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Basic ideas

As an entry into our discussion of gravitational radiation, we start by asking
the question: How does information about a change in a gravitational field
propagate?

In Newtonian theory, the gravitational potential ® is given by
V20 = 47G)p, (1)
in the presence of matter (where p is the mass density), or
Ve =0 (2)

in vacuum. The acceleration of a test particle moving freely in the field
produced is then given by

d’zt 0P 5

de2 ozt (3)
Suppose now that there is a change in the matter distribution giving rise
to the field. According to the above equations, the effect of this as felt in
the acceleration of the test particle, would occur instantaneously even if the
test particle were very distant from the source, and this corresponds to an
instantaneous transmission of information about the change in the source
which is contrary to the ideas of relativity theory.

In general relativity (GR), all physical laws must be written in a covariant
form, i.e. in terms of scalars, 4-vectors and 4-tensors. In line with this, the
equation of motion needs to be written in a four-dimensional form (rather
than a three-dimensional form as above), and the Laplacian needs to be




replaced by a four-dimensional operator. If the modification were simply to
replace V2 by the d’Alembertian:

2
=19 v

2 Ot2 ’ (4)
then it is easy to see that the speed of propagation of information would
become finite, going to the speed of light, ¢, in vacuum. The concept of grav-
itational waves then arises as the finite-speed carriers of information about
changes in the source of the gravitational field. In analogy with electromag-
netism, these waves carry energy away from the source as well as information
about the field changes.

What does GR tell us about gravitational waves?

General relativity is a geometrical theory describing gravity in terms of cur-
vature of spacetime and, within this context, gravitational waves appear as
ripples in spacetime.

The source of the gravitational waves might be either a strong-field object
(such as a dynamically-changing black hole or neutron star) or a weak-field
object (such as a normal stellar binary system). Clearly, strong-field objects
will normally give rise to the larger-amplitude gravitational waves although
this is not certain because the amplitude also depends on the degree of dy-
namical motion and asymmetry of the object concerned. Here, we will be
focussing on a weak-field approach which will certainly be appropriate for
regions far enough away from the source and can also be appropriate for
the source itself in some cases. Treating these problems in strong field is
much more complicated and many important features appear already in a
weak-field treatment.

In weak-field situations, the wavelength of gravitational waves is usually
much shorter than the length-scale associated with the curvature of the back-
ground space-time and so it is an excellent approximation to treat the waves
as a perturbation about flat space. The general metric line element is

ds® = g, dz" dz” (5)

where ds is the space-time interval, x = (2° 2!, 22, 2%) is the space-time po-

sition vector and g, is the metric tensor. (We will be using the conventions



that Greek indices range from 0 to 3, referring to both time and space di-
mensions, and Latin indices range from 1 to 3, referring to spatial dimensions
only.) In the weak-field limit we write

uv = M + h,ul/ (6)

where 7, is the metric tensor for flat space and h,, is a small perturbation.
The gravitational field equation in general relativity is the Einstein field

equation:
871G
Ry — %QWR = —FTw (7)

A
where: R, is the Ricci tensor (contraction of the Riemann curvature tensor)
R is the Ricci scalar (contraction of R,,)
T,, is the Energy-momentum tensor (telling us about the source)

We will now write this out and linearize it, retaining only first order terms
in h. (We use the convention of taking ¢ = G = 1 which allows masses and
times to be expressed in terms of lengths). First, we need to calculate Ricci
tensor:

R, = R, (8)
= F?JJ/,OL - an,l/ + Fgar;ﬂw - Fgurﬁa (9)

where a comma indicates a standard partial derivative (for example, I'}, , =

oI, /0x®), a repeated index implies summation over that index and the I's
(the Christoffel symbols) are given by

s = %nw(hau,g + hgpo — hapy) (10)
= 3(ha 5+ b 0 — hap™) (11)

(note that indices are here raised and lowered with n*¥). Then

R, — le/,a — FZ‘&,V (12)
- %(h’#aﬂ/a + hl/a,ua - hul/,aa - h,;w) (13)

where h = h,* = n*”h,, . Contracting R, gives the Ricci scalar:
R=1"R,, (14)
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The Einstein equation
R, — %gWR =871, (15)

then becomes
Pouaw™ + hoap® = hwa™ = B — Nuw (hap™® — hg°) = 167 T, (16)

On the left-hand-side we see four-dimensional second derivatives of i, which
describes the field, including

(07

= Ohy,. (17)

h;w,a

It is convenient to define

Py = hy — %nw h (18)

which may be referred to as “gravitational potentials”. The Einstein field
equation then becomes

Pyw,a™ + h'aﬁ,aﬁ = o,y = hwa,*y = —16m1), (19)

We now use a gauge freedom (an infinitesimal redefinition of coordinates,
(zt) = a# +&*(x)) to set h#* , = 0. (This gauge is analogous to the Lorentz
gauge in electromagnetism: A%, = 0). Eq. (19) then becomes

Bu,,yaa = DBW = —167T,, (20)

and in vacuum (where 7}, = 0):
Oh,, =0 (21)
which implies that if Euv changes with time, then the changes propagate at

velocity c.

How do gravitational waves interact with matter?

Consider here a plane-fronted wave propagating in the 3 = z direction (using
rectangular Cartesian coordinates). For this, we can write the Riemann
tensor as

Ragys = Rapys(t — 2) (22)
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This satisfies the Bianchi identities:

Raﬂ[’yd;e] =0 (23)

where the semi-colon denotes a covariant derivative and the square brackets
[ ] denote anti-symmetrization. For a plane wave on a flat background, these
give:

Rogi20 =0 = Rupia =0 (24)
Rogi3o — Raproz =0 = Ragiz = —Rapio (25)
Ropazo — Rapooz =0 = Rapgas = —Rapoo (26)

Therefore, using the symmetries of the Riemann tensor:

Ruvap = Ragu (27)
Ra,@,ul/ - _Raﬁl/,u (28)
it follows that any pair of purely spatial indices (12, 13,23, etc.) either gives

a vanishing component or can be converted to a spacetime pair 10 or 20.
There are then six independent components:

RlOlO R1020 R1030

Roozo  Raozo  Rsoso (29)
However, Einstein’s equation for vacuum R,, = Rj,, = 0 then reduces this
to two: _ _
RxOxO = _RyOyO - _i(hxx - h’yy),OO
_ (30)
RxOyO = RyOxO - _% h'xy,OO

The only relevant components of l_zl“, are purely transverse (i.e. only x and y
are involved) and a further gauge freedom can be used to make it traceless.
This is called the Transverse Traceless (TT) gauge:

hgg = 3 (Em —h ) = —hy,
’ N " (31)
M = ey
with all of the other components being zero. Then
Rjoro (t — 2) = =503 (for j,k =1 or 2) (32)
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We can write hj,; in terms of two polarizations, introducing the polarization
tensors e™ and e* such that

+ +
Cog = —€ = 1 (33)
€y = €y = 1

with all other components being zero. Then
;1]?; = h+ e;k + h>< G;k (34)

We are now ready to calculate the effect of the wave on matter.

Consider two adjacent particles (with separation vector, &) hit by a gravita-
tional wave. Their relative acceleration can be calculated using the equation
of geodesic deviation:

O~ R (35
- %hJT'kT,tt &
and the change produced in their separation is then
o7 = L g ¢t (36)

giving an overall fractional change of

LN
3

where h is the amplitude of the metric perturbation.

We now consider the effect produced by a periodic gravitational wave on
a ring of test particles oriented perpendicular to the direction of propagation
of the wave, looking separately at the effects of the two polarization modes
e and e* (see the figure on the next page). In both cases, the originally
circular ring first becomes elliptical, then returns to being circular again,
then becomes elliptical again with the semi-major axis being in a perpen-
dicular direction to before and then becomes circular again. The cycle is
then repeated. A bar of material placed perpendicular to the direction of
propagation of the wave would experience oscillations in its length. Note



that the behaviour shown in the figure indicates that the particle seen as me-
diating the gravitational interaction (the graviton) should have spin 2 since
there is an invariance under rotation through 7 and one would expect invari-
ance under rotation through 27/S, where S is the spin of the intermediary
particle.

OO
014088

Deformation of a ring of test particles under the influence of different

gravitational wave polarizations



