

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

H4.SMR/1574-31

"VII School on Non-Accelerator Astroparticle Physics"

26 July - 6 August 2004

Magnetic Monopole Searches

Giorgio Giacomelli

University of Bologna and INFN Italy

Magnetic Monopole Searches

- 1. Introduction
- 2. Classical MMs
- 3. Searches for classical MMs
- 4. GUT MMs
- 5. Searches for GUT MMs
- 6. Catalysis of p-decay
- 7. Intermediate mass MMs
- 8. Nuclearites. Q-balls
- 9. Conclusions. Outlook

G. Giacomelli University of Bologna and INFN 7th School, ICTP, Trieste, 26/7-6/8, 04

1931 Dirac: Quantization of electric charge Proc. R. Soc. London, 133 (1931) 60

eg =
$$n \frac{\hbar c}{2}$$
, $n = 1, 2, 3, ...$ Dirac relation
 $g_D = \frac{\hbar c}{2e} = \frac{137}{2}e$, $g = n g_D$

1974 GUT of Strong and Electroweak interactions

2. Classical ("Dirac") MMs

- Mass : No prediction. Estimate: if $R_M = R_e \quad m_M \sim g_D^2 m_e/e^2 \sim 4700 m_e \sim 2.4 \text{ GeV}$
- Magnetic Charge

If n = 1 and e = electron charge $g_D = _c /2e = e/2\alpha = 68.5 e = 3.3 \times 10^{-8} esu$ If $|e|=1/3 \rightarrow 3 g_D$

•Electric charge = 0 MM , ≠ 0 Dyon

Systems M-p, M-Al²⁷ (Monopole-Dipole Interaction)

Coupling constant

 $\alpha_{M} = g^{2}_{D}/c = 34.25$

• Energy gain in a magnetic field

 $W = n g_D B L = n 20.5 \text{ keV/G cm}$

If L= 1 kpc and B = $3 \mu G$

$$W \cong 1.8 \times 10^{11} \text{ GeV}$$

MM Energy Losses

3. Searches for classical MMs at accelerators /1 $e^+e^- \rightarrow MM$, $\overline{p}p \rightarrow M\overline{M}$, $pp \rightarrow ppM\overline{M}$ •Direct experiments: poles produced - detected immediately (large dE/dx) p Searches with scintillation counters nuclear track detectors Limits (95 % CL) $\sigma(e^+e^-) < 5 \times 10^{-37} \text{ cm}^2 \text{ m}_M < 102 \text{ GeV}$ $\sigma(pp) < 2 \times 10^{-34} \text{ cm}^2 \text{ m}_M < 850 \text{ GeV}$ [Produced •Indirect expts: M Stopped Trapped MMs **→** M р Extracted Accelerated Later { M \overline{M}_{-} Detected

Limits for classical MMs at accelerators

Searches for classical MMs at accelerators /2

•Multi-y events

-At ISR pp \rightarrow multi- γ at \sqrt{s} = 53 GeV σ < 2×10⁻³⁷ cm²

-At Fermilab (D0 Coll.) search for γ -pairs of high transverse energies in pp collisions M> 870 GeV for spin 1/2 Dirac MMs (95 % CL)

-At LEP (L3 Coll.) search for Z $\rightarrow \gamma \gamma \gamma$ events M>510 GeV (95 % CL)

Searches in bulk matter

- -Moon rocks
- -Meteorites
- -Terrestrial magnetic materials
- •Searches in the cosmic radiation
 - -with counters
 - -with emulsions + Lexan
 - -fossil tracks in mica

Superconducting loop

4. GUT Monopoles (Gauge, Cosmic,..)

Gauge theories of unified interactions predict MMs

SU(5) $\xrightarrow{10^{15} \text{ GeV}}_{10^{-35} \text{ s}}$ SU(3)_c × [SU(2)_L × U(1)_y] $\xrightarrow{10^2 \text{ GeV}}_{10^{-9} \text{ s}}$ SU(3)_c × U(1)_{EM}

* Mass $m_M \ge m_X/G > 10^{16} \text{ GeV} \sim 0.02 \ \mu g \rightarrow 10^{17} \text{ GeV}$

(Kaluza - Klein poles \rightarrow > 10¹⁹ GeV , SUSY \rightarrow > 10¹⁷ GeV)

GUT MMs

* Magnetic charge $g = n g_D$ several models predict n>1 (2,3)

* Production: In the Early Universe at G.U.T. phase transition

- as topological defects $G \rightarrow U(1) \times ... (t \sim 10^{-35} \text{ s})$

monopole

Frozen domains

 $e^+e^- \rightarrow M \overline{M}$ $q\bar{q} \rightarrow M M$

- in high energy collisions (t~ 10⁻³⁴ s)

MMs follow "history" of the Universe ⇒ slowed down ⇒ formation of galaxies
⇒ magnetic fields ⇒ poles accelerated

GUT MMs

Cosmological limits on MM flux

$$\rho_{M} < \rho_{c} \qquad \left\{ \begin{array}{c} \text{Uniform} & \longrightarrow & F < 5 \times 10^{-12} \ \beta \ (\text{cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}) \\ \text{Clumped} & \longrightarrow & \times 10^{5} \end{array} \right.$$

Astrophysical limits on the GUT MM flux

Survival of galactic magnetic fields \Rightarrow the Parker boundF< 10⁻¹⁵ cm⁻² s⁻¹ sr⁻¹for β <3 10⁻³F< 10⁻¹⁵ (β /3 10⁻³) cm⁻² s⁻¹ sr⁻¹for β >3 10⁻³

gg - ICTP 2004 - MMs

5. Searches for GUT Magnetic Monopoles

Induction devices

Method depends only on long range E.M. interaction

Superconducting solenoid $\Delta i = \frac{4\pi N}{L} g_{D} = 2\Delta i_{0}$

Early experiments : 1 loop, 10 cm², no coincidence arrangements Stanford, 1982: the "Cabrera" event

Later detectors:

coincidence arrangements+accelerometers, cosmic ray and R.F. monitors

Present combined limit:

```
F < 2 \times 10^{-13} \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1} (90 % CL)
```


Different analysis techniques were used for various β regions, by using the three subdetectors

Redundancy & Complementarity

MACRO: Scintillation counters

Calibration tools: cosmic muons, LED's, UV laser

- \checkmark Study of the PMT pulse
- ✓ Measurement of the light yield

 \checkmark Consistency check between the box crossing time and the ToF across MACRO

For slow monopoles : the PMT pulse might reduce to a train of single photoelectrons For fast monopoles : look for large energy deposits Dedicated hardware: 200 MHz WFD + ADC/TDC system + independent triggers

MACRO: Streamer Tubes

Look for time alignments in a ~ 500 ms window with 150 ns resolution Require single track in wire, strip and time view

MACRO: The Nuclear Track Subdetector

Restricted Energy Loss vs β for MMs in CR39

MACRO final results

EPJ C25 (2002) 511

 $g = g_D$ $\sigma_{cat} < 1 mb$

6. Catalysis of proton decay

GUT MM - p interaction may violate baryon and lepton number conservation $M + p \longrightarrow M + e^+ + \pi^0$

If $\sigma_{\!\Delta B \neq 0} \thicksim \sigma_{\!\rm core} \thicksim 10^{\text{-}56} \, \mathrm{cm}^2 \ \thicksim \ \mathrm{negligible}$

Rubakov-Callan mechanism

 $\begin{array}{ll} \mbox{If $\sigma_{\Delta B \neq 0} \sim \sigma_{strong}$} & \mbox{could see a string of p decays along MM trajectory} \\ \sigma_{\Delta B \neq 0} \sim \sigma_0 / \beta & (\mbox{or σ_0/β^2}) \\ \mbox{p-decay detectors} & \end{array}$

IMB $\Phi < 1 \div 3 \ 10^{-15} \ cm^{-2} \ sr^{-1} \ s^{-1}$ $10^{-5} < \beta < 10^{-1}$ Kamiokande $5 \ 10^{-5} < \beta < 10^{-3}$

v-telescopes

Lake Baikal $\Phi < 6 \ 10^{-17} \ cm^{-2} \ sr^{-1} \ s^{-1} \qquad \beta \sim 10^{-5}$

MACRO: dedicated search for MM induced p decay

using the streamer tube system

 $S\Omega = 4250 \text{ m}^2 \text{sr}$, t = 70,000 hours

7. Intermediate mass MMs (10⁵ - 10¹² GeV)

1994 De Rujula CERN-TH 7273/94 E. Huguet & P. Peter hep-ph/ 901370 Shafi - Talk at the Neutrino Workshop, Venice, 2001 Wick et al. Astropart. Phys. 18, 663 (2003)

Produced in the Early Universe in later phase transitions

SO(10)
$$\frac{10^{15} \text{ GeV}}{10^{-35} \text{ s}}$$
 SU(4) × SU(2) × SU(2) $\frac{10^9 \text{ GeV}}{10^{-23} \text{ s}}$ SU(3) × SU(2) × U(1)

ex. (Shafi) $M \sim 10^{10} \text{ GeV}$, $g = 2 g_D$, no p-decay catalysis

IMMs can be accelerated in the galactic B field to relativistic velocities

$W = g_D B L \sim 6 \times 10^{-19} e$	eV (B/3x10 ⁻⁶ G)(L/300pc)
Galaxy	$W \sim 6 \times 10^{19} eV$
Neutron stars	$W \sim 10^{20}$ - $10^{24} eV$
AGN	$W \sim 10^{23}$ - 10^{24} eV

Could they produce highest energy cosmic ray showers E > 10²⁰ eV ?

IMM searches in the cosmic radiation : the present situation

IMM searches at high altitudes

SLIM

Chacaltaya, Bolivia 5290 m asl 440 m² of nuclear track detectors

Koksil, Himalaya, 4275 m asl 100 m² of nuclear track detectors

Accessible regions in the plane (mass, β) for MMs coming from above for an experiment at high altitudes and underground.

The SLIM detector layout @ Chacaltaya

90 % C.L. flux upper limits vs MM mass for SLIM (expected, in absence of candidates) and MACRO Modules 24×24 cm²

10-13

IMM searches: Under-ice, Underwater experiments

AMANDA, Lake Baikal, ANTARES

Direct _ light $\beta_{MM} > 1/n \sim 0.75$ δ -rays _ light $\beta_{MM} > 0.6$ $M > 10^{10-11}$ GeV from below ($M > 10^{6-9}$ GeV from above)

8. NUCLEARITES

E. Witten, Phys. Rev. D30 (1984) 272 A. De Rujula, S. L. Glashow, Nature 312 (1984) 734

• Aggregates of u, d, s quarks + electrons , $n_e = 2/3 n_u - 1/3 n_d - 1/3 n_s$

•Ground state of nuclear matter; stable for any barion number A :~300 < A < 10^{57}

Produced in Early Universe: candidates for cold Dark Matter

Searched for in CR reaching the Earth [black points are electrons]

Nuclearites: Interaction with matter

 $dE/dx = -\sigma \rho_{medium} v_N^2 \qquad \sigma \sqrt{\pi 10^{-16} \text{ cm}^2} \quad R_N < 1\text{\AA}$ $\sigma \sim \pi \times R_N^2 \qquad R_N > 1\text{\AA}$

In scintillators and track-etch detectors: signal similar to that of a MM

In water: part of the lost energy is radiated as visible light

Accessible regions in the plane (mass, β) for nuclearites coming from above for an experiment at high altitudes and underground.

High Mass Nuclearites: present situation:

Low mass nuclearites

Predicted Flux @ Chacaltaya : $7 \times 10^{-6} \text{ m}^{-2} \text{ h}^{-1} \text{ sr}^{-1}$ for $m_N > 3 \times 10^3$ SLIM: ~ 100 events in 4 y

8. Supersymmetric Q-balls

- S. Coleman, Nucl. Phys. B262 (1985), 263 - A. Kusenko et al., Phys. Lett. B 404 (1997) 285; Phys. Lett. B 405 (1997) 108;

Q-balls : coherent states of squarks, sleptons and Higgs fields

 $Q \le 10^{30}$ 10 ⁸ < M_Q 10 ²⁵ GeV

- Produced in the Early Universe
- Candidates for Cold Dark Matter , concentrated in the galactic halos, β ~ 10^-3 SECS : Supersym. Electrically Charged Solitons

SENS : Supersym. Electrically Neutral Solitons

 R_Q : dimension of the Q-ball core;

the black points indicate electrons, open circles indicate s-electrons.

Supersymmetric electrically charged solitons (SECS) should essentially behave in detectors like nuclearites

Charged Q- balls: current /near future situation

AKENO, KEK : ground level MACRO : 3700 hg/cm² undg. AMS: Space Station SLIM: 500 g/cm² atm depth

9. Conclusions - Outlook

- Dirac MMs at accelerators $m_M > 0.9 \text{ TeV}$ In the future : at LHC probe $0.9 < m_M < 7 \text{ TeV}$
- Flux of GUT MMs in the cosmic radiation: $MACRO : \Phi < 1.4 \ 10^{-16} \ cm^{-2} \ s^{-1} \ sr^{-1}$ for $4 \times 10^{-5} < \beta < 1$ For the future: one would need new detectors with much larger surfaces
- IMMs:

Experiments at mountain altitudes $\Phi < 10^{-15} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ For the future: need much larger detectors Experiments with neutrino telescopes for $\beta > 0.6$ from below For the future: need measurements from above

- Nuclearites: None found, limits ~ as for GUT MMs
- Q-balls "