

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

H4.SMR/1574-20

"VII School on Non-Accelerator Astroparticle Physics"

26 July - 6 August 2004

Neutrino Telescopes

John Carr

Centre de Physique des Particules de Marseille / IN2P3 / CNRS France

Neutrino Telescopes

John CARR

Centre de Physique des Particules de Marseille / IN2P3 / CNRS

Lecture 1Scientific motivationDetection principals of neutrino telescopes

Lecture 2 Neutrino telescope projects Existing results Details of an example project

Neutrinos

Neutrino Interactions in Matter

Interaction length of neutrinos vs energy

Astronomic sources and universe transparent to neutrinos Earth transparent up to 100 TeV Need massive detector Probability of interaction ~ 10⁻⁵ / km water at 100 TeV

Astroparticle Physics → origin and structure of the universe

15 billion years ago evolution
Big Bang
?

present time

What happened in first few minutes ?

How did structure form ?

What is the present structure ?

Present Structure of Universe Total average density in universe = 10⁻²⁹ g/cm³ (= 5 10³ eV/cm³ = 5 H-atoms/m³)

Average fractions over whole universe

Radiation	0.02%	
Luminous stars	0.4 %	
Dark baryons	4	%
Cold Dark Matter	23	%
Dark Energy	73	%

Galaxies > 10⁶ galaxies

Red giant explodes as Supernova

Thermal Radiation from Stars

Normal Stars surface temperature ~3000 to 30000K thermal radiation: radio → ultra -violet non-thermal radiation: X-rays, gamma rays (higher in energy more extreme is the source)

SuperNovae Remnants

Gamma-Ray Bursts

Gamma Ray Burst were first detected by the Vela satellites that were developed in the sixties to monitor nuclear test ban treaties.

Gamma Ray Bursts 1-2 per day observed by BATSE

Isotropic sky distribution

Redshifts measured for about 20 ⇒ extragalactic distances

Some evidence for GRB on sites of previous supernova

Black Holes

Black Hole at Centre of Milky Way Galaxy

High Energy Sources

QUASARS & MICROQUASARS

Millions of Light Years

QUASAR

MICROQUASAR

QUASAR

MICROQUASAR

RADIO LOBE

RELATIVISTIC

COMPANION

JET

STAR

SPINNING

STELLAR-MASS

BLACK HOLE

 10^8 - $10^9 M_{\odot}$ 10^2 - $10^5 M_{\odot}$

distant galaxies local galaxy

QUASARS & MICROQUASARS

Cosmic Rays

Primary cosmic ray produce showers in atmosphere

Primary: p 80 %, α 9 %, n 8 %, ...

Secondary at ground level: ν 68 %, μ 30 %, ...

at ground level :~ 1 cm²/min (>1 GeV)

Energy density in galaxy = 0.5 eV / cm³ ≈ energy in local starlight

Cosmic Microwave Background

3K photon background Relic of big bang

Wavelength (cm) 10 0.11.0 10^{-17} 10^{-18} $I_{\rm V}~({\rm W~m^{-2}~sr^{-1}~Hz^{-1}})$ 10^{-19} 2.73 K blackbody 10^{-20} + FIRAS COBE satellite * DMR COBE satellite × UBC sounding rocket 10^{-21} ♦ LBL-Italv White Mt. & South Pole Princeton ground & balloon △ Cyanogen optical 10^{-22} 1 10 100 1000 Frequency (GHz) Discovery Penzas and Wilson

WMAP new data 2003 ...

CMB = 0.005 % of total energy density $= 0.25 \text{ eV}/\text{ cm}^{3}$

Multi-Messenger Astronomy

Production and transmission of neutrinos

Neutrinos produced in hadronic $p/A + p/g \rightarrow p^0 + p^{\pm} + ...$ at source interactions of high energy protons or nuclei $gg n_m m_e m_e e = 1 : 2 : 10^{-5}$

In transit : oscillations between flavours

at Earth $v_e : v_\mu : v_\tau$ 1 : 1 : 1

Neutrinos arriving at Earth

Supernova 1987a

Most distance source of neutrinos so far observed L = 50 kpc (150 light years)

Matter/Energy in the Universe $W_{total} = W_M + W_L \sim 1$

matter dark energy

Matter:

 $W_{M} = W_{h} + W_{CDM} \sim 0.27$ baryons neutrinos cold dark matter Baryonic matter : **W**₄ ~ 0.04 stars, gas, brown dwarfs, white dwarfs Neutrinos: **W** ~ 0.003 if $M(n) \sim 0.1 \text{ eV}$ Cold Dark Matter : $W_{CDM} \sim 0.23$

WIMPS/neutralinos, axions, ...

Detection of WIMPS

Indirect detection of WIMPS

Searches for annihilation in

Halo, Earth, Sun , Galactic Centre, other galaxies, ... various secondary particle signatures: e^+ , p, D, γ , v

Example: neutrino detection from annihilation in sun

Detection principals

- Detection method(s)
 - Cherenkov light,
 - Acoustic/ radio
- Properties of the telescope
 - Effective area
 - Angular resolution
 - Energy resolution

Evolution of Neutrino Telescopes

SuperKamiokande 30 K tonnes water in

ANTARES 10 000 K tonnes water In deep sea

Need > 1000 m depth to absorb light and cosmics rays

Principle of Neutrino Astronomy

Detect Cherenkov light from charged particles

Detector consists of 3D matrix of photo-multipliers measuring arrival of light wavefront with precision ~ 1 nanosecond

Undersea Neutrino Telescope

Detected event rates

Absorption in Earth

Neutrino cross-section

Neutrino Interactions in water

3 flavours of neutrino, 2 types of interaction:4 topologies of light production in water

Detector optimised for $n_m \rightarrow m X$, other modes have lower detection efficiency

Muon Range

 $V_{\text{effective}}$: Effective detection volume = $R_{\mu} \times A_{\mu}$

Muon Effective Detection Area

Effective area depends on data quality cuts

Neutrino Effective Area

Detector Neutrino Effective Area

Detector response function for neutrino flux E^{γ}

Angular resolution of detector

Angular resolution depends on:

- timing resolution
- detector scale

Angular Resolution

 $\sim 0.2^{\circ}$ at 100 TeV :dominated by detector resolution

Energy measurement

Energy Resolution

Next lecture

Different Neutrino Telescope project Technology of Neutrino Telescopes Comparison of projects Expectations for results Existing results