

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

H4.SMR/1574-27

"VII School on Non-Accelerator Astroparticle Physics"

26 July - 6 August 2004

Atmospheric Neutrino Oscillations

Giorgio Giacomelli

University of Bologna and INFN

strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

Atmospheric Neutrino Oscillations

G. Giacomelli University of Bologna and INFN 7th School, ICTP, Trieste, 26/7-6/8 2004

- 1. Atmospheric neutrinos
- 2. Neutrino oscillations
- 3. Soudan 2
- 4. MACRO
- 5. SuperKamiokande
- 6. Discussion, Conclusions and Outlook

2. v-Oscillations (in vacuum)

Simple formulae modified by : Additional flavor oscillations Matter effects

In case of oscillations: $m_v \neq 0$

 L_e, L_μ, L_τ violation Neutrino decays ?

Atmospheric Neutrino Anomaly

Summary of results since the mid 1980's:

$$\mathbf{R'}= \begin{array}{c} (\mu / e) D a ta \\ \mu / e M C \end{array}$$

Double ratio between the number of detected and expected v_u and v_e

3. Soudan 2. The Detector

The experiment is located 2340 feet underground in the Soudan State Park, Minnesota.

224 1m x 1m x 2.7 m modules963 ton total mass5.90 fiducial kton-yr exposure

The detector is surrounded by a $\sim 1700 \text{ m}^2$ "veto shield" which provides nearly 4π coverage for the identification of charged particles entering / exiting the detector cavern.

Soudan 2

Soudan 2

Soudan 2: Results

4. MACRO

- Large acceptance (~10000 m²sr for an isotropic flux)
- Low downgoing μ rate (~10⁻⁶ of the surface rate)
- ~600 tons of liquid scintillator to measure T.O.F. (time resolution ~500psec)
- ~20000 m² of streamer tubes (3cm cells) for tracking (angular resolution < 1°)

Monte Carlo

Neutrino cross sections

Through the measurement of <u>the</u> <u>shape</u> of the muon zenith angle distribution.

L(cosΘ=-1)~13000 km L(cosΘ=0)~500 km

MACRO MonteCarlo

MACRO-MonteCarlo

OSCILLATION HYPOTHESIS Minimum value for $v_{\mu} \leftrightarrow v_{\tau} : R_{\tau}^{\min} = 1.61$ **Minimum value for** $v_{\mu} \leftrightarrow v_{\text{sterile}} : R_{\text{st}}^{\min} = 2.03$ **PROBABILITY FOR R < R^{\min} :**

 $P_{\tau} = 7.2\%$; $P_{sterile} = 0.015\%$ $\longrightarrow P_{\tau}/P_{sterile} = 480$

 $v_{\mu} \leftarrow v_{sterile}$ hypothesis disfavoured at 99.8 % C.L. with respect to $v_{\mu} \leftarrow v_{\tau}$

MACRO : L/E_v distribution

MACRO : Low Energy Neutrino Events

Measured (points) and expected number (dashed lines) of upgoing semicontained events (left) and up-stopping plus downgoing semicontained μ (right). Solid lines: neutrino two flavor oscillations, with the best fit parameters $\sin^2 2\Theta = 1$ and $\Delta m^2 = 0.0023 \text{ eV}^2$. (Phys. Lett. B478 (2000) 5)

MACRO : Combined analysis

- H.E. $\begin{cases} \text{Zenith distribution} \\ E_{v} \text{ estimate} \end{cases}$
- L.E. IU, ID and UGS μ

 $\frac{\text{NO OSCILLATION HYPOTHESIS}}{\text{RULED OUT BY} \sim 5 \sigma}$

 $R_1 = N(\cos \Theta < -0.7) / N(\cos \Theta > -0.4)$

 $R_2 = N(low E_v) / N(high E_v)$

 $R_3 = N(ID+UGS) / N(IU)$

Best fit parameters for $v_{\mu} \rightarrow v_{\tau}$ $\Delta m^2 = 2.3 \ 10^{-3} \ eV^2$; $\sin^2 2\theta = 1$

Predictions of the FLUKA and Honda Monte Carlo H.E. 25% low ; L.E. 12% low

Bartol96 may give additional evidence for oscillations: Absolute values referred to Bartol96 MC:

 $R_4 = (Data/MC)_{H.E.}$; $R_5 = (Data/MC)_{L.E.}$

With these informations, the no oscillation hypothesis is ruled out by ~ 6 σ

Oscillation probability vs L (at fixed E_v)

5. SuperK

- 1000 m Deep Underground
- 50,000 ton of Ultra-Pure Water
- 11000 +2000 PMTs

Super-Kamiokande

SK-1 1996 - 2001

- 22.5 kton fiducial mass (2m from wall)
- 11146 50-cm photomultiplier tubes
- 40% photocathode coverage
- 1885 20-cm pmts in outer detector

SK-2 January 2003 - October 2005

- 5182 PMTs, mostly recovered from accident
- ~19% coverage with acrylic shields →
- outer detector fully restored
- K2K beam resumed

SK-3 March 2006 +

 original coverage to be restored

T2K off-axis beam from J-PARC

SK-I Atmospheric Neutrino Event Sample

1000 FC v_ 800 FC v., \mathbf{PC} 600 400Events /1000 days 200 o Upward stopping μ 160 140 Minimum Upward through-going μ 120 100 80 munu 60 40 20 0 10^2 10³ 10⁻¹ 10^4 1 10 E_v (GeV)

5 decades of neutrino energy

	ΠΑΤΑ	MC	Purity
	DATA	INIC	T unity
Sub-GeV 1-ring e-like	3353	2978.8	88.0%
Multi-GeV 1-ring e-like	746	680.5	82.6%
Sub-GeV 1-ring µ-like	3227	4212.8	94.5%
Sub-GeV Multiring µ-like	208	322.6	90.5%
Multi-GeV 1-ring µ-like	651	899.9	99.4%
Multi-GeV Multiring µ-like	439	711.9	95.0%
Partially Contained μ	647	1034.5	97.3%
Stopping Upward μ	417.7	721.4	~100%
Throughgoing Upward μ	1841.6	1684.4	~100%

11530 events used (80%) in oscillation analysis

~14000 events total

from data reduction

c c

Status of Super-K II Atmospheric Neutrinos

SK-II data is consistent with SK-I results. e/μ ID, energy scale look very good. Current studies emphasize ring counting, PC reduction, OD simulation.

SK-1 Zenith Angle Distributions

atmospheric neutrino dynamic range very powerful in limiting neutrino exotica

SK. Ratios

$$R_{inde-GeV} = 0.658 \pm 0.016(stat) \pm 0.032(sys)$$

$$R = \frac{(\mu/e)_{DAIA}}{(\mu/e)_{MC}}$$

$$R_{muln-GeV} = 0.702_{-0.030}^{+0.032}(stat) \pm 0.099(sys)$$

$$\left(\frac{N_{UP}}{N_{DOWV}}\right)_{Muln-GeV+PC} = 0.55_{-0.033}^{+0.035}(stat) \pm 0.005(sys)$$

$$\frac{\Phi(stop)}{\Phi(through)} = 0.229 \pm 0.015(stat) \pm 0.003(sys)$$

SK. L/E $_{\!_{\rm V}}$ distribution

oscillation dip seen at ~500 km/GeV

SK - L/E_v significance

To evaluate significance of oscillation signature, we need a comparison shape (no oscillations too strongly ruled out by high L/E data)

Fit against: neutrino decay neutrino decoherence

Barger et al: PRD54 (1996) 1 Barger et al: PLB462 (1999) 462 Grossman and Worah: hep-ph/9807511 Usi et al: PRL85 (2000) 1166

6. Discussion, Conclusions and Outlook

Atmospheric neutrino data favor 2-flavor oscillations with

More exotic scenarios:

- Lorentz invariance violation : mixing between flavor and velocity eigenstates (MACRO, SK,...)
- neutrino radiative decay (NOTTE,...)

Appearance experiments $v_{\mu} \rightarrow v_{\tau}$ (OPERA, ICARUS,...)

A very natural and appealing explanation:

v's are nearly massless because they are Majorana particles and get masses through L non conserving interactions suppressed by a large scale M ~ M_{GUT}

Neutrino masses are a probe of physics at M_{GUT} !

G. Altarelli