

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

H4.SMR/1574-26

"VII School on Non-Accelerator Astroparticle Physics"

26 July - 6 August 2004

The LEP Legacy

Giorgio Giacomelli

University of Bologna and INFN

The LEP legacy

G. Giacomelli University of Bologna and INFN 7th School, ICTP, Trieste 26/7-6/8 2004

- LEP. Experiments
- Precision EW measurements
- · QCD
- New particle searches
- Historical and sociological aspects
- Conclusions

LEP

Largest $e^+ e^-$ Collider in the world c.m. energies up to ~209 GeV \rightarrow LHC

Aleph, Delphi, L3, OPAL

Neutrino generations

$$\Gamma_{\rm inv} = \Gamma_{\rm Z} - \Gamma_{\rm had} - \Gamma_{\rm ll}(3 - \delta_{\tau})$$
$$N_{\rm v} = \Gamma_{\rm inv} / \Gamma_{\rm v}$$

$N_v = 2.9841 \pm 0.0083$

Electroweak Observables

- α , G_F , m_Z ; $1/\alpha(0) = 137$, $1/\alpha(m_Z) = 128$
- -- positron+electron \rightarrow fermion+antifermion
- Total Z width: $\Gamma_Z = 2.4952 \pm 0.0023$ GeV,
- Z peak cross section:

$$\boldsymbol{\sigma}_{had}^{0} \equiv \frac{12\pi}{m_{Z}^{2}} \cdot \frac{\Gamma_{ee}\Gamma_{had}}{\Gamma_{Z}^{2}},$$

- Ratios $R_f^0 \equiv \Gamma_{had}/\Gamma_{ff}$ for $f = e, \mu, \tau$; also $R_q^0 \equiv \Gamma_{qq}/\Gamma_{had}$ for q = b, c, s,
- Forward backward asymmetries for $f = e, \mu, \tau$; b,c,s. At Z pole:

$$A_{FB}^{0,f} \equiv \frac{3}{4} A_e A_f \qquad \qquad A_f \equiv \frac{2g_{Vf}g_{Af}}{g_{Vf}^2 + g_{Af}^2}$$

•
$$\tau$$
 polarisation: $P_{\tau}(\cos\theta) = -\frac{A_{\tau}(1+\cos^2\theta)+2A_e\cos\theta}{1+\cos^2\theta+2A_{\tau}A_e\cos\theta}$

 m_Z and Γ_Z

 $m_Z = 91.1875 \pm 0.0021 \text{ GeV}$ $\Gamma_Z = 2.4952 \pm 0.0023 \text{ GeV}$

Electroweak Measurements

	Measurement	Pull	(O ^{meas} –O ^{fit})/o ^{meas}
(7)			-3 -2 -1 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	-0.24	•
m _z [GeV]	91.1875 ± 0.0021	0.00	
Γ _z [GeV]	2.4952 ± 0.0023	-0.41	-
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	1.63	
R _I	20.767 ± 0.025	1.04	_
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.68	-
A _I (P _τ)	0.1465 ± 0.0032	-0.55	-
R _b	0.21644 ± 0.00065	1.01	
R _c	0.1718 ± 0.0031	-0.15	
A ^{0,b} _{fb}	0.0995 ± 0.0017	-2.62	
A ^{0,c} _{fb}	0.0713 ± 0.0036	-0.84	-
A _b	0.922 ± 0.020	-0.64	-
A _c	0.670 ± 0.026	0.06	
A _I (SLD)	0.1513 ± 0.0021	1.46	
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.87	-
m _w [GeV]	80.449 ± 0.034	1.62	
Г _w [GeV]	2.136 ± 0.069	0.62	-
m _t [GeV]	174.3 ± 5.1	0.00	
sin ² θ _w (νN)	0.2277 ± 0.0016	3.00	
Q _W (Cs)	-72.18 ± 0.46	1.52	

-3-2-10123

Interesting to compare with what was known before LEP (EPS89, Madrid):

 $\begin{array}{ll} m_{Z} = 91.12 \pm 0.16 \ \text{GeV} & m_{W} = 80.0 \pm 0.36 \ \text{GeV} \\ \sin^{2}\theta_{W} = 0.227 \pm 0.006 & N_{V} = 3.0 \pm 0.9 \end{array}$

And with what was foreseen to be measured at LEP:

Quantity	Expected error	Achieved
m _z	50 to 20 MeV	2.1 MeV
m _W	100 MeV	42 MeV
N _v	0.3	0.008
$A^{0,\mu}_{FB}$	0.0035	0.0013
A ^{0,b} _{FB}	0.0050	0.0017
A_{τ}	0.0110	0.0043

	summer 2003		
	measurement	fit	10^{meas} -0^{fit} $1/\sigma^{\text{meas}}$
$\Delta \alpha_{had}^{(5)}(m_z)$	0.02761 ± 0.00036	0.02767	
m _, (GeV)	91.1875 ± 0.0021	91.1875	
Γ, (GeV)	2.4952 ± 0.0023	2.4960	
σ_{had}^{0} (nb)	41.540 ± 0.037	41.478	
R	20.767 ± 0.025	20.742	
A ^{0,I}	0.01714 ± 0.00095	0.01636	
Α ₁ (Ρ _τ)	0.1465 ± 0.0032	0.1477	
R _b	0.21638 ± 0.00066	0.21579	
R _c	0.1720 ± 0.0030	0.1723	
A ^{0,b}	0.0997 ± 0.0016	0.1036	
A ^{0,c}	0.0706 ± 0.0035	0.0740	
Ab	0.925 ± 0.020	0.935	
A _c	0.670 ± 0.026	0.668	
A, (SLD)	0.1513 ± 0.0021	0.1477	
$\sin^2\Theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w (GeV)	80.426 ± 0.034	80.385	
Γ _w (GeV)	2.139 ± 0.069	2.093	
m _t (GeV)	174.3 ± 5.1	174.3	
Q _w (Cs)	-72.84 ± 0.46	-72.90	

Determination of the weak isospin of the bottom quark

Cross section for the reaction

 $e^{-}e^{+} \rightarrow W^{-}W^{+}$

QCD: Event Shapes

α

Measured with many different methods

 $\alpha_{\rm S} (m_{\rm Z}) = 0.1176 \pm 0.0012 \pm 0.009$

Standard Model (SM) parameters

$$\alpha$$
 , G_{F} , m_{Z} ; m_{t} , m_{H} ; α_{S}

Average charged hadron multiplicity

Z^0Z^0 production

New SM test. Search for the existence of neutral gauge couplings (ZZZ, ZZg)

Events subdivided in - ZZ_→ qqqq (4 jets) -qqvv (2 jets + missing energy) -qql+l-(2jets+2isolated charged leptons) -4 leptons (limited by low statistics)

B hadron lifetimes

Theoretical predictions New lattice QCD calculations seem to better explain these results

Searches

The most important search performed at LEP was the search for the neutral Higgs boson, H^0 , of the SM. Many searches have been performed to look for signs of new Physics beyond the SM:

SUSY with and without R-parity violation

Compositeness Technicolour

Leptoquarks etc.

Limits: m>90 GeV for pair production

SM Higgs - Production

Higgs-Strahlung Bjorken-Ioffe-Khoze mechanism

This is the dominant production mechanism at LEP2

WW and ZZ fusion

These processes give a small contribution at LEP energies

Standard Model Higgs

At 95% CL :

 $m_{\rm H} > 114.4 \text{ GeV(obs.)}$ $m_{\rm H} > 115.3 \text{ GeV (exp.)}$

Higgs boson searches

Escluded by direct search

From best fit of EW data

SUSY

In Supersymmetric models each "normal" particle has a SUSY partner whose spin differs by 1/2.

Particles, $R = +1$			Sparticles, $R = -1$			
Particle	Spin	Charge	Sparticle	Spin	S-name	Mass
						eigenstates
e	1/2	- 1	$\widetilde{e}_L, \widetilde{e}_R$	0	selectron	
μ	1/2	- 1	$\widetilde{\mu}_L, \widetilde{\mu}_R$	0	smu	
τ	1/2	- 1	$\widetilde{ au}_{\mathrm{L}}, \widetilde{ au}_{\mathrm{R}}$	0	stau	
$v = v_e, v_\mu, v_\tau$	1/2	0	$\widetilde{\mathbf{v}}$	0	sneutrino	
q = u,d,s,c,b,t	1/2	2/3, -1/3	$\widetilde{\mathbf{q}}_{\mathrm{L}}, \widetilde{\mathbf{q}}_{\mathrm{R}}$	0	squark	
g	1	0	ğ	1/2	gluino	
γ	1	0	$\widetilde{\gamma}$	1/2	photino	
Z^0	1	0	$\tilde{\mathbf{Z}}^{0}$	1/2	zino	neutralinos
H_1^0, H_2^0	0	0	$\widetilde{\mathrm{H}}_{1}^{0},\ \widetilde{\mathrm{H}}_{2}^{0}$	1/2	neutral Higgsinos	$(\widetilde{\chi}^0_1 - \widetilde{\chi}^0_4)$
H [±]	0	± 1	H [±]	1/2	charged Higgsino	charginos
W±	1	± 1	$\widetilde{\mathbf{W}}^{\pm}$	1/2	wino	$(\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^{\pm})$
G	2	0	Ĝ	3/2	gravitino	

	Spin		
	0	1/2	1
	Ĩ	I	
Particles	$\widetilde{\mathbf{q}}$	q	
and	H_1^0, H_2^0	$\widetilde{\chi_1^0}$ - $\widetilde{\chi}_4^0$	γ, Z^0
Sparticles	H±	$\widetilde{\chi}_1^{\pm}, \ \widetilde{\chi}_2^{\pm}$	W^{\pm}

Sleptons

 $e^+e^- \rightarrow \tilde{l}^+\tilde{l}^- \rightarrow l^+\tilde{\chi}^0_1 l^-\tilde{\chi}^0_1$

Regions in the plane (m_{l}^{\sim}, m_{\widetilde{\chi}_{0}^{\circ}}) excluded at 95% CL

Stable charged particles

Historical and sociological aspects

Changing size of experimental teams

- <1970 Small single groups
- >1970 Collaborations of few groups
- LEP Tens of groups

 \rightarrow also for non accelerator experiments

- LHC Hundreds of groups
- >1980 Preliminary workshops

Many activities and involvement of many people

Start construction of LEP and of 4 experiments

Very active phase: contruction, tests, MonteCarlos Many felt the lack of physics results

1989 Start data taking

The beginning of an exciting phase

Start improvements [Luminometers, microvertex detectors,)

New organizational structure

"Government" (spokesman+executive committee,...)+project leaders

Historical and sociological aspects/2

1989 LEP1 \rightarrow 1995 \rightarrow LEP2 2000

"Paperosity"

Collaboration	Number of authors	Papers/Authors
LEP	330 - 550	0.5 - 1
CDF-D0	400 - 500	0.3 - 0.5
H1-ZEUS	n	0.23
UA1-UA2	65 - 150	0.33

"Visibility"

Presentations in working groups, collaboration meetings, conferences Internal notes with/without referees

Computing

1983: 2 units/experiment (1 unit = 1 IBM 370/168)
2000: >1000 units/experiment; distributed computing
Computer memories: from MB to GB

In total the 4 LEP experiments have published more than 1100 publications on refereed scientific journals

Historical and sociological aspects/3

CERN most important invention: WWW

LEPC committee

Very good cooperation between experimentalists and theoreticians

Competition and cooperation between the 4 experiments

The experiment secretariats

Sport (CERN races; soccer) Great enthusiasm and team spirit

Participants happy even when they won a "random prize"

"Love affairs" They followed the changing life pattern: encounters, new encounters, new experiences, course changing, few marriages, few babies, ... After year 2000 may be more marriages and more babies ...

In conclusion: most physicists considered the LEP experience positive and exciting; Colleagues from DC started working in HEP, as groups

One shouldnot forget the large number of Diploma and PhD theses

Searches for the Higgs Boson by the 4 experiments at LEP

Conclusions

- LEP operated very reliably from 1989 to 2000
- The most important LEP results :
 - i) Determination of the number of neutrino families (3)
- ii) Very precise measurements of all the EW parameters
- iii) Precise tests of QCD. Determination of α_{S} running
- iv) The first determination of m_{top} below threshold
- v) Measurements of the B mesons and tau short lifetimes
- vi) Measurement of m_W , Γ_W , triple bosonic vertex, ...
- vii) Higgs boson: lighter than ~200 GeV (m_H = 116 GeV?)
- iii) Stringent limits on new particles

The Particle Nata Rook is full of results from I FP

