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4 (^-Generic diffeomorphisms and periodic orbits

The study of the global dynamics of generic diffeomorphisms has been possible because it is well
reflected by the periodic orbits.

4.1 Perturbation of the trajectories

All the perturbations lemmas come from the following elementary lemma:

Lemma 4.1. Let M be a compact riemannian manifold. There is C > 0 such that, for any
e > 0, for any points x,y verifying 2d(x,y) < e, there is a diffeomorphism h verifying:

\i<e

2. h coincides with id out of the ball B(x, C • d(x,y))

3. h{x) = y

That is, for the C1-topology, the security zone one need for doing an e-perturbation of a
trajectory has a size is proportional to e (and inversally proportional to the C1-size of the
perturbation). If we consider the C2-metrics on the set of diffeomorphisms, one need to replace
the condition Cd(x, y) < e by C^d(x,y) < e: the security zone has a size proportional to
y^e, which is huge in comparition to e. This simple remark is the reason that all trajectories
perturbations lemmas hold for the C1 topology, and are unknown for C-topology, r > 1.

Theorem 4.1. (The (local)connecting lemma) (see [Ai\, Ha, WX]) Let f be a diffeomorphism
on a compact manifold. Let U be a Cl-neighborhood of f. Then there is N > 0, 8o > 0 and
0 < A < 1 with the following property:

Let z be a point and 0 < 8 < 8Q such that the ball B(z,S) is disjoint from fl(B(z,8)) for
every i 6 {l, . . . , iV}. Let V = [Ji=Q fl(B(z,8)). Let x,y be two points out of V, and assume
that x admits a forward iterate fn(x) € B(z,X8), n > 0 and that y admits a backward iterate
f-m(y)eB(z,X8)).

Then, there is k € {1 , . . . ,m + n} and g EU coinciding with f out ofV such that gk(x) = y.

I will admit this lemma for the momment, postponing if possible the proof to the last lecture.
This lemma implies most of the known perturbations lemma

Theorem 4.2. (The closing lemma, PughfPu, PR]) Let f be diffeomorphism of a compact
manifold and x a non-wandering point of f. Then there is g, C1 close to f, such that x £ Per(g)

proof : Le x G fi(/). If x is periodic there is nothing to do. So assume that x is not periodic.
Fix a neighorhood of / , and then consider the constant A 8Q, and N. Choose 8 £]0, ô such that
the 5-ball around x is disjoint from its 2N first iterates. Now there is a point y G fN+1(B(x, 8))
such having positive and negative iterates in B(x, X8). Applying the local connecting lemma one
gets that y becomes periodic for a diffeomorphism in the choosen neighborhood. Furthermore
its orbits is passig very clos to x (in B(x, 8)) so that a small conjugacy allows to get that this
orbit passes through x. D



Theorem 4.3. (Hayashi's connecting lemma)[Ha] Let f be a diffeomorphism on a compact
manifold. Assume that p, q are hyperbolic periodic points and x € Wu(p) and y G Ws(q) verifies
that there is a sequence X{ converging to x and positive numbers n^ such that fni(xi) converges
to yi. Then there is arbitrarily small perturbations of f such that Wu(p) cuts Ws(q) along the
orbit of x and that there is k > 0 such that fk(x) = y.

proof : Fix a neighborhood U of / . By shrinking U if necessary, one can assume that if two
perturbations of / have disjoint support and are each in U then the composed perturbation is
too in U.

Then consider 6Q,X,N given by Theorem 4.1. Consider 6 < 8Q such that the N first iterates
of B(x,8) and B(y,S) are pairwize disjoint. Consider i such that X{ 6 B(x, X8) and fni(xi) G
B(y,\S).

Consider mo such that a = f~m°{x) € W^c(p) where the local unstable manifold of p is
suficiently small for being disjoint from the N iterates of B(x,5) U B(y,S). Now Theorem 4.1
allows to build a perturbation g (in U) with support in (Jo ~ (fi(B(x, 6) and such that gk(a) =
fni(xi) G B(y,X5). Now let b be a positive iterate of y in a small local stable manifold of q,
dijoint from the N iterates of the balls, and using once more Theorem 4.1 one gets now that b
becmes a positive iterate of a . •

Exercise 17. Find where I was not rigorous in the previous proof!!!

In fact,in the last lecture, we will see a more precise (an much more technical) version of
Theorem 4.1, which is in fact the way Hayashi, Arnaud, Wen&Xia proved Theorem 4.1. Using
this stronger version and global arguments we prove the following global pertubation lemma:

Theorem 4.4. (The globalconnecting lemma, B-, Crovisier, [BC]). Let f be a diffeomorphism
such that every periodic point is hyperbolic. Let x,y be two points such that x H y (that is, one
can go from x to y by pseudo-orbits of arbitrarily small jumps). Then for any C1-neighborhood
U of f there is g Ell and n > 0 such that gn(x) = y.

Question 2. Is Theorem 4-4 true for all diffeomorphism (without the hypothesis "all the periodic
orbits are hyperbolic")?

In fact we allready generalize this theorem defining the notion of avoidable periodic orbits
(including the hyperbolic, and the elliptic orbits with no resonnance condition)

We are very far to understand what kind of perturbation are possible and what are not. For
example Lan Wen ask us the following question:

Question 3. Let f be a diffeomorphism of a compact manifold and assume that x, y are two
hyperbolic fixed points such that x € Ws{y) D Wu(y). Is it possible to create a cycle involving x
and y by a C1 -small perturbation of f?

Another quetion, by Flavio Abdenur:

Question 4. If x is recurrent for fk for some k > 0. Is it possible to create a periodic orbit of
period k through x, by a C1-small perturbation?

For a very long time I try to answer to the following question:

Question 5. Given any x, is it possible to create a hyperbolic periodic orbit p such that x G
Ws{p)?



4.2 The chain recurrence set of C1-generic diffeomorphisms

Theorem 4.5. For Cl-generic diffeomorphisms, PerHyp(f) = Rec(f) = Lim(f) = O(/) = TZ(f)

proof : The closure of the set of hyperbolic periodic points varies lower semi-continuously
(because each of the hyperbolic periodic points varies locally continuously). Then Theorem 3.4
ensures the existence of TZ C Diffx(M) residual such that the diffeomorphisms / G 1Z are
continuity points of g !-»• PeiHypid)- Then for f E 71, Per^yp(/) = TZ(f). Assume (arguing by
absurd) that x G lZ(f)\PeVHyp(f)- Then Theorem 4.4 ensures that diffeomorphisms g arbirarily
C1-close to / admits x has a periodic point. An elementary perturbation (using for instance
Pranks'lemma Lemma 5.1) allows to get x as an hyperbolic periodic point, contradicting the
continuity. •

4.3 The chain recurrence classes

Let introduce the following relation: x -< y if, for any neighborhood U,V of x, y , respectively,
there is n > 0 such that fn(U) fl V ^ 0. Notice that this relation is more restrictive than H:
x <y =>• x -\ y. Furthermore, x -< x if and only if x G

Theorem 4.6. [BCJ For any Cl-generic diffeomorphisms the relations -< and H coincide.

proof : Consider a countable base O of the topology of M. For any U,V G O let A(U, V) be
the set of diffeomorphisms such that some positive iterate fn(U) meets V. Notice that A(U, V)
is an open set. Let B(U,V) be the complement of the closure of A(U, V) and C(U, V) =
A(U,V) U B(U,V). By construction, C(U,V) is open and dense in Diff^M). Consider H =
duveo C(U'v)- lt i s a residual subset of Diff^M).

A characterisation of / being in H is: if the positive iterates of some open set U G O are
disjoint from V G O then this property is robust.

Assume that x -/< y. Then there are neighborhoods U,V G O of x,y such that positive
iterates of U are disjoint from V. Then this property is robust. But if x H y then Theorem 4.4
asserts that gn(x) = y with n > 0 for arbitrarily small perturbation g of / . So we proved

x -A y =>x -/ly.

•
An invariant compact set A is called weakly transitive is for any two point x, y G A one has

x -< y. As the closure of the union of an increasing family of weakly transitive set is a weakly
transitive set, Zorn lemma ensures the existence of maximal weakly transitive sets.

Corollary 4.2. For f generic, the chain recurrence classes are the maximal weakly transitive
sets.

Question 6. For f generic, are the chain recurrence classes transitive?

Theorem 4.4 is very far to be a result of "shadowing by perturbation": the segment of orbit
of g joining x and y is not close to a segment of the initial pseudo-orbit. In that direction there
is a result by Sylvain Crovisier, based on Theorem 4.1.



Theorem 4.7. (Crovisier)[CrjLet f be a diffeomorphism whose periodic orbits are hyperbolic
and U be a C1-neighborhood of f. Le K be a weakly transitive set. Then for any e > 0 there
is g £M coinciding with f out of an arbitrary neighborhood og K and having a periodic orbit 7
such that the Hausdorff distance between 7 and K is less than e.

Corollary 4.3. For f generic, any weakly transitive set (and in particular any chain recurrence
class) is the Hausdorff limit of a seqence of periodic orbits.

This corollary is very usefull if you want to induce on a chain recurrence class some property
(like a dominated splitting) of the nearby periodic orbits.

4.4 Homoclinic classes

Let / be a diffeomorphism of a compact manifold M, and p be a hyperbolic periodic point of
/ . We denote by Ws(p) and Wu(p) the stable and unstable manifolds of the orbit of p.

Two hyperbolic periodic points p and q are homoclinically related if Ws(p) D Wu(q) and
Wu(p) fl Ws(q) contain tranversal intersection points. This define an equivalence relation on
the set of hyperbolic periodic orbits. The homoclinic class H(f,p) of p is the closure of its
equivalence class.

Let recall the classical properties of the homoclinic classes:

Proposition 4.4. The homoclinic class of p verifies the following properties:

• H(f,p) is an invariant compact set which is transitive.

• If E C H(p, f) is a finite set such that any q £ E is either a periodic point homoclinically
related to p or a transverse homoclinic intersection of p. Then E is contained in a transitive
hyperbolic basic set.

The two first item are classical consequences of the Lambda-lemma. A good reference for
the third one may be the book by Palis and Takens [PT].

4.5 Heteroclinic intersection for C1-generic diffeomorphisms

Theorem 4.8. For f generic, assume that p,q are periodic points such that dimWu{p) +
dimWs(q) > dimM. If p -< q (or equivalently p H q) then Wu(p) cuts transversally Ws(p).

proof : Consider the set Hk of pair (p, q) of hyperbolic periodic orbits of period less that k such
that Wu(p) cuts transversally Ws(jp). This set varies lower semi-continuously and then there is
a residual se IZk of continuity points for this set. Assume / E TZ^ and assume that (p, q) £ H).
but p -< q.

Then Theorem 4.3 ensures that, for an arbitrarily C1-small perturbation g of / , the pair p, q
belongs to Hk(g) contradicting / E Jlk- The announced residual set is Plfĉ -fc-

•



4.6 Homoclinic class and chain recurrence classes

Theorem 4.9. [Ar\, CMP, BC] For f generic, the homoclinic classes are chain recurrence
classes. In other words, a chain recurrence class containing a periodic point p is the homoclinic
class of p.

L e m m a 4.5. Let f be a generic diffeomorphism. Let p be an hyperbolic periodic point and
z e Ws(p) fl Wu(p). Then there are Cl-small perturbations of f for which z is an transverse
homoclinic intersection associated to the orbit of x

proof : If the point z is not periodic, this is a direct application of the connecting lemma:
one fixe the neighborhood V of a segment of orbit z, ...fN(V) . There is x £ W^c(p) and
y 6 Wfoc(p) out of F , having positive and negative iterates, respectively, in the neighborhood of
size A times smaller around z. Then gk(x) = y for a small perturbation of / in V. The point
x and y remains in the local unstable and stable manifold of p (because they iare disjoint from
V) so that we create a homoclinic orbit passing through V and therefore arbitrarily close to z.
A new perturbation produce a transverse homoclinic orbit through z.

Assume now that z is periodic. Notice that z -< p and p -< z so that Theorem4.8 implies
that one of the invariant manifold of p intersect transversally one of those of z. Let assume
for instance that Ws(p) cuts transversally Wu(z). As p -< z, Theorem 4.3 allows to create
an intersection (may be non transverse) between Wu(p) and Ws(z) by an arbitrary C1-small
perturbation of / . This perturbation being very small i keep the ther bifurcation creating a
cycle betweem p and z.

Now an arbitrarily small perturbation creates a homoclinic orbit of p close to z, and this
intersection may be turned to be transverse. •

Corollary 4.6. ([Ar\, CMP]) For f generic for any periodic point p one has :

proof : Let Q be the residual set on which the lemma above holds.
It is enough to prove the corollary for periodic orbits of period less that k. There is a dense

open set Vfc of diffeomorphisms having finitely many periodic orbis of period less than k all
of them hyperbolic and the number being locally constant. On each connecting components
of this open and dense set the periodic orbits of period less than k vary continuously with
he diffeomorphisms. Let %&(/) be the collection of homoclinic classes associated to periodic
orbits of period less than k. These compacts sets vary lower semicontinuously with / (because
transverse homoclinic intersections persists by C1-perturbations) so that there is a residual set
IZk on which all homoclinic class varies continuously.

Let / 6 TZnQ and assume that p with period less that k verifies H(p) ^ Ws(p) n Wu(p)
Let z £ Ws(p) PI Wu(p) \ H(p). Then the lemma above allows to create a a new homoclinic
intersection at z contradicting the continuity of H{p).

n

Lemma 4.7. [CMP] For f generic, for any periodic point p, the closure W (p) is Lyapunov
stable.



proof : By an analogous argument as in the corollary above, for / generic the closure of the
unstable manifold of any periodic point varies continuously with / . Assume that Wu(p) is not
Lyapunov stable. Then there is y E Wu(p) \ orb(p) and z £ Wu(p) such that y -\ z. As / is
generic, then -<=H so that y -< z. So Theorem 4.3 allows o make arbitrarily small perturbatios
of / such that z will belon to Wu (p) contradicting the continuity of Wu (p) •

L e m m a 4.8. Let K be a Lyapunov stable set. Assume that x E K and that x -< y. Then y E K.

proof : K admits a base of positively invariant neighborhoods. Consider y £ K and let Wo, V be
two disjoint open sets K C Wo and y E V. Let W C Wo be a positively invariant neighborhood
of K. Now for any x £ K, W is a neighborhood whose positive iterates ar dijoint from W. So
x^y. U

End of proof of Theorem 4.9 For / generic any homoclinic class H(p) is the intersection of
Wu(p) which is Lyapunov stable and of Ws(p) which is Lyapunov stable for f~l. So any weakly
transitive set meeting H(p) is include in Wu(p) by Lemma 4.8 and in Ws(p) so in H(p) (as / is
generic).

As / is generic the chain recurrence class of p is weakly transitive, and so coincide with H(p).

Exercise 18. For any diffeomorphism f and any x let W™(x,f) = {y E M \ x H y}. Prove
that, for any Cl -generic diffeomorphism f of a compact manifold M, for any periodic point
x € Per(f) one has W%(x, f) = Wu{x,f).

4.7 Isolated classes

Definition 4.9. A chain recurrence class C is isolated if there is a neighborhood U of C such
that Tl(f) HU = C.

It is robustly isolated is there is a neighborhood U of f such that for any g G U the inter-
section TZ(g) fl U consists in a unique chain recurrence class.

Remark 4.10. If C is isolated and U is a neighborhood as in the definition, then for every
compact neighborhood V C U of C, C is the maximal invariant set

In the same way, C is robustly isolated if and only if there is a neighborhood V of C and
a neighborhood U of f such that, for any g EU the maximal invariant set C = r inez5 n (^) *s

chain recurrent. In other word, C is robustly chain recurrent.

Notice that, for / generic, the isolated chain recurrence classes are homoclinic classes, because
the periodic orbits are dense in TZ(f).

The aim of this section is to prove:

Theorem 4.10. [Ab, BC] For f generic, any isolated chain recurrence class is robustly isolated.

(this result is essencially due to F. Abdenur in [Ab] and adapted to this context by [BC].)

Lemma 4.11. For f generic, given any two periodic orbits p,q the homoclinic classes H(p) and
H{q) are equal or disjoint. Furthermore, if they are disjoint they are robustly disjoint: there is
a Cl -neighborhood U of f such that for any g G U the homoclinic classes of the continuations
of p and q are disjoint.



proof : For / generic, the homoclinic class are chain recurrence classes so that coincide or are
disjoint. Furthermore, if there are dioint, there is a pair attractor repellor such that one of the
class, say H(p) is contained in the attractor and the other in the repellor. Let U be an isolating
neighborhood of the attractor. Then f(U) C U and there is a C1-neighborhood U of / such that
g G U verifies g(U) C U. Then the homoclinic class H(p,g is contained in the corresponding
attractor for g and H(q,g) in the repellor so that they are disjoint. •

We are now ready to prove Theorem 4.10
proof : Lemma 4.11 implies that there is a residual subset 1Z of Diffx(M) on which one has:

for any open set U of M the number N(f, U) G N U {oo}) of homoclinic classes intersecting
U is lower semi continuous. Then there is a residual set 1Zu C 1Z on which it is continuous.
Notice that 1ZJJ is residual in Diff1(M).

Consider a countable base {Un} of the topology of M and Q — f]n€^T^un is residual. For
/ G G let H(p) be an isolated class. Then there is a covering of H(p) by finitely many open set
Ui,i G / such that £/* D K(f) C H(p). In particular N(f, Ui) = 1.

So one get an open neighborhood V of / on which N(f, Ui) = 1 and Ui D TZ(g) C H(p,g)
for any g G 1Z D V. Assume that g (not generic!) in V verifies that there is a chain recurent
class C which does not contain H(pg,g), such that C fl C/j / (8 for some j G /. Then there is
a pair attractor repelor such that C (for instance) is contained in the attractor and H(pg,g) is
contained in the repellor. Consider x G C. By Theorem 4.4 an arbitrarily small perturbation
of g may turn x to be an hyperbolic periodic point. When the pertubation is small enough, the
chain recurrent class of x remains in the attractor associated to an isolating neighborhood, and
H{p) remain in the repellor. Now this remain the case for any smll perturbation in particular
for some generic diffemorphisms.

This contradicts the continuity of N(f, Uj).
D
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