united nations educational, scientific and cultural organization

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

H4.SMR/1574-19

"VII School on Non-Accelerator Astroparticle Physics"

26 July - 6 August 2004

Towards the Complete Neutrino Mixing Matrix and CP-Violation

S. Petcov

SISSA/INFN, Trieste, Italy & INRNE, Bulgarian Academy of Sciences, Sofia Bulgaria

Towards the Complete Neutrino Mixing Matrix and CP-Violation

S. T. Petcov

SISSA/INFN, Trieste, Italy, and INRNE, Bulgarian Academy of Sciences, Sofia, Bulgaria

> NEUTRINO 2004 Paris June 16, 2004

2001 – Remarkable progress in the studies of ν – mixing and oscillations

- June, 2001: SNO CC data + SK data $\rightarrow \nu_{\mu,\tau}$ and/or $\bar{\nu}_{\mu,\tau}$ in $\Phi_E(\nu_{\odot})$
- April, 2002: SNO NC data \rightarrow evidences for $\nu_{\mu,\tau}$ and/or $\bar{\nu}_{\mu,\tau}$ in $\Phi_E(\nu_{\odot})$ strengthen

December, 2002: KamLAND

- First compelling evidence for ν -oscillations in an experiment with terrestrial ν 's
- Evidence for ν_e -mixing in vacuum
- $-\nu_{\odot}$: LMA solution (CPT)
- KamLAND "massacre":

VO, QVO, LOW, SMA MSW, RSFP, FCNC, WEPV, LIV,...

• September, 2003: SNO salt phase data,

higher precision measurement of $\Phi_B(\nu_{\odot})$

KamLAND: e^+ -Spectrum Deformation

KamLAND: e^+ -Spectrum Deformation

K2K: Spectrum Deformation

Evidences for ν -Oscillations

- ν_{atm} : SK UP-DOWN ASYMMETRY θ_{Z} -, L/E- dependences of μ -like events

Dominant $\nu_{\mu} \rightarrow \nu_{\tau}$ K2K; MINOS, CNGS

 $-\nu_{\odot}$: Homestake, Kamiokande, SAGE, GALLEX/GNO Super-Kamiokande, SNO; KamLAND

Dominant $\nu_e \rightarrow \nu_{\mu,\tau}$ BOREXINO,..., LowNu

- LSND

Dominant $\ \overline{
u}_{\mu}
ightarrow \overline{
u}_{e}$ MiniBOONE

 $\nu_{l\perp} = \sum_{j=1}^{N} U_{lj} \nu_{j\perp} \qquad l = e, \mu, \tau. \quad (1)$

$$\begin{split} \Delta m_{\rm atm}^2 &\equiv \Delta m_{31}^2 = 2.1 \times 10^{-3} \ {\rm eV}^2, \ \sin^2 \theta_{\rm atm} \equiv \sin^2 2\theta_{23} = 1.0 \ ; \\ \Delta m_{31}^2 &= (1.5 - 3.4) \times 10^{-3} \ {\rm eV}^2, \ \sin^2 2\theta_{23} \ge 0.92, \quad 90\% \ {\rm C.L.} \end{split}$$

• sign of $\Delta m^2_{\rm atm}$ not determined;

3- ν mixing: $\Delta m_{31}^2 > 0$, $m_1 < m_2 < m_3$ (NH);

 $\Delta m_{31}^2 < 0, \ m_3 < m_1 < m_2$ (IH).

• If $\theta_{23} \neq \frac{\pi}{4}$: θ_{23} , $(\frac{\pi}{4} - \theta_{23})$ ambiguity.

• High-LMA excluded at > 3 s.d.

A. Bandyopadhyay et al, hep-ph/0406328

SK: E. Kearns et al, talk given at Neutrino'04

• $\sin^2 \theta_{13} < 0.05$ at 99.73% C.L.

A. Bandyopadhyay et al., hep-ph/0406328

Three Neutrino Mixing

$$\nu_{lL} = \sum_{j=1}^{3} U_{lj} \nu_{jL} .$$
 (2)

U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix,

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
(3)

• $U - n \times n$ unitary:

n	2	3	4

mixing angles: $\frac{1}{2}n(n-1)$ 1 3 6

CP-violating phases:

- ν_j Dirac: $\frac{1}{2}(n-1)(n-2)$ 0 1 3
- ν_j Majorana: $\frac{1}{2}n(n-1)$ 1 3 6

n = 3: 1 Dirac and 2 additional CP-violating phases, Majorana phases

> S.M. Bilenky, J. Hosek, S.T.P.,1980; J. Schechter, J.W.F. Valle,1980; M. Doi, T. Kotani, E. Takasugi,1981

Standard Parametrization

$$U = V \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$
(4)

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13}e^{i\delta} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}e^{i\delta} \end{pmatrix}$$

$$(5)$$

•
$$s_{ij} \equiv \sin \theta_{ij}$$
, $c_{ij} \equiv \cos \theta_{ij}$, $\theta_{ij} = [0, \frac{\pi}{2}]$,

- δ Dirac CP-violation phase, $\delta = [0, 2\pi]$,
- α_{21} , α_{31} the two Majorana CP-violation phases.

• If
$$\Delta m_{\odot}^2 = \Delta m_{21}^2 > 0$$
, $\Delta m_{\text{atm}}^2 = \Delta m_{31}^2$,

then
$$\theta_{12} = \theta_{\odot}$$
, $\theta_{23} = \theta_{atm}$, $\theta_{13} = \theta$.

The angle θ is limited by the data from the CHOOZ and Palo Verde experiments.

• α₂₁, α₃₁.

 $-\nu_l \leftrightarrow \nu_{l'}, \ \overline{\nu}_l \leftrightarrow \overline{\nu}_{l'}$ not sensitive;

S.M. Bilenky, J. Hosek, S.T.P.,1980; P. Langacker et al.,1987;

 $- |\langle m \rangle|$ in $(\beta\beta)_{0\nu}$ -decay depends on α_{21} , α_{31} ;

 $-\Gamma(\mu \rightarrow e + \gamma)$ etc. in SUSY theories depend on $\alpha_{21,31}$;

- BAU, leptogenesis scenario: $\alpha_{21,31}$?

Neutrino Mixing Parameters

 $\theta_{12}, \ \theta_{23}, \ \theta_{13}$

 ν_j Dirac δ

Majorana

 $\delta, \alpha_{21}, \alpha_{31}$

 m_1, m_2, m_3

 m_2 , m_3 - in terms of Δm^2_\odot , $\Delta m^2_{
m atm}$ and m_1

Conventions

A. $m_1 < m_2 < m_3$ (NH) or $m_3 < m_1 < m_2$ (IH) • $\Delta m_{\odot}^2 = \Delta m_{21}^2 > 0$

- $\Delta m_{\text{atm}}^2 = \Delta m_{31}^2 > 0$ (NH), $\Delta m_{\text{atm}}^2 = \Delta m_{32}^2 < 0$ (IH)
- $m_2 = \sqrt{m_1^2 + \Delta m_{21}^2}, \quad m_3 = \sqrt{m_1^2 + \Delta m_{31}^2}$
- B. $m_1 < m_2 < m_3$
- $\Delta m_{\rm atm}^2 = \Delta m_{31}^2 > 0$

Two possibilities:

 $\Delta m_{\odot}^2 = \Delta m_{21}^2 > 0$, NH

$$\Delta m_\odot^2 = \Delta m_{32}^2 > 0$$
, IH

"discrete" parameter

Future Progress

- High precision determination of Δm_{\odot}^2 , θ_{\odot} , Δm_{atm}^2 , θ_{atm} .
- Measurement of, or improving by at least a factor of (5 10) the existing upper limit on, $\sin^2 \theta_{13}$.
- Determination of the type of the $\nu-$ mass spectrum

 $m_1 \ll m_2 \ll m_3,$ NH, $m_1 \ll m_2 \cong m_3,$ IH, $m_1 \cong m_2 \cong m_3, m_{1,2,3}^2 >> \Delta m_{atm}^2, \text{ QD}; m_j \gtrsim 0.20 \text{ eV}.$

• Determining or obtaining significant constraints on the absolute scale of neutrino masses, or on m_1 .

• Determination of the nature - Dirac or Majorana, of ν_i .

• Status of the CP-symmetry in the lepton sector: violated due to δ (Dirac), and/or due to α_{21} , α_{31} (Majorana)?

• Searching for possible manifestations, other than ν_l -oscillations, of the non-conservation of L_l , $l = e, \mu, \tau$, such as $\mu \to e + \gamma$, $\tau \to \mu + \gamma$, etc. decays.

• Understanding at fundamental level the mechanism giving rise to the ν - masses and mixing and to the L_l -nonconservation, i.e., finding The Theory of ν -mixing.

u_{\odot} , $\Delta m^2_{ m atm}$, CHOOZ Data:

• $\theta_{12} = \theta_{\odot} \cong \frac{\pi}{6}, \qquad \theta_{23} = \theta_{\text{atm}} \cong \frac{\pi}{4}, \qquad \theta_{13} < \frac{\pi}{12}$

$$U = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} & \epsilon \\ -\frac{1}{2\sqrt{2}} & \frac{\sqrt{3}}{2\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{2\sqrt{2}} & -\frac{\sqrt{3}}{2\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
(6)

Very different from the CKM-matrix!

- $\cos \theta_{12} \cong \cos(\frac{\pi}{4} \frac{\pi}{12}) = \frac{1}{\sqrt{2}}(1+\lambda), \quad \sin \theta_{12} \cong \frac{1}{\sqrt{2}}(1-\lambda),$
- $\lambda \cong (0.20 0.25)$: $\theta_{\odot} + \theta_{c} = \pi/4$?

Natural Possibility:

$$U = U_{\rm lep}^{\dagger}(\lambda) \ U_{\rm bimax} \tag{7}$$

with

$$U_{\text{bimax}} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
(8)

- $U_{\text{lep}}^{\dagger}(\lambda)$ from diagonalization of the l^- mass matrix, • U_{bimax} - from diagonalization of the $\nu-$ mass matrix
- Further, $\Delta m_{\odot}^2 \ll |\Delta m_{\rm atm}^2|$. • $U_{\rm bimax}$ can be associated with a symmetry:

$$L' = L_e - L_\mu - L_\tau$$
 S.T.P., 1982

This symmetry cannot be exact.

HOW?

• ν_{\odot} –, ν_{atm} – experiments				
SK (ν_{atm}), INO (ν_{atm})				
SNO				
GNO, SAGE				
BOREXINO				
LowNu (XMASS, LENS,)				
• Reactor Experiments $\sim (1-180)$ km				
 Accelerator Experiments 				
K2K 250 km				
MINOS (ν_{atm}) 732 km				
OPERA, ICARUS 732 km				
 Super Beams 				
JHF (T2K), SK (HK) 295 km				
NuMI (NO ν A) ~800 km				
SPL+ β -beams, UNO (1 megaton): CERN-Freius ~140 km				
ν -Factories \sim 3000, 7000 km				
• $(\beta\beta)_{0\nu}$ -Decay, ³ H β -Decay				

Astrophysics, Cosmology

INFORMATION ABOUT 7-MASS SPECTRUM ある、そろろろ "H → "He + e + ? FERM 1934 E- - SPECTRUM $\frac{dNe}{dE} = \sum_{j=1}^{2} |U_{ej}|^2 W(E, M_{ij}^2)$ $W(E, m_j^2) = CP_e E (Q-T_e) \sqrt{(Q-T_e)^2 - m_j^2} r$ x F(E)K(E) Q-W, Q-M3 Q

Absolute Neutrino Mass Measurements

The Troitzk and Mainz ³H β -decay experiments

$$m_{\nu_e} < 2.2 \text{ eV}$$
 (95% C.L.)

There are prospects to reach sensitivity

KATRIN : $m_{\nu_e} \sim 0.2 \text{ eV}$

Cosmological and astrophysical data: the WMAP result

$$\sum_{j} m_{j} < 0.70 \text{ eV}$$
 (95% C.L.) (X ~ 2)

The WMAP and future PLANCK experiments can be sensitive to

$$\sum_{j} m_{j} \cong 0.4 \text{ eV}$$

Data on weak lensing of galaxies by large scale structure, combined with data from the WMAP and PLANCK experiments may allow to determine

$$\sum_j m_j: \qquad \delta \cong 0.04 \text{ eV}.$$

 $(\beta\beta)_{0\nu}$ -Decay Experiments:

- Majorana nature of u_j
- Type of ν -mass spectrum (NH, IH, QD)
- Absolute neutrino mass scale
- ³H β -decay , cosmology: m_{ν} - CPV due to Majorana CPV phases
- $A(\beta\beta)_{0\nu} \sim \langle m \rangle M$, M NME,

$$\begin{split} |<m>| = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 \ e^{i\alpha_{21}} + m_3|U_{e3}|^2 \ e^{i\alpha_{31}}|,\\ \alpha_{21}, \ \alpha_{31} - \text{the two Majorana CPVP of the PMNS matrix.}\\ \text{Best sensitivity: Heidelberg-Moscow 76Ge experiment.}\\ \text{Claim for a positive signal at } > 3\sigma:\\ \text{H. Klapdor-Kleingrothaus et al., PL B586 (2004),}\\ |<m>| = (0.1 - 0.9) \ \text{eV} (99.73\% \ \text{C.L.}).\\ \text{IGEX 76Ge: $|<m>| < (0.33 - 1.35) \ \text{eV} (90\% \ \text{C.L.}).\\ \text{Taking data - NEMO3 (100Mo), CUORICINO (130Te):}\\ |<m>| < (0.2 - 0.3) \ \text{eV} \end{split}$$

Large number of projects: $|\!<\!m\!>\!|$ \sim (0.01 – 0.05) eV

```
CUORE - ^{130}Te,
GENIUS - ^{76}Ge,
EXO - ^{136}Xe,
MAJORANA - ^{76}Ge,
MOON - ^{100}Mo,
CANDLES - ^{48}Ca,
XMASS - ^{136}Xe.
```


S. Pascoli, S.T.P., hep-ph/0310003

Highest Priority: θ_{13}

- Controls the sub-dominant $\nu_{\mu} \leftrightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \leftrightarrow \bar{\nu}_{e}$ oscillations
 - of the atmospheric ν 's
 - in LBL experiments MINOS, OPERA,...
 - in VLBL experiments at ν -factories

• Controls together with $\sin\delta$ the magnitude of CP- and T- violating effects in $\nu-{\rm oscillations}$

• | < m > | in $(\beta \beta)_{0 \nu}$ -decay for NH

• The knowledge of the value of θ_{13} is crucial for the searches for correct theory of ν -masses and mixing

Sensitivity of future experiments to $\sin^2 2\theta_{13}$

Conventional beams: MINOS, ICARUS, OPERA Reactor experiments: Double-CHOOZ Super beam off-axis experiments: T2K, NOvA (NuMI)

P.Huber et al., hep-ph/0403068

Proposals for reactor experiments: KASKA (Japan), U.S.A. L.A. Mikhaelyan et al., hep-ex/9908047 and 0211070 H. Minakata et al., hep-ph/0211111

$$\Delta m_{\odot}^2 = \Delta m_{21}^2$$
, $\theta_{\odot} = \theta_{12}$

Data from ν_{\odot} - experiments

• **SNO:** $A_{D-N} < 6\%$

would restrict further Δm_{21}^2 from below $R_{\rm CC/NC} = 0.306 \pm 0.035$, reducing the error would restrict further i) Δm_{21}^2 from above, ii) the range of $\sin^2 \theta_{12}$

- BOREXINO
- LowNu (pp neutrinos) LENS, XMASS: $\sin^2 2\theta_{12}$ (uncertainty due to $\sin^2 \theta_{13}$)

Reactor Experiments

Future more precise KamLAND data

KamLAND: Low-LMA - Δm_{21}^2 with high precision $\sin^2 \theta_{12}$ cannot be determined with a high precision ("wrong distance") even with SHIGA-2 reactor to be operative in 2006 ("right distance" but signal too weak) Low-LMA: $L \sim 60$ km: $\sin^2 2\theta_{12}$

SK + 0.2% Gd

J.F. Beacom and M.R. Vagins, hep-ph/0309300

SK-Gd reactor $\bar{\nu_e}$ rate \sim 43 times KamLAND rate

S.T.P. and S. Choubey, hep-ph/0404103

Sensitivity to Δm_{21}^2 and $\sin^2 \theta_{12}$

spread = $\frac{a_{max} - a_{min}}{a_{max} + a_{min}}$, $p \equiv \Delta m_{21}^2$ or $\sin^2 \theta_{12}$						
Data	99% CL	99% CL	99% CL	99% CL		
set	range of	spread	range	spread		
used	$\Delta m^2_{21} imes$	of	of	in		
	$10^{-5} \mathrm{eV^2}$	Δm^2_{21}	$\sin^2 heta_{12}$	$\sin^2\theta_{12}$		
only solar	3.2 - 14.9	65%	0.22 - 0.37	25%		
solar $+162$ Ty KL	5.2 - 9.8	31%	0.22 - 0.37	25%		
solar with future SNO	3.3 - 11.9	57%	2.2 - 0.34	21%		
solar+1 kTy KL(low-LMA)	6.5 - 8.0	10%	0.23 - 0.37	23%		
solar+2.6 kTy KL(low-LMA)	6.7 - 7.7	7%	0.23 - 0.36	22%		
solar with future SNO+1.3 kTy KL (low-LMA) $$	6.7 - 7.8	8%	0.24 - 0.34	17%		
3 yrs SK-Gd	7. 0 -7.4	2.7%	0.25 - 0.37	19%		
5 yrs SK-Gd	7.05-7.35	2.1%	0.26 - 0.35	15%		
solar+3 yrs SK-Gd(low-LMA)	7.0 - 7.4	3%	0.25 - 0.34	15%		
solar+3 yrs SK-Gd(high-LMA)	14.5 - 15.4	3%	0.24 - 0.37	21%		
solar with future SNO+3 yrs SK-Gd(low-LMA)	7.0 - 7.4	3%	0.25 - 0.335	14%		
solar with future SNO+3 yrs SK-Gd(high-LMA)	14.5 - 15.4	3%	0.24 - 0.35	19%		
3 yrs SK-Gd with Kashiwazaki "down"	6.8 - 7.6	6%	0.23 - 0.40	27%		
7 yrs SK-Gd with only Shika-2 "up"	7.0 - 7.3	< 1%	0.28 - 0.32	6.7%		

Table 1: The range of parameter values allowed at 99% C.L. and their corresponding spread.

$|\Delta m_{31}^2|$, sign(Δm_{31}^2), θ_{23}

MINOS: $|\Delta m^2_{31}| \sim 10\%$

JHF (T2K), SK: $P(\nu_{\mu} \rightarrow \nu_{\mu})$; $P(\nu_{\mu} \rightarrow \nu_{e})$, $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ at maximum: $|\Delta m_{31}^{2}| L/(4E) = \pi/2$

- $|\Delta m_{31}^2|$, $\sin^2 2\theta_{23}$ high precision
- The sign(Δm_{31}^2) a problem
- Exact $\delta \leftrightarrow (\pi \delta)$ degeneracy
- If $\sin^2 2\theta_{23} < 1$: $\sin^2 \theta_{23} > 0.5$, $\sin^2 \theta_{23} < 0.5$ ambiguity

Lead to ambiguities in the measurements of $\sin^2\theta_{13}$ and δ

J. Burguet-Castell et al., hep-ph/0103258 V. Barger, D. Marfatia, K. Whisnant, hep-ph/0112119 H. Minakata, H. Nunokawa, S.J. Parke, hep-ph/0301210 P. Huber et al., hep-ph/0403068 O. Yasuda, hep-ph/0405005

Resolving the ambiguities may require data from

NuMI off-axis, and/or

new off-maximum JHF, and/or

SPL + β -beams experiment(s).

Iron Magnetized Detectors (MINOS, INO): multi-GeV $\mu^$ and μ^+ event rates, N_{μ^-} and N_{μ^+} $A \equiv \frac{U-D}{U+D}$ in the θ_n - dependence of $\frac{N_{\mu^-}}{N_{\mu^+}}$ • $|\Delta m_{31}^2| = 3 \times 10^{-3} \text{ eV}^2$, $\sin^2 \theta_{23} = 0.36$, 0.50, 0.64 • $\Delta m_{31}^2 > 0$ -NH (dashed), $\Delta m_{31}^2 < 0$ -IH (dotted), $2-\nu$ (solid) $\cos \theta_n = (0.30 - 0.84)$ mantle bin, E = [5,20] GeV

S.T.P., S. Palomares-Ruiz, hep-ph/0406

Water-Čerenkov Detectors (SK, etc.): multi-GeV μ -like and e-like event rates, N_{μ} and N_{e}

- $A\equiv rac{U-D}{U+D}$ in the $heta_n-$ dependence of $rac{N_\mu}{N_e}$
- $|\Delta m_{31}^2| = 2 \times 10^{-3} \text{ eV}^2$, $\sin^2 \theta_{23} = 0.36$, 0.50, 0.64
- $\Delta m_{\rm atm}^2 > 0$ -NH (solid), $\Delta m_{\rm atm}^2 < 0$ -IH (dashed), 2- ν (dotted)

Instead of Conclusions

We are at the beginning of the Road...

