

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

H4.SMR/1574-1

"VII School on Non-Accelerator Astroparticle Physics"

26 July - 6 August 2004

Future Accelerators, Muon Colliders, and Neutrino Factories

R. Carrigan

Fermi National Accelerator Laboratory Batavia, U.S.A.

Future Accelerators, Neutrino Factories, and Muon Colliders

Dick Carrigan Fermilab

Six great questions

- SM, SUSY, Higgs
- extra dimensions-may be related to SUSY
- neutrino mass and oscillations
- Missing mass and energy
- origins of CP
- none of the above

Plan of Talks

Current status Tevatron, LHC accelerator technologies Midrange possibilities Linear colliders gamma-gamma colliders free electron lasers Neutrino Facilities NUMI proton drivers neutrino factories muon colliders Very large hadron colliders Visionary possibilities laser accelerators plasma accelerators

Non-Accelerator Particle Astrophysics School D. Carrigan

Accelerators and storage rings in operation or underway

The Tevatron LHC-this is the 800 lb gorilla of the future (about 2007)

Non-Accelerator Particle Astrophysics School D. Carrigan

The Tevatron

Non-Accelerator Particle Astrophysics School D. Carrigan

Tevatron schematic

FERMILAB'S ACCELERATOR CHAIN

Non-Accelerator Particle Astrophysics School D. Carrigan

Tevatron luminosity

Peak as of July 7, 2004 is 92.1E30 cm⁻²s⁻¹

Non-Accelerator Particle Astrophysics School D. Carrigan

ICTP – Trieste July 26 – Aug. 6, 2004

7

Non-Accelerator Particle Astrophysics School D. Carrigan

LHC magnet

LHC DIPOLE : STANDARD CROSS-SECTION

CERN AC/DI/MM - HE107 - 30 04 1999

Non-Accelerator Particle Astrophysics School D. Carrigan

ICTP – Trieste July 26 – Aug. 6, 2004

9

Physics and technology of accelerators

References

Edwards and Syphers, Tigner and Chao

<u>ion sources</u> (anti proton accumulation a special case)

<u>acceleration</u>-via RF (a limit for linear colliders)

<u>bending</u>-via magnets-typically superconducting at high energy (a limit)

focusing

<u>colliders</u>-luminosity important

an enclosure (limit)

Ion sources

Fermilab Cockcroft-Walton

Non-Accelerator Particle Astrophysics School D. Carrigan

ICTP – Trieste July 26 – Aug. 6, 2004

Fermilab Anti-proton source

11

Acceleration

Fermilab Linac RF cavity

Non-Accelerator Particle Astrophysics School D. Carrigan

An enclosure

Tevatron tunnel with old Main Ring in place

Non-Accelerator Particle Astrophysics School D. Carrigan

Mid-range possibilities

Linear colliders gamma-gamma colliders free electron lasers Neutrino facilities NUMI Proton drivers neutrino factories muon factories Very large hadron colliders

Non-Accelerator Particle Astrophysics School D. Carrigan

Mid range possibilities: linear colliders

done at SLAC with 50 GeV on 50 GeV need

500 –1000 GeV total energy L= 10^{34} /cm²s... luminosity <u>physics reach</u>-must compliment LHC Glashow-Lane skeptical (DOE 4/2001) polarization important Butler-sit, span (pk ener), scan-possible 300 fb⁻¹ and 250 fb X sec gives 75 K Higgs O(1 yr)

Non-Accelerator Particle Astrophysics School D. Carrigan

linear colliders - continued

possibilities

JLC (Japan), NLC (US), TESLA (DESY), CLIC (CERN) <u>political process</u> – technology choice end of 2004 build a test bed somewhere? <u>gamma-gamma collider</u>

Non-Accelerator Particle Astrophysics School D. Carrigan

Linear Collider luminosity

PERFORMANCE LIMITATIONS IN ELECTRON-POSITRON LINEAR COLLIDERS

The performance of a high energy electron-positron collider is characterized by the <u>energy</u> and the <u>luminosity</u>.

Because of the inverse square relationship between reaction cross sections and center-of-mass energy, a next generation electron-positron collider must target a luminosity in the range 5-50x10³³cm⁻²sec⁻¹.

⇒Nearly all technical issues in electron colliders are related to the achievement of high luminosity.

The luminosity in any collider is given by

$$L = \frac{fN_1N_2}{4\pi\sigma_x\sigma_y}F$$

where f is the frequency of collisions between bunches, N_1 and N_2 are the number of particles in the colliding bunches, σ_x and σ_y are the transverse beam dimensions, and F is a form factor (usually ~1) related to the specifics of the collision geometry.

CLIC - Compact Linear Collider – 3 TeV

From http://clic-study.web.cern.ch/CLIC-Study/Layout/OverallCLIC3.html

Linear collider comparisons

From http://clic-study.web.cern.ch/CLIC-Study/Parameters/ILC_TRC/Table1_1W.pdf

8/13/02

	TES	SLA		JLC (C)	JLC/NI	LC^* (X)	CI	IC
Center of mass energy	$500 { m GeV}$	$800 {\rm GeV}$	$500~{\rm GeV}$	$1000 { m ~GeV}$	$500 { m GeV}$	$1000~{\rm GeV}$	$500~{\rm GeV}$	$3000~{\rm GeV}$
RF frequency of main linac (GHz)	1	.3	5.7	$5.7/11.4^{\P}$	11	4	3	0
Design luminosity $(10^{33} \rm cm^{-2} s^{-1})$	34.0	58.0	16.8	25.0	25.0(20.0)	25.0(30.0)	21.0	80.0
Linac repetition rate (Hz)	5	4		100	150(120)	100(120)	200	100
No. of particles/bunch at IP (10^{10})	2	1.4		0.75	0.	75	0	.4
No. of bunches/pulse	2820	4886		192	19	92	1	54
Bunch separation (nsec)	337	176		1.4	1.	.4	0.	67
Bunch train length (μsec)	950	860		0.267	0.2	267	0.1	102
Beam power/beam (MW)	11.3	17.5	5.8	11.5	8.7(6.9)	11.5(13.8)	4.9	14.8
Unloaded/loaded gradient [†] (MV/m)	$23.4 \ / \ 23.4$	35 / 35	41.8/31.5	$41.8/31.5 \ / \ 70/54$	70 ,	/ 54	172 ,	/ 150
Total two-linac length (km)	30	30	17.1	29.2	12.6	25.8	5.0	28.0
Total beam delivery length (km)	÷	3		3.7	3	.7	5	.2
Proposed site length (km)	3	3		33	3	2	10.2	33.2
Total site AC power [‡] (MW)	140	200	235	310	215~(185)	280(320)	175	410
Tunnel configuration [#]	Sin	gle		Separate	Sepa	arate	Two-	Beam
		Tesla			NLC			
selling fe	selling features long pulse			high grad				
_	low freq			expansion				
		reduced wal	ka fialds					
		around moti	ion					
			1011					
expansion paths double RF								
		2 deg K						
		electro polis	sh					
flat beam	flat beam development @ A0 may eliminate 1 damping ring @ Tesla							
Non-Accelerator Particle Astrophy	sics School	- ICT	· P – Trieste		-			
D. Corrigon	Sies Senoor	July 26		04			21	
D. Camgan		July 26	– Aug. 6, 20	04				

Gamma-gamma collider

Proposed by Ginzburg et al. (1982) for producing a photon collider

Collide a high power laser pulse with an electron beam to produce a high energy photon beam

```
laser: 1 J, 1.8 ps FWHM, 1 micron, > 1 TW, 10 KW av
```

Two body process

Correlation between outgoing photon angle and energy $(1/\gamma)$

Maximum energy when the photon is co-linear with the incoming electron (about 80% of e)

Free electron laser

SASE-self amplified spontaneous emission first proposed at SLAC Brilliance is 10⁸ times current light sources, 1 Å x-rays, pulse length of 100 fs

TTF demonstrated SASE @ 80-180 nm

From Tesla DR 3.6 The X-ray Free Electron Laser (XFEL) $\ensuremath{\mathsf{I}}\xspace$ -37

Non-Accelerator Particle Astrophysics School	ICTP – Trieste
D. Carrigan	July 26 – Aug. 6, 2004

Process: small xsec, high current e beam synchrotron radiates in undulator. For correct energy, undulator period get resonance in longitudinal charge density modulation

-micro bunching. Number of photons grows exponentially

Mid range possibility - hot neutrino facilities

Conventional beams Neutrino factories Reactors-not accelerators

Non-Accelerator Particle Astrophysics School D. Carrigan

NUMI – neutrinos at the Main Injector

FERMILAB #98-1321D

The NUMI project

120 GeV Protons from Fermilab Main Injector

 $10\mu s$ pulse, every 1.9s

Proton Intensity:

- 4x10¹³ protons/pulse design
- 2.5×10¹³ p/p expected at startup

Hadrons focused with 2 horns

 Select beam energy spectrum by adjusting horn and target positions

Project will be complete/ commissioning starts Dec. 2004

0.2 MW first year 0.4 MW design

Non-Accelerator Particle Astrophysics School D. Carrigan

NUMI – layout

NUMI - construction

Target Hall

Decay Pipe Endcap at Absorber Hall

Non-Accelerator Particle Astrophysics School D. Carrigan

Some neutrino beam naming jargon

NUMI0.4 MWSuperbeam2 MWNeutrino factorypower about like superbeammore flexible on unlike sign suppressioncan do ve

Beta-beam neutrinos via radioactive nuclei <u>complicated</u>

Non-Accelerator Particle Astrophysics School D. Carrigan

Going to superbeam J. Hylen

Difficulty of handling 2 MW instead of 0.4 MW depends significantly on:

•Proton beam energy still 120 GeV? (windows more problematic if lower)

•Increase repetition rate? (more cooling/electrical power for magnets)

•Increase protons per spill? (more stress on target, windows, horn)

General issues with higher beam power:

•Getting the average beam heating load out

•Average thermal stress limit

•Radiation safety

Groundwater Protection

Airborne Activation

Prompt Radiation

Residual Activation

•Radiation damage lifetime of materials

•Thermal shock

•Mis-alignment from thermal expansion

•Ionization leakage current

Possible Fermilab proton drivers

SYNCHROTRON (yellow)
Sited West of the existing booster
Re-uses existing linac enclosure
8 GeV LINAC (red)
Baseline Site injects at MI-30
 straight section

Others possible

http://www.fnal.gov/orgs/fermilab_users_org/users_mtg/2004/foster.pdf0

Non-Accelerator Particle Astrophysics School D. Carrigan

Fermilab 8 GeV Superconducting Linac

New idea incorporating concepts from both the Spallation Neutron Source (SNS) and Tesla.

Copy SNS Linac up to 1.3 GeV

Use Tesla cryomodules from 1.3 to 8 GeV

H⁻ injection at 8 GeV in Main Injector

2 MW beam power at BOTH 8 GeV and 120 GeV

Small emittances so that there are small losses in Main Injector

A draft design study exist. Cost comparable to Main Injector.

ICTP – Trieste

July 26 – Aug. 6, 2004

http://www.fnal.gov/orgs/fermilab_users_org/users_mtg/2004/foster.pdf0

Non-Accelerator Particle Astrophysics School D. Carrigan

32

http://www.fnal.gov/orgs/fermilab_users_org/users_mtg/2004/foster.pdf0

Questions?

Non-Accelerator Particle Astrophysics School D. Carrigan

Future Accelerators, Neutrino Factories, and Muon Colliders continued

Dick Carrigan Fermilab

So far have talked about: Current status Tevatron, LHC accelerator technologies Midrange possibilities Linear colliders gamma-gamma colliders free electron lasers Neutrino Facilities NUMI proton drivers

Mid range possibility muon collider

Muon storage ring-old concept recent BNL result for g-2 physics and Higgs $\sigma_H \sim (m_\mu/m_e)^2$ problem-collecting the muons muons equal neutrinos-gave rise to idea of neutrino factories

Non-Accelerator Particle Astrophysics School D. Carrigan

Muon collider-concept

Produce pions with proton accelerator

pions decay: $\pi \rightarrow \mu + \overline{\nu}$ 30 MeV/c muons decay: $\mu \rightarrow e + \nu + \overline{\nu}$ $\tau = 2.2 \,\mu s$

focus pions, muons-need a lens

cool muons-ionization cooling6 dimensional phase space

accelerate very fast

Non-Accelerator Particle Astrophysics School D. Carrigan

Muon collider schematic (taken from Bruce King-BNL, 4th International Conference on the Physics Potential and Development of mu+mu- Colliders, San Fransisco, 1997.)

VLHC super ferric magnet

Superconducting coil in center energizes both fields 2 cm gap, 2T return loop is below

(from VLHC design report-2001)

Non-Accelerator Particle Astrophysics School D. Carrigan

Accelerator status recapitulation

this decade-Tevatron, LHC NUMI next decade-ambitious future linear collider Neutrino factory? muon factory? VLHC? 2020 New technology, need a vision

Non-Accelerator Particle Astrophysics School D. Carrigan

Visionary possibilities for acceleration

Would like much higher accelerating gradients

Two thoughts:

Lasers

R. Palmer, Particle Accelerators V11, 81 (1980). Recent progress Kimura et al. PRL **92**, 054801 (2004). See also LEAP at Stanford (Colby)

Plasmas

Tajima and Dawson PRL **43**, 267 (1979)

E. Esarey, et al., IEEE Trans. On Plasma Sci, 24, 252 (1996).

J. Dawson, Scientific American March, 1989 (p. 54)

Non-Accelerator Particle Astrophysics School D. Carrigan

Lasers

basic laser challenge

good news: can get very high fields

bad news: vectors transverse to particle direction

ways to defeat

gratings, maybe boundary conditions, special modes

R. Palmer, Particle Accelerators 11, 81 (80)

Inverse free electron laser IFEL-next transparency

Non-Accelerator Particle Astrophysics School D. Carrigan

Cascading laser stages

[from W. Kimura et al, PRL 86, 4041 (2001)]

Inverse free electron laser (IFEL)

electrons oscillate in undulator and absorb energy from laser

Gradients not on a scale with plasma accelerators

FIG. 1. Schematic layout for the STELLA experiment. For size reference, the distance separating the two IFELs is 2.3 m and the laser beams enter the beam line ≈ 6 m apart.

Require fs micro bunches, very good timing

24 MW first stage, 300 MW second

This demonstrated rephasing, not acceleration

Plasma wake field acceleration

Photo S. Carrigan

 $G= 0.96(n_0)\frac{1}{2}$ (V/cm) RF cavity gaseous plasma

Non-Accelerator Particle Astrophysics School D. Carrigan

ICTP – Trieste July 26 – Aug. 6, 2004 n₀ is electron density 0.0005 GV/cm 1 GV/cm

Plasma model

(from Lawson, Scientific American-1989)

Pendulum cluster moves to the right

Plasma snapshot: red plasma electrons cluster and make field. Electrons in red ball are trapped.

Non-Accelerator Particle Astrophysics School D. Carrigan

Creating a plasma wave with a laser

Ponderomotive force on electron

Generated field is:

 $E = m_e c\omega_p / e \qquad (e.g. sin dist of charge)$ $\omega_p = (4\pi n_0 e^2 / m_e)^{\frac{1}{2}} \quad \text{plasma freq}$

plasma wave has a phase velocity

$$v_{p} = c(1-\omega_{p}^{2}/\omega^{2})^{1/2}$$

wake generated best when photon packet is half wavelength of plasma

find $\gamma^{\text{max}} = 2 \omega^2 / \omega_p^2$

acceleration length: smallest of dephasing length, pump depletion length, or depth of field (optical channel helps)

2004

Non-Accelerator Particle Astrophysics School	ICTP – Trieste
D. Carrigan	July 26 – Aug. 6, 2

Characteristic field strengths

highly relativistic laser driven plasma. Laser pulse length is .03 cm, pulse moves to right, fast oscillations are laser freq. Density (n_0) is $10^{16}/\text{cm}^3$. Moderate case would be more sinusoidal.)

(from Sprangle, et al.) Non-Accelerator Particle Astrophysics School D. Carrigan

A wakefield accelerator - E157 at SLAC

Head of beam generates plasma wakefield,

tail is accelerated by 80 MeV. Also do e^+ - E162.

(E-164 later version , $n_e O(3*10^{15})$, 100 micron bunches - see 2003 Particle Acc. Conf, p. 1530)

M. Hogan Phys. Plasmas 7, 2241 (2000)

Non-Accelerator Particle Astrophysics SchoolICTP – TriesteD. CarriganJuly 26 – Aug. 6, 2004

Results from SLAC E-157

Acceleration

Time

Barov and Rosenzweig (UCLA) see similar results at Fermilab. 100 MeV/m using A0 14 MeV photoinjector. 6-8 nC, $n_e \sim 10^{14}/cc$.

M. Hogan Phys. Plasmas 7, 2241 (2000). See also Muggli, et al. PRL 93, 014802-1 (2004)

Non-Accelerator Particle Astrophysics School D. Carrigan

Bob Hofstadter "The Atomic Accelerator" HEPL 560 (1968)

"To anyone who has carried out experiments with a large modern accelerator there always comes a moment when he wishes that a powerful spatial compression of his equipment could take place. If only the very large and massive pieces could fit in a small room!"

Non-Accelerator Particle Astrophysics School D. Carrigan

Hofstadter wanted a crystal accelerator!

A table top accelerator ("miniac")

The first solid state accelerator use channeling for focus maybe an after-burner scheme excite atoms coherently with 1 keV-xray

Get out 1 keV/Å

in 1 cm would get 100 GeV

Need an x-ray laser (1968)

Problem-transit time

Non-Accelerator Particle Astrophysics School D. Carrigan

Photo S. Carrigan

Plasma wake field acceleration – solid state

 $G= 0.96(n_0)\frac{1}{2}$ (V/cm) n_0 is electron densityRF cavity0.0005 GV/cmgaseous plasma1 GV/cmsolid state plasma100 GV/cm

Non-Accelerator Particle Astrophysics School D. Carrigan

Pseudo solid state accelerators

At least four groups see high energy ions, electrons from intense lasers hitting foils

Livermore PRL 85, 2945 (2000)

Michigan APL <u>78</u>, 595 (2001)

Rutherford PRL 90, 064801 (2003) - discussion of mechanisms, target evolution

Livermore

 $3*10^{20}$ W/cm², 1000 TW, 10^{13} proton beams with E to 58 MeV, electrons

protons can be focused by curving target

process: electrostatic fields produced by ponderomotively accelerated hot

electrons act on protons from absorbed hydrocarbons rear side (downstream)

Non-Accelerator Particle Astrophysics School	ICTP – Trieste	55
D. Carrigan	July 26 – Aug. 6, 2004	55

Basic Crystal Accelerator Concept

excite plasma wake field in solid with density a thousand times gas use channeling to reduce energy loss, focus, and maybe even cool Chen-Noble Tahoe (1996), p. 441

Positives

very high power, femtosec lasers radiative damping (Huang, Ruth, Chen)

Big problems!

blow away material dechanneling

Non-Accelerator Particle Astrophysics School D. Carrigan

The Fermilab A0 photoinjector

- built as Tesla injector prototype in the late 1990s by Helen Edwards' group
- essentially a gigantic phototube powered by a laser followed by a so-called 3.5 MeV warm RF gun and second stage of a Tesla superconducting nine-cell RF cavity
- beam energy 14.4 MeV.
- very large picosecond electron pulses of 10 nanocoulombs or 10⁶ A/cm²

So what did the Fermilab A0 photoinjector do?

studied channeling nearer extreme conditions needed for

a channeling accelerator Could we make a crystal accelerator or do

unique channeling studies?

Ferminic CO-635

Non-Accelerator Particle Astrophysics School D. Carrigan

Crystal survivability?

Process

excite electronic plasma

tunnel ionization

partial or total lattice ionization

electronic plasma decay

via interband transitions lifetime: (plasma frequency)-O(fs) excitation of phonons in lattice

crystal disorder, fracture, or vaporization

lattice dissociation via plasmon absorption lifetime: (ion plasma frequency)⁻¹ vaporization O(10-100 fs) hydrodynamic heating O(1-10 ps) [Livermore]

Non-Accelerator Particle Astrophysics School D. Carrigan

ICTP – Trieste July 26 – Aug. 6, 2004

$$\omega_{p} = (4 \pi n_{0} e^{2} / m_{e})^{1/2}$$

$$\omega_{pi} = (m_e / m_i)^{1/2} \omega_p$$

58

Crystal destruction

ACCELERATION

G (gradient) proportional to $(n_0)^{1/2}$, P (power) prop to n_0 for G = 1 GeV/cm P = 10^5 J/cm³ 10^{19} W/cm³ for O(10 fs) @ 1 GeV/cm

LASER

 10^{11} W/gmBelotshitkii & Kumakhov (1979)or 10^6 a/cm² for particle beam 10^{12} W/cm³ns long pulses 10^{13} W/cm³Chen-Noble (1987)fracture thresholdO(0.1 ns) ref 16Skin depth < 0.1 mm</td>

LATTICE IONIZED

 10^{15} - 10^{16} W/cm² Chen & Noble (1996)/laser

PARTICLE BEAM

 10^{11} A/cm^2

Chen & Noble (1987) (crystal OK for 10 fs)

Non-Accelerator Particle Astrophysics School

D. Carrigan

Situation for Fermilab A0 photoinjector

A0 RF GUN FOR COMPARISON

 $I/cm^2 = 10 \text{ nc}/1 \text{ ps in } 1 \text{ mm}^2$ or 10^6 A/cm^2 (OK driver @ 1GeV)

A0 LASER FOR COMPARISON

10 W/cm^3	slap ruptured (continuous, 10 ¹⁵ W/cm ³ for 10 fs)
10^9 W/cm^2	damage on lens
10^{18} W/cm^2	1 Joule on 10 µm spot in 1 ps (OK driver)

Non-Accelerator Particle Astrophysics School D. Carrigan

Fermilab A0 schematic layout

R. Carrigan, et al. Phys. Rev. A68, 062901 (2003)Non-Accelerator Particle Astrophysics SchoolICTP – Trieste

D. Carrigan

ICTP – Trieste July 26 – Aug. 6, 2004

61

A0 at the goniometer

10 nC peak, ε typically 10 mm*mrad, 10 ps

Non-Accelerator Particle Astrophysics School D. Carrigan

Summary of high charge measurements

The Future Beyond the Fermilab A0 Experiment

get into 10 fs regime
ne 10³ to 10⁵ larger (small beam size important)
higher energy might be better for channeling, beam size
But new experimental geometry, channeling approaches needed

Possibilities:

SLAC E164 geometry for channeling radiation at 30 GeV

Livermore

Toronto – studying laser melting with sub picosec electron diffraction

Non-Accelerator Particle Astrophysics School D. Carrigan

Using SLAC E164 to study channeling

Add crystal, goniometer, x-ray det. (integrating). Now at FFTB (final foc TB) for big q. Channeling radiation ala N. A. Filatova, Phys. Rev. Lett. **48**, 488 @ 12 GeV, (1982), K. Kirsebom, et al., NIMB **119**, 79 (96) @ 150 GeV.

Beam:

charge: $2*10^{10}$ /bunch (< A0), size 25 µm.

```
time: 100 \text{ mm/c} = 300 \text{ fs}
```

 I/cm^2 : 50*10⁶ A/cm² (500 times better than A0)

This could take channeling measurements nearly to the plasma regime.

C. Barnes et al., Proc. 2003 Particle Acc. Conf. 1530 (03)

Non-Accelerator Particle Astrophysics School	ICTP – Trieste	۲. ۲.
D. Carrigan	July 26 – Aug. 6, 2004	05

The Far Future?

Non-Accelerator Particle Astrophysics School D. Carrigan

ICTP – Trieste July 26 – Aug. 6, 2004

66

Summary

2001-2009

Tevatron-completing a decade has a proton driver been added? LHC-in operation for pp (15 yr future) 2010-2019 linear collider completed somewhere, running underway upgrade path? Neutrino factories? 2020-2029 VLHC? Muon collider? Can exotic accelerators step up?

Questions?

Non-Accelerator Particle Astrophysics School D. Carrigan