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S1x great questions

® SM, SUSY, Higgs

® cxtra dimensions-may be related to SUSY
® ncutrino mass and oscillations

® Missing mass and energy

® origins of CP

® none of the above
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Plan of Talks

Current status
Tevatron, LHC
accelerator technologies
Midrange possibilities
Linear colliders

gamma-gamma colliders

free electron lasers
Neutrino Facilities

NUMI

proton drivers

neutrino factories
muon colliders

Very large hadron colliders
Visionary possibilities

laser accelerators

plasma accelerators
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Accelerators and storage rings
in operation or underway

The Tevatron
LHC-this 1s the 800 Ib gorilla of the future
(about 2007)
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The Tevatron
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Tevatron schematic
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UNDERGROUND WORKS
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14 TeV L= 103cm?s’! To Gran Sasso
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LHC magnet

LHC DIPOLE : STANDARD CROSS-SECTION
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Physics and technology of accelerators

References

Edwards and Syphers, Tigner and Chao
10on sources (anti proton accumulation a special case)
acceleration-via RF (a limit for linear colliders)

bending -via magnets-typically superconducting at high energy
(a [imit)
focusing

colliders-luminosity important

an enclosure (limit)

Non-Accelerator Particle Astrophysics School ICTP — Trieste
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Ion sources

Fermilab Fermilab
Cockcroft-Walton Anti-proton source
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Acceleration

Non-Accelerator Particle Astrophysics School
D. Carrigan

ICTP — Trieste
July 26 — Aug. 6, 2004

Fermilab Linac
RF cavity
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An enclosure

Tevatron tunnel with old Main Ring in place
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Mid-range possibilities

Linear colliders
gamma-gamma colliders

free electron lasers
Neutrino facilities
NUMI
Proton drivers
neutrino factories
muon factories
Very large hadron colliders

Non-Accelerator Particle Astrophysics School ICTP — Trieste
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Mid range possibilities:
linear colliders

done at SLAC with 50 GeV on 50 GeV

need
500 —1000 GeV total energy

L=10**/cm?s... luminosity
physics reach-must compliment LHC
Glashow-Lane skeptical (DOE 4/2001)

polarization important

Butler-sit, span (pk ener), scan-possible
300 fb-! and 250 fb X sec
gives 75 K Higgs O(1 yr)

Non-Accelerator Particle Astrophysics School ICTP — Trieste
D. Carrigan July 26 — Aug. 6, 2004
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linear colliders - continued

possibilities
JLC (Japan), NLC (US), TESLA (DESY),
CLIC (CERN)

political process — technology choice end of 2004

build a test bed somewhere?

gamma-gamma collider

Non-Accelerator Particle Astrophysics School ICTP — Trieste
D. Carrigan July 26 — Aug. 6, 2004
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Linear Collider luminosity

P A A -
POSITRON LINEAR COLLIDERS

The performance of a high energy electron-positron
collider is characterized by the energy and the
luminosity.

Because of the inverse square relationship between
reaction cross sections and center-of-mass energy, a
next generation electron-positron collider must target
a luminosity in the range 5-50x10%cm-2sec-1.

=Nearly all technical issues in electron colliders are
related to the achievement of high luminosity.

The luminosity in any collider is given by
i L= g

Ji-.n:u',f:r_,r

where f is the frequency of collisions between bunches,
N; and N: are the number of particles in the colliding
bunches, o, and o, are the transverse beam dimensions,
and F is a form factor (usually ~1) related to the
specifics of the collision geometry.

5. Holmes, Fermilah LC Seminar, Page 2
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Tesla-
Cold RF ittt

linear accelerator

positron
preaccelerator

Note big
. . high sneelf;;r;;:;?;: ;?c'::::;:::irﬁ:
damping rings
positron source

x-ray laser

aux. positron and
2nd electron source

*\
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linear
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CLIC - Compact Linear Collider — 3 TeV

1375 km Beam dafivery section (—10 km}) 13.7 km
< = = = =
Main Beams P HI} [HH
154 bunches of 4 107 a”e
- : b
FROM MAIN BEAM 8 GeVie 20 cm
GENERATION COMPLEX ~
e L “ o’

e’ MAIN LINAC

DRIVE BEAM DECELERATOR M DRIVE BEAMS @ o' POWER SECTIONS
624 m GENERATION COMPLEX RF power at 30 GHz
Drive Beams 2 cm 130 ns or 38 m 4.16 15 or 1.248 km
22 drive beamsilinac between bunches yfiies longth batween beams pe

7.5 A a1 1.18 GeVie

made of ~1962 bunches Fospy
16 nCbunch it “ML 1|III|||||| i
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92 us

From http://clic-study.web.cern.ch/CLIC-Study/Layout/OverallCLIC3.html



Linear collider comparisons

From http://clic-study.web.cern.ch/CLIC-Study/Parameters/ILC_TRC/Tablel 1W.pdf 8/13/02
TESLA JLC (C) JLC/NLC* (X) CLIC
Center of mass energy 00 GeV 200 GeV 500 GeV 1000 GeV a0l GeV 1000 GeV 300 GeV 3000 Gel
RF frequency of main linac {GHz) 1.3 5.7 5.7/11.49 11.4 30
Design luminosity (10%%cm 2s 1) 34.0 58.0 16.8 25.0 25.0 (20.0)  25.0 (30.0) 21.0 80.0
Linae repetition rate (Hz) & 4 100 L50 {120} 100 (120) 200 100
No. of particles/bunch at TP (10"} 2 1.4 0.75 0.75 0.4
No. of bunches/pulse 2H20 AHHEG 192 192 154
Bunch separation (nsec) 337 L 76 1.4 1.4 0.67
Bunch train length (usec) 950 RGO 0,267 0.267 0,102
Beam power /beam (MW 11.3 17.5 5.8 11.5 2.7 (6.9) 11.5 (13.8) 1.9 14.8
Unloaded /loaded gradient? (MV /m) 23.4 / 234 353 / 35 41.8/31.5 41.8/31.5 / T0/54 70/ 54 172 / 150
Total two-linae length (lkm) 30 30 17.1 20.2 12.6 25.8 5.0 28.0
Total beam delivery lenath (km) 3 3.7 3.7 3.2
Proposed site length (k) 3 33 3z 102 332
Total site AC power? (MW) 140 200 235 310 215 (185) 280 (320) 175 410
Tunnel confizuration® Single Separate Separate Two-Beam
Tesla NLC
selling features long pulse high grad
low freq expansion

reduced wake fields
ground motion
expansion paths  double RF
2degK
electro polish
flat beam development @ A0 may eliminate 1 damping ring @ Tesla
Non-Accelerator Particle Astrophysics School ICTP — Trieste
D. Carrigan July 26 — Aug. 6, 2004
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(taken from Jeff Gronberg, LLNL, Fermilab Line drive series

Gamma_ gamma COHldeI‘ Mar. 15,2001 Gamma-Gamma Colliders)

Proposed by Ginzburg et al. (1982) for producing a photon collider

Collide a high power laser pulse with an electron beam to produce a high energy
photon beam

laser: 1J, 1.8 ps FWHM, 1 micron, > 1 TW, 10 KW av

Two body process
Correlation between outgoing photon angle and energy (1/y)

Maximum energy when the photon is co-linear with the incoming electron

(about 80% of ¢)
o-
o-
E—-- /W}U)O - Laser 10° photons/e
0 v\w

w

Interaction Point

E"’-'WO%-Q ”



Free electron laser

SASE-self amplified spontaneous emission

first proposed at SLAC

Brilliance is 108 times current light sources, 1 A x-rays, pulse length of

100 fs

TTF demonstrated SASE @ 80-180 nm

IRERUABA EAEARAEAEREE

electron A —\\_/ ’\\//_\\//9\/ A photon
o = OINIASLAALN #8 —

beam

R EEEE G EE \‘

- Undulator ————— ' beam
dump
radiation
Iog( power ) EeCgreces

distance

Free Electron Laser in the Self Ampilified Spontaneous Emission (SASE) mode

From Tesla DR 3.6 The X-ray Free Electron Laser (XFEL) I-37

Non-Accelerator Particle Astrophysics School ICTP — Trieste
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Process: small xsec, high current e
beam synchrotron radiates in
undulator. For correct energy,
undulator period get resonance in
longitudinal charge density
modulation

-micro bunching. Number of photons
grows exponentially
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Mid range possibility
- hot neutrino facilities

Conventional beams
Neutrino factories
Reactors-not accelerators

Non-Accelerator Particle Astrophysics School ICTP — Trieste
D. Carrigan July 26 — Aug. 6, 2004
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NUMI —
neutrinos at the
Main Injector

Target

~. - Enclosure

£EFERMILAE #98-1321D



The NUMI project

120 GeV Protons from Fermilab Main
Injector

10us pulse, every 1.9s
Proton Intensity:

= 4x10% protons/pulse design

= 2.5x10% p/p expected at startup
Hadrons focused with 2 horns

= Select beam energy spectrum by
adjusting horn and target positions

Project will be complete/ 0.2 MW first year
commissioning starts Dec. 0.4 MW design
2004

Non-Accelerator Particle Astrophysics School ICTP — Trieste

D. Carrigan

July 26 — Aug. 6, 2004
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NUMI — layout

Target Shaft Area 4—I—P MINOS Shaft Area
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NUMI - construction

Target Hall
Decay Pipe Endcap at Absorber Hall

Non-Accelerator Particle Astrophysics School ICTP — Trieste
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Some neutrino beam naming jargon

NUMI 0.4 MW

Superbeam 2 MW

Neutrino factory power about like superbeam
more flexible on unlike sign suppression

can do Ve
Beta-beam neutrinos via radioactive nuclei
complicated
Non-Accelerator Particle Astrophysics School ICTP — Trieste

D. Carrigan July 26 — Aug. 6, 2004

29



Going to superbeam
J. Hylen

Difficulty of handling 2 MW instead of 0.4
MW depends significantly on:

*Proton beam energy still 120 GeV? (windows
more problematic if lower)

Increase repetition rate? (more
cooling/electrical power for magnets)

Increase protons per spill? (more stress on
target, windows, horn)

General 1ssues with higher beam
power:

*Getting the average beam heating load
out

*Average thermal stress limit
*Radiation safety

Groundwater Protection

Airborne Activation

Prompt Radiation

Residual Activation
*Radiation damage lifetime of materials
*Thermal shock
*Mis-alignment from thermal expansion

Jonization leakage current



Possible Fermilab proton drivers

SYNCHROTRON (yellow)
Sited West of the existing booster

Re-uses existing linac enclosure

& 8 GeV LINAC (red)

TEVATROM

Baseline Site injects at M1-30
straight section

Others possible

http://www.tnal.gov/orgs/fermilab_users org/users mtg/2004/foster.pdf0

Non-Accelerator Particle Astrophysics School ICTP — Trieste

D. Carrigan July 26 — Aug. 6, 2004 31



Fermilab 8 GeV Superconducting Linac

New idea incorporating concepts from both the Spallation
Neutron Source (SNS) and Tesla.

Copy SNS Linac up to 1.3 GeV

Use Tesla cryomodules from 1.3 to 8 GeV

H' injection at 8 GeV in Main Injector

2 MW beam power at BOTH 8 GeV and 120 GeV

Small emittances so that there are small losses in Main Injector
A draft design study exist. Cost comparable to Main Injector.

http://www.tnal.gov/orgs/fermilab_users org/users mtg/2004/foster.pdf0

Non-Accelerator Particle Astrophysics School ICTP — Trieste 32
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8 GeV Superconducting Linac

With X-Ray FEL, 8 GeV Neutrino & Spallation Sources, LC and Neutrino Factory

Dampiphg Rings
for TEBLA @ FNAL
With § GeV e+ Preacc.

r B

8 Ge\/ Lmac g

3
# 700m Active Length ‘ :

‘ 1% LC sttems Test
¥ 3 i

\1‘\ Short Basellne
“\Detector Array

_\\"x\

http://www.tnal.gov/orgs/fermilab_users org/users mtg/2004/foster.pdf0




Non-Accelerator Particle Astrophysics School
D. Carrigan

Questions?

ICTP — Trieste
July 26 — Aug. 6, 2004
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Future Accelerators, Neutrino Factories, and Muon Colliders
continued

Dick Carrigan
Fermilab

So far have talked about:

Current status
Tevatron, LHC
accelerator technologies
Midrange possibilities
Linear colliders

gamma-gamma colliders
free electron lasers

Neutrino Facilities

NUMI
proton drivers




Mid range possibility
muon collider

Muon storage ring-old concept
recent BNL result for g-2
physics and Higgs
on ~ (my/me)?
problem-collecting the muons
muons equal neutrinos-gave rise to 1dea

of neutrino factories

Non-Accelerator Particle Astrophysics School ICTP — Trieste
D. Carrigan July 26 — Aug. 6, 2004
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Muon collider-concept

Produce pions with proton accelerator

pions decay: T—>U+V 30 MeV/c
muons decay: U—>e+v+v 1=22us
focus pions, muons-need a lens

cool muons-ionization cooling

6 dimensional phase space

accelerate very fast

Non-Accelerator Particle Astrophysics School ICTP — Trieste
D. Carrigan July 26 — Aug. 6, 2004
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Mid range
possibility
neutrino
factories

Proton Driver + Linac  f ;0.

Target Station
50 m long drift

100 mlong Induct. Linac
60 mlong hunching

140 m long cooling
1.6 Ge¥, 200 MHz linac

=3 GeV linac
2 GeV of acceleration

o5

RLA2 8 GeV max, 7.5 MeV/m avelflin

Turns =4

p = 25 m, C-800-200

Arc =150 m

Maiching = 200 m theam separator:;
Icomih iner)

Linac =2x1¥5m

Storage ring, 30 GeV max,

Turns =180({ =1/e)
P =30 m, C~1800 m
Arc =150 m

Matching = 100 m
Froduction Straight

West

RL A2, 40 GeV max, 7.5 MeV/m average
Turns =4

P =60 m, C~2400 m

Arc =380 m

MMatching = 600 m (heam separators’
combiner)

Linac =2x6TWm

™)

(

A R 1 e

= 300 m

= G00 m

e 200 m

. 1200m

L~ 1500 m

L 1800 m



MU.OII COHldGI‘ SCthatIC (taken from Bruce King-BNL, 4th International Conference on the

Physics Potential and Development of mu+mu- Colliders, San Fransisco, 1997.)

25 101# plbunch
30 GeV, 16 Hz

PROTON SOURCE

4 burches

TARGET. high Z liquid
CAPTURE SOLENOID, 20T
PHASE ROTATION,

-|

7Tx1012 pihunoh——_

| PRODUCTION

150 Mels

30-60 MHz BT
- 10 m-rad

*POLARIZATION & P SELECTION

Snake + Collimatar

L ARSOARER
WEDSE IONIZATION COOLING
20 Stages
LINAC
TOTAL 4 GeV, 903 m
3x10" pbuach
20 Mes‘.f
£y =4 81077 m-rag
v LINACS + RECIRCULATION
FULSED MAGNETS
SCLINACS
2 X 3GeV
251017 ,,.l:unch
250 Gev
"PULSED or ROTATING
+ 5C MAGNETS
FAST

C LINAGS

ACCELERATION

2 X 50 Gev

2x10'% 'bunch

2 Te‘u'

} . L=10%cm?®s”
# B*=3mm

COLLIDER
RING

Very intense

Large aperture

Six degrees of
freedom
Does it work?

Very fast,
large aperture



Mid-range possibility Staged VLHC Ring LayoLt
Very large hadron collider

233 km circumference

Farmilab cluskor:
Injechon, Exiracton,

Two stages: RF, Two Detectors

super ferric-20 TeV/beam
high field-87.5 TeV/beam

Typical Stagea 1
Surface Facility for
Cryogenics (1 of 6) o

Far Chustar
LF = HF Transfar

and Collimation Riing Oriantation

. Arbilrary
(from VLHC design report-2001)

l Sizge1
[ PRsquired for Stsgs 2



VLHC super ferric magnet

Superconducting coil in center energizes both fields
2 cm gap, 2T

return loop is below

(from VLHC design report-2001)

Non-Accelerator Particle Astrophysics School ICTP — Trieste
D. Carrigan July 26 — Aug. 6, 2004

41



Accelerator status recapitulation

this decade-Tevatron, LHC
NUMI

next decade-ambitious future
linear collider
Neutrino factory?

muon factory?

VLHC?
2020

New technology, need a vision

Non-Accelerator Particle Astrophysics School ICTP — Trieste
D. Carrigan July 26 — Aug. 6, 2004

42



Visionary possibilities for acceleration

Would like much higher accelerating gradients

Two thoughts:

Lasers

R. Palmer, Particle Accelerators V11, 81 (1980). Recent progress Kimura et
al. PRL 92, 054801 (2004). See also LEAP at Stanford (Colby)

Plasmas
Tajima and Dawson PRL 43, 267 (1979)
E. Esarey, et al., IEEE Trans. On Plasma Sci, 24, 252 (1996).
J. Dawson, Scientific American March, 1989 (p. 54)

Non-Accelerator Particle Astrophysics School ICTP — Trieste
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Lasers

basic laser challenge
good news: can get very high fields
bad news: vectors transverse to particle direction
ways to defeat
gratings, maybe boundary conditions, special modes
R. Palmer, Particle Accelerators 11, 81 (80)

Inverse free electron laser IFEL-next transparency

Non-Accelerator Particle Astrophysics School ICTP — Trieste
D. Carrigan July 26 — Aug. 6, 2004
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Cascading laser stages

[from W. Kimura et al, PRL 86, 4041 (2001)]

Inverse free electron laser (IFEL)
electrons oscillate in undulator and absorb energy from laser
Gradients not on a scale with plasma accelerators

£ -HE A%
MSGEMET FOCLUISING MAGMET
SPECTROMETER ARRAY LENSES ARFAY

P EHE WTTH | U = QI&ADALUFPOLE MAGHNET
ENTHAL HOHLE

FIG. 1. Schematic layout for the STELLA experiment. For
size reference, the distance separating the two IFELs is 2.3 m
and the laser beams enter the beam line =6 m apart.

Require fs micro bunches, very good timing
24 MW first stage, 300 MW second
This demonstrated rephasing, not acceleration

45



Plasma wake field acceleration

Photo S. Carrigan

G= 0.96(no)2  (V/cm) No is electron density
RF cavity 0.0005 GV/cm
gaseous plasma 1 GV/cm
Non-Accelerator Particle Astrophysics School ICTP — Trieste 46
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Plasma model

(from Lawson, Scientific American-1989)

~ e & \ﬂ‘ t e
= = 4 —, \F;"?.: = -lf;-
= LZa o I -
L e T
= = . e = I

Pendulum cluster moves to the right

o om0 oo
0.2

O S SUEE

Plasma snapshot: red plasma electrons cluster
and make field. Electrons in red ball are trapped.

Non-Accelerator Particle Astrophysics School ICTP — Trieste
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Creating a plasma wave
with a laser

E(w) 4

laser ;T Ponderomotive force on electron
B - e

Generated field 1s:

E=mcwo/e  (e.g.sin dist of charge)
®, = (4nn,e’/m,)” plasma freq
plasma wave has a phase velocity
v, = c(l-0 Y/ w?)”
wake generated best when photon packet is half wavelength of plasma
find y™x = 2 w?/o

acceleration length: smallest of dephasing length, pump depletion length, or depth of
field (optical channel helps)

Non-Accelerator Particle Astrophysics School ICTP — Trieste
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Characteristic field strengths

E, (GeVini

15 '
-0.10 -0.08 -0.06 -0.04 -0.02 0.00

DISTANCE £ (cm)

highly relativistic laser driven plasma. Laser pulse length is .03 cm, pulse moves
to right, fast oscillations are laser freq. Density (no) is 10'%/cm?. Moderate

case would be more sinusoidal.)

(from Sprangle, et al.)

Non-Accelerator Particle Astrophysics School ICTP — Trieste 49
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A wakefield accelerator - E157 at SLAC

Streak Camera
lonization  Gombination Pellicle Laser Mirrors (1 PS resolution)
}f""q {1I§aas§rrn and OTR Source ~— 7
| £ J f
/ e S ¢ i
e mi‘;‘ ﬁ y o ¥
mex tasma Bend -
a=0.65 mm gﬁuﬂﬂh magnets Cherenkoy {1
E = 30 GeV - radiator Dump
1.4m
- -

12m
Head of beam generates plasma wakefield,

tail 1s accelerated by 80 MeV. Also do e - E162.

(E-164 later version , n, O(3*10%>), 100 micron bunches
- see 2003 Particle Acc. Conf, p. 1530)

M. Hogan Phys. Plasmas 7, 2241 (2000)

Non-Accelerator Particle Astrophysics School ICTP — Trieste
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Results from SLAC E-157

Acceleration

Eneroy Dispersive Plang

Plasrma OFF Plasrmma O
T irmee

Barov and Rosenzweig (UCLA) see similar results at Fermilab.
100 MeV/m using A0 14 MeV photoinjector. 6-8 nC, n, ~ 104/cc.

M. Hogan Phys. Plasmas 7, 2241 (2000). See also Muggli, et al. PRL 93, 014802-1 (2004)

Non-Accelerator Particle Astrophysics School ICTP — Trieste
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Bob Hofstadter
"The Atomic Accelerator" HEPL 560 (1968)

"To anyone who has carried out experiments with a
large modern accelerator there always comes a
moment when he wishes that a powerful spatial
compression of his equipment could take place. If
only the very large and massive pieces could fit in
a small room!”
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Hofstadter wanted a crystal accelerator!

A table top accelerator ("miniac"

The first solid state accelerator

use for focus

maybe an after-burner scheme

excite atoms coherently with 1 keV-xray

Get out 1 keV/A
in 1 cm would get 100 GeV

Need an x-ray laser (1968)

Problem-transit time
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Photo S. Carrigan

Plasma wake field acceleration — solid state

G=0.96(no)”2 (V/cm) no is electron density

RF cavity 0.0005 GV/cm

gaseous plasma 1 GV/cm

solid state plasma 100 GV/cm
Non-Accelerator Particle Astrophysics School ICTP — Trieste c4
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Pseudo solid state accelerators

At least four groups see high energy 1ons, electrons from intense lasers
hitting foils
Livermore PRL 85, 2945 (2000)

Michigan APL 78, 595 (2001)
Rutherford PRL 90, 064801 (2003) — discussion of mechanisms, target evolution

LULI PRL 85 1654 (2002)

Livermore

650 + -

+ -

wedge

Laser Debye Protons
sheath

3*10%0 W/em?, 1000 TW, 1013 proton beams with E to 58 MeV, electrons
protons can be focused by curving target

process: electrostatic fields produced by ponderomotively accelerated hot
electrons act on protons from absorbed hydrocarbons rear side (downstream)
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Basic Crystal Accelerator Concept

excite plasma wake field in solid with density a thousand times gas
use to reduce energy loss, focus, and maybe even cool
Chen-Noble Tahoe (1996), p. 441

Positives
very high power, femtosec lasers
radiative damping (Huang, Ruth, Chen)

Big problems!
blow away material

dechanneling
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The Fermilab A0 photoinjector

built as Tesla injector prototype in the tate 1990s by He;en Edwards’ group
essentially a gigantic phototube powered by a laser

followed by a so-eatted-3=5 MeV warm RF gun

and second stage of a Tesla superconducting m\c@&RF cavity

beam energy 14.4 MeV. -

very large picosecond electron pulses of 10 nanocoulombs or 10° A/cm?

So Mid the Fermilab AO photoinjector do?
studied channeling nearer extreme conditions needed for

. ,——
a channeling accelerator ‘,..f""

Could we make a crystal accelerator or do
= .

|

e

unique channeling studies?
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Crystal survivability?

Process
excite electronic plasma

tunnel ionization
partial or total lattice ionization
electronic plasma decay
via interband transitions
lifetime: (plasma frequency)-O(fs) o, = (4 7n,e’/m, )
excitation of phonons in lattice

1/2

crystal disorder, fracture, or vaporization
lattice dissociation via

plasmon absorption
o . . 1/2
lifetime: (ion plasma frequency)! o, =M, /m) o,
vaporization O(10-100 fs)
hydrodynamic heating O(1-10 ps) [Livermore]
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Crystal destruction

ACCELERATION

G (gradient) proportional to (no)!’2, P (power) prop to no
forG=1GeV/cm P=10°J/cm?
10 W/em?

for O(10 fs) @ 1 GeV/cm

LASER

10" W/gm
Belotshitkii & Kumakhov (1979)
or 10® a/cm? for particle beam

102 W/em? ns long pulses

1013 W/em? Chen-Noble (1987)
fracture threshold
O(0.1 ns) ref 16

Skin depth < 0.1 mm

LATTICE IONIZED
1015-10'6 W/cm? Chen & Noble (1996)/laser

PARTICLE BEAM
10" A/em? Chen & Noble (1987) (crystal OK for 10 fs)
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Situation for Fermilab A0 photoinjector

A0 RF GUN FOR COMPARISON
I/cm?=10nc/l psin 1 mm? or 10%° A/cm? (OK driver @ 1GeV)

A0 LASER FOR COMPARISON

10 W/ecm? slap ruptured (continuous, 101W/cm3 for 10 £5s)

10° W/cm? damage on lens

1018 W/cm? 1 Joule on 10 um spot in 1 ps (OK driver)
Non-Accelerator Particle Astrophysics School ICTP — Trieste
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Fermilab AO schematic layout

Faraday
cup

Spectrometer

€ magnet

ICT goniometer S1  Detector

Im

¥
b |

R. Carrigan, et al. Phys. Rev. A68, 062901 (2003)
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AOQ at the goniometer

Goniometer Spectrometer

-

10 nC peak, ¢ typically 10 mm*mrad, 10 ps
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x-rays/bunch (10%6 energy band)

Summary of high charge measurements

\ e ob 1s O(0.5 mm),

| length=> 7 ps (o)

e Peak n/cm?is 1013
electrons/cm?

e [/cm?=10° A/cm?

 flat is not ruled out

1.E+12
1.E+08 |
1.E+04 - A I
¢<— Fermilab
1.E+00
1.E-04
1.E+00 1.E+04 1.E+08 1.E+12
e/bunch

Non-Accelerator Particle Astrophysics School
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The Future Beyond the Fermilab A0 Experiment

get into 10 fs regime
ne 103 to 10° larger (small beam size important)
higher energy might be better for channeling, beam size

But new experimental geometry, channeling approaches needed

Possibilities:
SLAC E164 geometry for channeling radiation at 30 GeV
Livermore

Toronto — studying laser melting with sub picosec electron diffraction

Non-Accelerator Particle Astrophysics School ICTP — Trieste
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Using SLAC E164 to study channeling

26 m
—~ c | > | gamma
Nyapor = 1 - 2710 cm OTR rysta 5 octor
T ~tor
MNplasma = 2-5710" cm / Bending Magnet dgt‘“q}lt'
| ;—/ | T e S | - )
\ LI Passing \
OTR Mirror OTR Cgag LEI,I:IESrv @
193 nm Flasma Light T
Laser Spectrograph

Add crystal, goniometer, x-ray det. (integrating). Now at FFTB (final foc TB) for big g.
Channeling radiation ala N. A. Filatova, Phys. Rev. Lett. 48,488 @ 12 GeV, (1982), K.
Kirsebom, et al., NIMB 119, 79 (96) @ 150 GeV.

Beam:
charge: 2*10'%bunch (< A0), size 25 um.
time: 100 mm/c = 300 fs

I/cm?2: 50%10° A/cm? (500 times better than AQ)
This could take channeling measurements nearly to the plasma regime.
C. Barnes et al., Proc. 2003 Particle Acc. Conf. 1530 (03)
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Channeling
Related

Accelerator

Non-Accelerator Particle Astrophysics School
D. Carrigan

The Far Future?

=
Y
o o
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Summary

2001-2009
Tevatron-completing a decade
has a proton driver been added?
LHC-in operation for pp (15 yr future)
2010-2019
linear collider completed somewhere, running underway
upgrade path?
Neutrino factories?
2020-2029
VLHC?
Muon collider?
Can exotic accelerators step up?
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Questions?
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