united nations educational, scientific and cultural organization

international atomic energy agency the **abdus salam** international centre for theoretical physics

4 () anniversary 2004

H4.SMR/1574-21

"VII School on Non-Accelerator Astroparticle Physics"

26 July - 6 August 2004

Neutrino Telescopes - II

John Carr

Centre de Physique des Particules de Marseille / IN2P3 / CNRS France

Neutrino Telescope Techniques

Flux of neutrinos decreases with energy so need increasing mass for detector

Detection of neutrinos: Light and Sound

Ocean Acoustic Detection

Stanford project to use US Navy array in Atlantic

H₂O Neutrino Telescope Projects

DUMAND

1976 – 1995 : Developed techniques and discovered problems

BAIKAL

NEMO

Water versus Ice

Deployment

Ice gives solid platform to install detector Sea experiments need boats/ platforms Ice detectors worked first (Baikal deploys from ice)

Angular Resolution

Light scattering much less in waterAMANDA: $\sim 3^{\circ}$ (real detector)ANTARES: $\sim 0.2^{\circ}$ (simulations)

Uniformity of Detector response

Water homogeneous Ice has dust layers, bubbles Knowledge of efficiency simpler in water

Noise Backgrounds

Water: ^{40}K /bioluminescence $\sim 60kHz$ / PMT Ice: only dark tube noise $\sim 500Hz$ / PMT

AMANDA: effective scattering coefficient

Light Scattering: Sea Water and Ice

Effective Neutrino Area

Effective Muon Area

Region of sky observable by Neutrino Telescopes

Acceleration of cosmic-ray protons in the supernova remnant RX J1713.7-3946

High Energy Neutrinos from RX J1713.7-3946

Assuming γ produced from π^0 decay then $N_{\gamma} = N_{\gamma}$

Clear signal for Northern Hemisphere Neutrino Telescopes ~3 events / year in ANTARES

Event rates from Microquasars in ANTARES

Model of Levisson and Waxman: Proton interactions on synchrotron gamma from electrons - assuming 10% of jet energy in protons

C. Distefano et al, ApJ 575, 378(2002)

Predictions of rates for Galactic sources

Source	Distance	Ev	N _v	Ref.
ТуреА	(kpc)	(GeV)	(km ⁻² yr ⁻¹)	
Supernovae	10	<~ 10 ³	~100	Waxman & Loeb 2001
Shocks		$\sim 10^2 - 10^6$	50 - 1000	Protheroe et al. 1998
pulsars		$\sim 10^5 - 10^8$	~ 100 - 1000	Beall & Bednarek 2002
		$\sim 10 - 10^8$	<~ 1000	Nagataki 2004
Plerions	0.5 - 4.4	$< 10^3 - 10^5$	~ 1 - 12	Guetta & Amatto 2003
		$\sim 10^3 - 5 \cdot 10^5$	<~ 1	Bednarek 2003
Crab	2	$\sim 10^3 - 5 \cdot 10^5$	a few	Bednarek & Protheroe 1997
		$\sim 10^3 - 5 \cdot 10^5$	~ 1	Bednarek 2003
		$10 - 10^{6}$	~ 4 - 14	Amato et al. 2003
Shell SNRs				
SNR RX J1713.7	6	<~ 10 ⁴	~ 40	Alvarez-Muñiz & Halzen 2002
Sgr A East	8	<~ 10 ⁵	~ 140	
Pulsars + Clouds				
Galactic Centre	8	$10^4 - 10^7$	~ 2 - 30	Bednarek 2002
Cygnus OB2	1.7	>~ 10 ³	a few	Torres et al. 2004
		$10^4 - 10^7$	~ 0.5	Bednarek 2003
		<~ 10 ⁶	~4	Anchordoqui et al. 2003
Binary systems				
A0535+26	2.6	$3 \cdot 10^2 - 10^3$	a few	Anchordoqui et al. 2003
Microquasars	1 – 10	$10^3 - 10^5$	1 - 300	Distefano et al. 2002
		(W. Bednarek, F. B	Burgio, T.Montaruli	astro-ph/0404534)

Limits on point-like sources of neutrinos

Limits on diffuse flux of muon neutrinos

WIMP Distributions in Galaxy

Search for WIMPS from centre of Earth, Sun and Galaxy

Limits on flux of muons from WIMPS

AMANDA Results WIMPS from centre of Earth

ICECUBE at South Pole

First Km³ Neutrino Detector, ~2010 ?

WIMPS sensitivity from sun

Comparison : ANTARES and Direct Detection

ANTARES Detector

T 880

Shore Station

43'00

Port-Cros

ANTARES Programme

Site Explorations

- 1) Optical background study:
- 2) Biofouling-sedimentation study: 4 deployments
- 15 deployments
- 3) Optical properties study:
- 28 deployments

Muon Reconstruction with Demonstrator Line 1999

Sphere Implosion Test

Stored potential energy in sphere at 2600m: V $\Delta P \sim 1$ mega Joule !!

⇒ Risk of accidental implosion provoking a catastrophic chain reaction (cf. SuperKamiokande)

Tests (June 2000) – Two storeys 12m apart, 1 sphere weakened, implosion occurred at a depth of 2600m

RESULT:

-Neighbouring spheres on same storey also imploded-Electronics in LCM destroyed

-Upper storey intact -Mechanical cable unbroken

Connection of detector to shore

Deployment of Sea Cable, Nov 2001

Deployment of Junction Box, Dec 2002

Light detectors : "optical module"

Glass sphere: Nautillus

Active PMT base

Mu metal magnetic shield

Front-end electronics: ARS

Electronics Crate

Data Transmission

The main functions are:

- Readout and packing of the data produced by the ARS's.
- Transmission of the resulting data through the line network.
- Processing of slow control messages.
- Conversion to optical signals on 1 fiber (100 Mb/s)

Complete Prototype Line

Time resolution

Prototype line deployment, Dec 2002

Submarine cable connection

Performed with Nautile in March 2003

Layout of ANTARES site in Spring 2003

Undersea images of detector elements

Physics subjects left for ANTARES

Topic	Amanda	Antares
Diffuse flux Extragalactic	First Sky coverage	Confirmation Sky coverage
Point sources	Sky coverage	angular resolution
GRBs	Sky coverage	Sky coverage
Galactic sources	weak	strong
WIMPS sun	weak	strong
WIMPS Galaxy	No	Yes
Monopoles	First	Confirmation
SN bursts	Yes	No

