tau}+\mathbf{N} \rightarrow \tau^{-}+$hadrons
$\bar{v}_{\tau}+\mathbf{N} \rightarrow \tau^{+}+$hadrons
$\sigma_{\text {DIS }} \sim 0.68 E \times 10^{-38} \mathrm{~cm}^{2}(E$ in GeV$), \sigma_{\text {DIS }}(v) \sim 1 / 2 \sigma_{\text {DIS }}(v)$

(NC) Neutral current interactions (Z Z^{0} exchange)
Elastic and DIS, similar for the 3 neutrinos

$$
\begin{aligned}
& v+\mathbf{N} \rightarrow v+\text { hadrons } \quad \nabla+\mathbf{N} \rightarrow \nabla+\text { hadrons } \\
& \sigma_{\mathrm{NC}}(v) \approx 0.3 \sigma_{\mathrm{CC}}(v) \\
& \sigma_{\mathrm{NC}}(v) \approx 0.37 \sigma_{\mathrm{CC}}(\bar{v})
\end{aligned}
$$

Possible neutrino oscillation experiments

Disappearance experiments:

Measure the survival probability at a certain distance from the source of the neutrino flavour produced at the source:

Typical examples:

$$
\mathrm{P}_{\alpha \alpha}=1-\sum_{\beta \neq \alpha} \mathrm{P}_{\alpha \beta}
$$

Experiments at nuclear Reactors:

$\mathrm{E}_{V} \sim$ a few MeV , below threshold for μ or τ production
Experiments at Accelerators studying $v_{\mu} \rightarrow v_{\tau}$ oscillations with low energy beams (MINOS, K2K) below τ production threshold

These experiments rely on the knowledge of the initial neutrino flux at the source to which they have to compare in order to claim an effect.
This knowledge is the main systematic limitation which can be improved by measuring the flux with a near detector

\checkmark Source

Disappearance experiments can also measure at a certain L the oscillatory dependence of $P_{\alpha \alpha}$ on E (energy spectral distortion), which is an important signature

Appearance experiments:

Measurement of the probability of detecting a neutrino flavour v_{β} not produced at the source (beam of v_{α}) at a certain distance L from the source:
Typical examples:
v_{e} Appearance at accelerators:
Detection of the reaction $v_{e}+\mathbf{N} \rightarrow \mathbf{e}^{-}+$hadrons with a v_{μ} beam
v_{τ} Appearance at accelerators:
Detection of the reaction $v_{e}+\mathbf{N} \rightarrow \mathrm{e}^{-+}$hadrons with a v_{μ} high energy beam
These experiments rely on the knowledge of the purity of the initial neutrino flux at the source and on the control of the background processes in the detector which could mimic the appearance of a new flavour.

Neutrino beams at accelerator are almost pure v_{μ} beams, v_{τ} are practically absent, v_{e} are present at the level of 1% (a two detector setup improves the syst. uncertainty)

Advantages neutrino beams at accelerators: man-made neutrino sources of:
$>$ high purity
$>$ high intensity
$>$ high energy $(O(10 \mathrm{MeV})-O(100 \mathrm{GeV}))$

Typical high energy Wide Band neutrino beam Magnetic lenses

Note that the π / K abundances and spectra at the target are not easy to predict: to reduce systematics perform ad hoc hadronproduction experiments (Spy, Harp etc ...)

Interpretation of the experimental results

Observation of an oscillation signal:
allowed region in the plane of the parameters $\left[\Delta m^{2}, \sin ^{2}(2 \theta)\right]$ compatible with the measured $\mathbf{P}_{\alpha \beta}$ (defined by $\mathbf{P}_{\alpha \beta}$ and the L / E of the experiment)
Negative result:
upper limit on $\mathbf{P}_{\alpha \beta}\left(\mathbf{P}_{\alpha \beta}<P\right.$ at a certain confidence level $) \rightarrow$ excluded region

First oscillation maximum $(\pi / 2) /(1.27<L / E>)$

Neutrino oscillation searches at the beginning of 90s
(long time ago in neutrino physics, not so much in everydays life ...)
U.S. new president in 1993

The long standing (since 1968) problem of the solar neutrino deficit opened by the Homestake measurements (+ Kamiokande since 1986)
In 1992 first Gallex results confirm the deficit also for neutrinos from the pp cycle

- Atmospheric neutrino anomaly still quite weak

The controlled observation of neutrino oscillations with an accelerator neutrino beam would have been a great discovery, where to search?

Prejudice towards small mixing angles and large Δm^{2}
\checkmark Take the MSW solution of the solar neutrino deficit: $\Delta \mathrm{m}^{2}{ }_{\mu \mathrm{e}} \sim 10^{-5} \mathrm{eV}^{2}$
\checkmark Assume a strong hierarchy: $m_{v e}<m_{v \mu} \ll m_{v \tau} \rightarrow m_{v \mu} \sim 3 \times 10^{-3} \mathrm{eV}$
\checkmark Assume the See-Saw mechanism: $m\left(v_{i}\right)=m^{2}\left(f_{i}\right) / M$
$M=$ very large Majorana mass $m\left(f_{i}\right)=$ e.g. quark masses
Then: $m_{v \tau} \sim 30 \mathrm{eV}$ (Cosmological relevance)

Dark matter (see lectures of P.Ullio)

Coma cluster of galaxies, application of the virial theorem by F. Zwicky (1933)
velocity dispersion, geometric size \rightarrow total mass (x400 luminous mass)

Rotational velocity curves

of galaxies (Hydrogen, doppler effect)
$m \frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{G M m}{\mathrm{R}^{2}}$

Could it be due to the BIG BANG relic neutrinos? $112 \mathrm{v} / \mathrm{cm}^{3}$ per flavour
if $\quad \sum m_{i} \approx 52 \mathrm{eV}$ then $\Omega_{v}=1$
«v are an important component of the dark matter» ~ a few 10 eV Harari PLB 1989

1992 first measurements from the COBE satellite $\Omega \sim 1$
J. Ellis PLB $2921992 \Omega_{\mathrm{HDM}}=0.3, \Omega_{\mathrm{CDM}}=0.7$

Recent cosmological results: $\quad \sum m v<2.5 \mathrm{eV} \quad 90 \% \mathrm{CL}$

With $m_{v \tau} \sim 30 \mathrm{eV}$ cosmological neutrinos important component of dark matter $\Delta m^{2}{ }_{\mu \tau} O\left(100 \mathrm{eV}^{2}\right)$

Look for $v_{\mu} \rightarrow v_{\tau}$ with short baseline experiments at accelerators, high energy beam

CERN v_{τ} appearance experiments:

sensitive down to:
$P_{\mu \tau} \sim 1.5 \times 10^{-4}(90 \% C L)(\times 10)$ improvement

Search for v_{τ} appearance from oscillations in the CERN wide band neutrino beam (WANF)

Pioneers of the technique also for long baseline experiments, important samples of neutrino interactions well measured

NOMAD:

- Proposal 1991
- Detector 1995
- Data-taking 95-98 (1.35 M $\left.v_{\mu} C C\right)$

CHORUS:
Data-taking 1994-1997 (0.71 M $\nu_{\mu} C C$)

$$
\begin{gathered}
\left\langle E_{v}\right\rangle=24 \mathrm{GeV} \\
\langle L\rangle=600 \mathrm{~m} \\
\text { sensitive to: } \\
1 \mathrm{eV}^{2}<\Delta \mathrm{m}^{2}
\end{gathered}
$$

The CERN WANF neutrino beam

Flavour $\left\langle\mathrm{E}_{\mathrm{v}}\right\rangle(\mathrm{GeV}) \quad$ rel.abun.

v_{μ}	23.5	1.0
$\overline{v_{\mu}}$	19.2	0.061
v_{e}	37.1	0.0094
$\overline{v_{e}}$	31.3	0.0025
v_{τ}	35	5×10^{-6}

$\langle L\rangle /\langle E\rangle=3 \times 10^{-2} \mathrm{Km} / \mathrm{GeV}$

Search for τ appearance $\quad \mu \bar{\nu}_{\mu} \nu_{\tau} \quad 17.4 \%$

The v_{τ} are searched for through their charged current

$$
e \bar{V}_{e} V_{\tau} \quad 17.8 \%
$$ interaction followed by the τ decay.

This decay can be identified using two different methods:
-Identification of the τ decay kink : CHORUS (high space resolution, emulsions) (main channel: muonic tau decay)
-Measurement of the KINEMATIC of the τ decays :NOMAD presence of neutrino(s) in the final state, missing P_{\dagger}, visible decay daughters (tracking, calorimetry) (main channel: electronic tau decay)

Hadronic jet

Use of kinematics to extract a v_{τ} signal:

(First proposed by Albrigth and Shrock P.L.B. 1979)
NOMAD: fully reconstruct 1.7 M neutrino interactions, with good resolution, at single particles level:
\rightarrow Kinematics closure on the transverse plane

Find $v \tau$ down to $\mathrm{P}_{\mu \tau} \sim 10^{-4}$ in a large background: 1.3 M v $\mu \mathrm{CC}$ $0,4 \mathrm{Mv} \mathrm{\mu} \mathrm{NC}$ 13 K ve CC

Exploit the small ve background: τ->e channel: electron id

The $\phi-\phi$ plot:

The NOMAD detector

Transition Radiation Detector (TRD) (e identification) 9 modules (315 radiator foils followed by straw tubes plane) π rejection $\sim 10^{3}$ for electron efficiency > 90\%
 $\mathrm{GeV} / \mathrm{C}$)

Nomad typical events:

$$
v_{\mu}+\mathbf{N} \rightarrow \mu^{-}+\mathbf{X}
$$

$$
v_{\mathrm{e}}+\mathbf{N} \rightarrow \mathrm{e}^{-}+\mathbf{X}
$$

$$
\bar{v}_{\mathrm{e}}+\mathbf{N} \rightarrow \mathrm{e}^{+}+\mathbf{X}
$$

IMBALANCE

There is not a single miracle cut achieving a 10^{5} rejection

The signal is half way between CC and NC background for what concerns the imbalance of the event and the isolation of the tau daughters

Combine the pdf of many variables in order to build likelihood functions for the signal and background

Cut on the likelihood ratio $\ln \left(L_{S} / L_{B}\right)$
Two likelihood ratios can be used in a correlated way: one to reject NC based on the isolation and one to reject CC based on the imbalance

Corrections to the Monte Carlo predictions are evaluated from the data themselves by looking at the differences between data and MC for the $\nu_{\mu} C C$ events, the muonic decay channel is sacrified

The analysis is performed in a blind way by not looking at the interesting region with good S / B ratio (blind box), data can be looked elswhere, the search is performed as cross-check also for the τ^{+}(purely background sample)

Imbalance

$Q_{L \varnothing}$ vs. ρ_{Tv}

M_{T} ves. $P_{T}^{m / n}$

$E_{\text {vis }}$ vs. $\mathrm{P}_{\mathrm{T}}^{\mathrm{m} / \mathrm{z}}$
ρ_{l} Electron transverse momentum normalized to the sum of transverse momenta $P_{T}^{l}+P_{T}^{H}+P_{T}$,
ρ_{h} Hadronic jet transverse momentum normalized to the sum of transverse momenta;
Qlep Electron momentum component \perp to the hadronic jet momentum
$E_{v i s}$ Total visible energy in the event,

Isolation

$\theta_{1 s 0}$ vs. Q_{T}

$\theta_{\nu T}$ Angle between the direction of the incident ν and the total momentum of the event,
$\theta_{\nu H}$ Angle between the direction of the incident ν and the hadronic jet momentum:
$\theta_{\text {iso }}$ Minimum opening angle between the electron and any other track in the hadronic system
$E_{e}^{t o t}$ Electron energy.

CHORUS

Target: 800 kg of nuclear emulsions
Scintillating fibers tracker: high space resolution for the localization of the neutrino interaction in the emulsions

Magnetic spectrometer and calorimeters: measurements of momentum and energy of secondary particles

Automatic scanning microscopes for the analysis of the data recorded by the nuclear emulsions

Cleanest channel: muonic tau decay.
Main background: production of charmed particles in CC events with primary lepton missed

NOMAD (completed)						CHORUS (Phase I)			
Analysis		Bin	Tot. bkg.	$N_{P=1}^{\tau}$	Data	Analysis	Tot. bkg.	$N_{P=1}^{\tau}$	Data
$\nu_{\tau} \bar{\nu}_{e} e$	DIS	III	$0.28{ }_{-0.09}^{+0.31}$	948	0	$\nu_{\tau} \bar{\nu}_{\mu} \mu$	0.11 ± 0.03	5014	0
$\nu_{\tau} \bar{\nu}_{e} e$	DIS	VII	0.25 ± 0.09	1780	0	$\nu_{\tau} 0 \mu$	1.10 ± 0.33	2004	0
$\nu_{\tau} h(0 \gamma)$	DIS	III	$0.05{ }_{-0.03}^{+0.60}$	288	0				
$\nu_{\tau} h(0 \gamma)$	DIS	IV	$0.122_{-0.05}^{+0.60}$	1345	0		$1.21{ }_{-0.33}^{+0.33}$	018	0
$\nu_{\tau} h(1 \gamma)$	DIS	III	$0.07{ }_{-0.04}^{+0.70}$	223	0		1.21-0.33		
$\nu_{\tau} h(1 \gamma)$	DIS	IV	$0.07{ }_{-0.0 \pm}^{+0.70}$	1113					
$\nu_{\tau} h(2 \gamma)$	DIS	IV	$0.11_{-0.06}^{\text {+0.07 }}$	211	0	Number of sig	events		
$\nu_{\tau} h(1 / 2 \gamma)$	DIS	III	$0.20{ }_{-0.06}^{+0.76}$	707	1	expected in cos	f full		
$\nu_{\tau} h(0 / 1 \gamma)$	DIS	IV	$0.144_{-0.05}^{+0.70}$	1456		mixing		No	den
$\nu_{\tau} 3 \mathrm{l}$	DIS	V	$0.32{ }_{-0.32}^{+0.57}$	675					

Chorus Phase II:
New location method (increase by 60K the sample)

Scan a volume of $1.5 \times 1.5 \times 6.3 \mathrm{~mm}^{3}$ around already located events
Decay search not limited to just the scan-back track

Offline data analysis
In Progress

Status of short baseline oscillation searches into V_{τ}

NOMAD data: final - CHORUS phase-II not yet finished

Combined
NOMAD-CHORUS limit

Upper limit on the oscillation probability for $v_{\mu} \rightarrow v_{\tau}: 0.510^{-4}$

The LSND and Karmen experiments (1993-2001)

	LSND		KARMEN
Accelerator	Los Alamos Neutron Science Centre		tron Spallation Facility ISIS , R.A.L. (U.K.)
Protons kinetic energy	800 MeV		800 MeV
Current	$1000 \mu \mathrm{~A}$		$200 \mu \mathrm{~A}$
Detector	ank of liquid scintillator Scintillation and Čerenkov light	$\begin{array}{r} 512 \\ \text { fille } \\ \hline \end{array}$	indipendent cells d with liquid scintillator
Target mass	167 ton		56 ton
Event localization	PMT time		cell dimensions
Distance from the source	29 m		17 m
Neutrino angle wrt the Incoming_protons	11°		90°
Data-taking	1993-98		1997-2001
Protons on target	4.6×10^{23}		1.5×10^{23}

\bar{v}_{e} detection
Delayed signal from neutron capture

$$
\overline{v_{\mathrm{e}}}+\mathbf{p} \rightarrow \mathrm{e}^{+}+\mathbf{n}
$$

$$
\mathrm{np} \rightarrow \gamma \mathrm{~d}\left(\mathrm{E}_{\gamma}=2.2 \mathrm{MeV}\right)
$$

KARMEN: paper sheets doped with Gadolinium in between the cells
Increase of neutron capture probability, $\Sigma \mathrm{E}_{\gamma}=8.1 \mathrm{MeV}$

Prompt signal

$$
\begin{aligned}
\pi^{+} \rightarrow \underset{\downarrow}{\mu^{+}}+\mathrm{v}_{\mu} & \tau_{\pi}=26 \mathrm{~ns} \\
\mathrm{e}^{+}+\mathrm{v}_{\mathrm{e}}+\overline{\mathrm{v}}_{\mu} & \tau_{\mu}=2.2 \mu \mathrm{~s}
\end{aligned}
$$

KARMEN: time structure of the beam Repetition rate 50 Hz

Oscillation signal $v_{\mu}^{-} \rightarrow v_{e}^{-}$ Expected within $\sim 10 \mu$ s from the beam (handle not exploitable in LSND)

Neutrino energy spectra from DAR (LNSD,KARMEN)

$$
\begin{aligned}
& \pi^{+} \rightarrow \mu^{+} v_{\mu} \\
& \xrightarrow{\mathbf{e}^{+} v_{\mu} \bar{v}_{\mathrm{e}}}
\end{aligned}
$$

LSND result: evidence for $\overline{v_{\mu}}-\overline{v_{e}}$ oscillations

Signal: Positrons with $20<E<200 \mathrm{MeV}$ correlated in space and in time with the γ rays of 2.2 MeV expected from the neutron capture:
\mathbf{N} ("beam-on") $-\mathbf{N}$ ("beam-off") $=117.9 \pm 22.4$ events
Background due to μ^{-}DAR $=19.5 \pm 3.9$
Background from π^{-}DIF $+\left(v_{\mu}{ }^{\mp} \mathbf{p} \rightarrow \mu^{+}+\mathbf{n}\right)=10.5 \pm 4.6$ Signal $\overline{v_{\mathrm{e}}}=87.9 \underset{\text { (stat.) }}{ \pm 22.4} \underset{\text { (syst.) }}{ \pm 6.0 \text { events } \quad 3.8 \sigma \text { effect }}$
$\mathbf{P}_{\text {osc }}\left(\bar{v}_{\mu}-\bar{v}_{\mathrm{e}}\right)=(0.264 \pm 0.067 \pm 0.045) \times 10^{-2}$

Sample with reduced background:

Positrons with $20<E<60 \mathrm{MeV}$, more stringent neutron correlation cut
$\mathrm{N}($ beam-on $)-\mathrm{N}($ beam-off $)=49.1 \pm 9.4$ events
Neutrino background $=16.9 \pm 2.3$ events
Signal $v_{\mathrm{e}}^{-}=32.2 \pm 9.4$ events

KARMEN final result

correlation in space and time between the prompt and delayed signals, time correlation of prompt signal with proton beam,
$16<E\left(e^{+}\right)<50 \mathrm{MeV}$
Data: 15 events after cuts with a total background of 15.8 ± 0.5 events
Backgrounds:
Cosmics: 3.9 ± 0.2 events
Random coincidences $v_{\mathrm{e}} \rightarrow \mathrm{e}^{-}: 5.1 \pm 0.2$
Random coincidences among $v_{\mathrm{e}} \rightarrow \mathrm{e}^{-}$and uncorrelated $\gamma: 4.8 \pm 0.3$
Intrinsic contamination of $v_{\mathrm{e}} \overline{\mathrm{I}}$ the beam : $\quad 2.0 \pm 0.2$

No evidence for oscillations:

$$
\mathbf{P}_{\text {ose }}\left(\bar{v}_{\mu}-v_{\mathrm{e}}\right)<0.085 \times 10^{-2}(90 \% \text { C.L. })
$$

The two experiments are still compatible in a region of the parameters due to the different L (29 m LSND, 17 m KARMEN)

The oscillation signal $v_{\mu}{ }^{-} v_{\mathrm{e}}$ in LSND complicates the global scenario: with 3 neutrinos only two independent $\Delta \boldsymbol{m}^{2}$ are possible:
$\Delta \boldsymbol{m}_{12}{ }^{2}+\Delta \boldsymbol{m}_{23}{ }^{2}+\Delta \boldsymbol{m}_{31}^{2}=0$

$$
\Delta \mathrm{m}_{\text {solar }}^{2}+\Delta \mathrm{m}_{\mathrm{atm}}^{2} \neq \Delta \mathrm{m}_{\mathrm{LSND}}^{2}
$$

Oscillation signals:

- Solar: $\quad \Delta \boldsymbol{m}_{12}{ }^{2} \approx 7 \times 10^{-5} \mathbf{e V}^{2}$
- Atmosperic: $\Delta \boldsymbol{m}_{23}{ }^{2} \approx 2.5 \times 10^{-3} \mathbf{e V}^{2}$
- LSND: $\quad\left|\Delta m_{31}{ }^{2}\right|=0.2-2 \mathbf{e V}^{2}$

$$
\left|\Delta \boldsymbol{m}_{12}^{2}+\Delta \boldsymbol{m}_{23}^{2}+\Delta \boldsymbol{m}_{31}^{2}\right|=0.2-2 \mathbf{e V}^{2}
$$

>At least 4 neutrinos are needed to reconcile all the results, from LEP it is known that the number of active light neutrinos is 3 , so the other neutrinos must be sterile
> Even under this assumption the global fit of oscillation signals is poor:oscillations involving sterile neutrinos are disfavoured for the Atmospheric and Solar neutrinos, more sophisticate mechanisms like CPT violation must be advocated

Search for $v_{\mu}-v_{e}$ oscillations in NOMAD (1995-2002)

Motivated by LSND result
Due to electron neutrino component in beam (1\%) - careful simulation of beam line needed ($\leqslant 5 \%$ syst. uncertainty achieved on the ratio among the v_{μ} and v_{e} spectra)
Exploit powerful electron identification
Study energy spectra (enhanced at low energy) and radial distributions (enhanced in the center)

NOMAD can also study $\nu_{\mu} \rightarrow v_{e}$ oscillations:

- Good electron ID
-Low v_{e} contamination in the beam (1\%)

in a 10% increase in v_{e} flux.
The oscillated v_{e} have also a lower energy, narrower radial distribution than the original v_{e}

Final results

Data are compatible with known sources, No evidence for oscillations

NOMAD result rules out the LSND allowed region with
$\Delta \mathrm{m}^{2}$ above $10 \mathrm{eV}^{2}$

MiniBooNE (Booster Neutrino Experiment at Fermilab)

 Goal: confirm LSND claim (with different syst., energy, statistics)- first phase: search for $v_{\mu}-v_{e}$ oscillation;
- second phase: search for $\overline{v_{\mu}}-v_{e}$ oscillations;
- in case of LSND confirmation, measurement with a second detector at different L

The miniBooNE v Beam:

(8 GeV)

PS at Fermilab

$$
\begin{aligned}
& \text {-L=540 m ~10x LSND } \\
& \text {-E } \sim 500 \mathrm{MeV} \sim 10 x \text { LSND }
\end{aligned}
$$

Expected v fluxes

The MiniBooNE detector

- Sphere 12 m diameter
- 807 ton mineral oil. Čerenkov ligth + delayed scintillation ligth.
- Fiducial mass 445 ton
- Internal volume optically insulated (1280 PM, diam. 20 cm)
- External veto volume (240 PM)

Identification of secondary particles Based on different behavior of electrons, muons, pions and on the pattern of Čerenkov rings

MiniBooNE results with two years of data-taking

(1021 protons on target: 20\% already taken, results in 2005,)
$\sim 500 \mathrm{~K}$ events $\nu_{\mu} \mathrm{C} \rightarrow \mu^{-} \mathbf{X}$,
$\sim 70 \mathrm{~K}$ events $v \mathrm{C} \rightarrow v \mathbf{X}$

Backgrounds to the $v_{\mu}-v_{e}$ oscillation signal: $1500 \mathrm{v}_{\mathbf{e}} \mathbf{C} \rightarrow \mathbf{e}^{-} \mathbf{X}$ events
(v_{e} contamination in the beam) 500 events μ^{-}identified as electrons 500 events π° identified as electrons
+1000 signal events $v_{\mathrm{e}} \mathbf{C} \rightarrow \mathrm{e}^{-} \mathbf{X}$
if the LSND result is correct

The v_{u} and the v_{e} contamination in the beam have different energy spectra allowing to better separate the oscillated events from the background
v_{e} are coming from muon decays, the muons have the same origin (pion decays) as the v_{μ}

Exclusion plot after two years of data-taking

Kamiokande atmospheric neutrinos anomaly 1994-1997:

$$
\mathbf{R}=\frac{\left(v_{\mu} / v_{\mathrm{e}}\right)_{\text {measured }}}{\left(v_{\mu} / v_{\mathrm{e}}\right)_{\text {expected }}} \sim 0.6
$$

Intepretable both in terms of $v_{\mu} \rightarrow v_{e}$ and $v_{\mu} \rightarrow v_{\tau}$ oscillations with a $\Delta m^{2} \sim 10^{-2} \mathrm{eV}^{2}$

Some first zenith angle dependence

The Perkins plot (PLB 349 1995)

Interpretation of solar + atmospheric data in terms of just one $v_{\mu}->v_{e}$ oscillation with $\Delta \mathrm{m}^{2} \sim 10^{-2} \mathrm{eV}^{2}$

The Acker-Pakvasa 3 flavours model hep-ph/9611423 included also LSND

(C)

Gran Sasso (735 km)

6. Conclusion

There is a substantial body of data leading to a theoretical prejudice which suggests that most probably the Gran Sasso and possibly the Jura locations, coupled with the SPS neutrino beam could be the real 'focal point' of the neutrino oscillation search. Spectacular $v_{\mu} \leftrightarrow v_{\tau}$ conversion is expected to be visible behind the Jura and a monumental $v_{u} \leftrightarrow v_{e}$ conversion is expected to be observed at the Gran Sasso position.
(B)

Behind Jura (17 km)

Medium-baseline L/E~1Km/GeV

CHOOZ (the first long baseline experiment) 1997-1998

$N\left(\overline{V_{e}}\right) \sim 210^{20} \mathrm{~s}^{-1 /} G W_{\text {th }}$
Signal ~ 25 events/day, background (reactors off) ~ 1.2 events/day
Energy spectrum of the positrons compared with the predicted one (no oscillations)

$$
E\left(\overline{v_{\mathrm{e}}}\right)=E\left(\mathbf{e}^{+}\right)+\mathbf{1 . 8} \mathrm{MeV}
$$

- Ratio measured/expected
Integrated ratio $=$

$$
1.01 \pm 0.028 \pm 0.027
$$

Positron energy (MeV)
CHOOZ did not observe a significative deficit of v_{e} NO < monumental » $v_{e}^{-} \rightarrow v_{\mu}$ conversion
This result was published in 1998 before the SuperKamiokande results and excluded the atmospheric neutrino anomaly interpretation in terms of $v_{\mu} \rightarrow v_{e}$ oscillations

Neutrino 98 Conference in Takayama (June 1998)

(see G. Giacomelli Lectures)
First results from Super-Kamiokande on atmospheric neutrinos, evidence of a zenith angle dependence of v_{μ} disappearance, v_{e} in agreement with expectations

Neutrino oscillations start to be taken seriously as explanatic of the atmospheric neutrinos anomaly Opens a campaign for a new generation of long baseline experiments to provide a final proof
$2^{\text {nd }}$ Lecture

SK: Atmospheric neutrinos anomaly intepretable in terms of $v_{\mu} \rightarrow v_{\tau}$ oscillations with a $\Delta m^{2} \sim$ a few $10^{-3} \mathrm{eV}^{2}$

CHOOZ: no $v_{\mu} \rightarrow v_{e}$ oscillations, $\Theta_{13}<11^{\circ}$

