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8. Prime right Goldie rings

We know from the previous sections that a prime right Goldie ring
has a semisimple ring of fractions. As might be expected, that ring
of fractions is actually prime, hence simple artinian (i.e., of the form
Mn(D)). In fact, more is true.

Proposition 8.1. Let R be a right order in Q. If R is prime (resp.
semiprime) then Q is prime (resp. semiprime).

Proof. We do only the prime case. Let R be prime. Let as−1, bt−1 ∈ Q
(where a, s, b, t ∈ R, with s, t regular) with as−1Qbt−1 = 0. Then
as−1Qb = 0. Since sR ⊂ Q, we have as−1sRb = aRb = 0. Thus a = 0
or b = 0. Then as−1 = 0 or bt−1 = 0. Thus Q is prime. �

On the other hand,

Proposition 8.2. If R is a right order in a simple artinian ring Q,
then R must be prime right Goldie.

Proof. We already know from Proposition 6.4 that R is semiprime right
Goldie. We need only show that R is prime.

Let I be a non-zero ideal of R and let J be an ideal such that IJ = 0.
Then J ⊂ r. ann(I), so if we can show r. ann(I) = 0, we are done.

Well, since I 6= 0, we have QIQ 6= 0. Since Q is simple, QIQ = Q.
Thus 1 =

∑n
i=1 qiaitis

−1 with qi ∈ Q, ai ∈ I, ti ∈ R and s regular in R.
(Just one s is necessary since we can find a “common denominator.”)
So s =

∑n
i=1 qiaiti ∈ QI. Since I r. ann(I) = 0, we have QI r. ann(I) =

0. Thus s r. ann(I) = 0. But s is regular, so r. ann(I) = 0. �

9. Radicals

As far as I have seen in the literature, for noncommutative rings we
do not say that the intersection of all prime ideals containing an ideal I
is called the radical of I. However, there are “radical ideals” out there.
Here are the main ones, with some of their basic properties.

Recall that an ideal is nil if all of its elements are nilpotent.

Definition 9.1. Let R be a ring. The lower nilradical, nil(R), is the
intersection of all prime ideals of R. The upper nilradical, Nil(R), is
the sum of all nil ideals.
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If R is commutative, then nil(R) = Nil(R). But in general, we have
only nil(R) ⊆ Nil(R).

Perhaps the most widely used radical is the Jacobson radical, J(R).

Definition 9.2. Let R be a ring. The Jacobson radical, J(R), is the
intersection of all primitive ideals.

There are various other important ways of representing the Jacobson
radical.

Proposition 9.3. Let R be a ring. Then J(R) is equal to the inter-
section of all maximal right ideals. Symmetrically, it is equal to the
intersection of all maximal left ideals. �

Proposition 9.4. Let y ∈ R. Then y ∈ J(R) if and only if 1− xyz is
invertible for all x, z ∈ R.

Just as in the commutative case, the above proposition leads to

Lemma 9.5 (Nakayama’s Lemma). Let M be a finitely generated right
R-module. (That is, there exist m1, . . . ,mk such that for any m ∈ M ,
m =

∑
miri for some ri ∈ R.) Let J = J(R). Then

(1) If M = MJ , then M = 0.
(2) If N ≤ M and M = N + MJ , then N = M .
(3) If M/MJ is generated by x1+MJ, . . . , xk+MJ , then x1, . . . , xk

generate M . �

The main use of these radicals is to mod out by one them and then
study the resulting simpler ring. That is, given a ring R one wishes
to study, one method of attack would be to first study R/J(R) (or R
modulo another radical). Then R/J(R) is a semiprime ring. Try to
prove your theorem for R/J(R). Then using Nakayama’s Lemma or
other theorems, try to bring your results back to R.

10. PI-rings

In this section we will briefly survey the class of rings which are
arguably closest to commutative rings. Consider the noncommutative
polynomial f(x, y) = xy − yx. Then if R is commutative, for any
a, b ∈ R, we have f(a, b) = 0. So what happens if other polynomials
are used instead?

First we’ll need some definitions.

Definition 10.1. Let C be a commutative ring and let = C〈X〉 =
C〈x1, x2, . . . 〉 be the ring of noncommutative polynomials in countably
many variables (also known as the free associative algebra on countably
many variables). Let f(x1, . . . , xn) ∈ C〈X〉. Then

(1) We say f is an identity if f(r1, . . . , rn) = 0 for all ri ∈ R.
(2) If f is an identity and the coefficient of one of its monomials of

highest degree is 1, then f is a polynomial identity.
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(3) A C-algebra R with a polynomial identity is called a PI-algebra
(polynomial identity algebra).

(4) If C = Z and R has a polynomial identity, then R is called a
PI-ring.

Note that if p is a prime number and R is a ring with characteristic
p, then px is an identity for R, but not a polynomial identity. We do
not wish these rings to (necessarily) be PI-rings, hence the need for the
“coefficient 1” requirement.

Also, convince yourself that any subring and any homomorphic image
of a PI-ring is a PI-ring.

As noted above, any commutative ring is a PI-ring. Also, any exte-
rior algebra is as well, since f(x) = x2 is a PI. Of great importance to
PI theory is that matrices over a commutative ring are PI.

Definition 10.2. Let Sn be the symmetric group on n elements and
let

sn =
∑
σ∈Sn

sign(σ)xσ(1)xσ(2) · · · · · xσ(n).

Then sn is called the standard polynomial in n variables.

The polynomials sn are examples of multilinear polynomials. These
are the polynomials which have each variable xi appearing with degree
exactly 1 in each monomial.

Theorem 10.3 (Amitsur-Levitski). Let C be a commutative ring. The
matrix ring Mn(C) is a PI-ring which satisfies s2n. No polynomial of
degree < 2n is an identity for Mn(C). �

The fact that matrix rings are PI is not just an isolated curiosity.
Amazingly, it turns out that any (semi)prime PI-ring is closely related
to a matrix ring. We start with the primitive case.

Theorem 10.4 (Kaplansky). Let R be a primitive PI-ring. Then R ∼=
Mt(D) where D is a division ring, and n2 = [R : Z(R)] = t2[D :
Z(D)]. �

So in other words, any primitive PI-ring is simple artinian.
Kaplansky’s Theorem can be used to relate any semiprime PI-ring

to matrix rings over commutative rings.

Proposition 10.5. Let R be a semiprime PI-ring, satisfying a PI of
degree d. Then R can be embedded as a subring of∏

k<n

Mk(Hk)

where each Hk is a direct product of fields and n = [d/2]. �

PI-rings are also connected to matrix rings (over division rings) via
the Goldie theory we have studied.
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Theorem 10.6 (Posner). Let R be a prime PI-ring. Then R is left
and right Goldie, and hence has a quotient ring Q of the form Mn(D)
for some division ring D.

Furthermore, Q ∼= R(Z(R)\{0})−1 and Z(Q) ∼= Z(R)(Z(R)\{0})−1.
That is, one need only invert the non-zero elements of the center of R
to get the quotient ring, and also the center of the quotient ring is the
quotient ring of the center. �

(As far as I can tell from the literature, the 2nd paragraph was not
originally proven by Posner, but it goes well with the 1st paragraph.)

Exercise 10.7. (i) Let R be a prime ring. Show that the center Z(R)
is a domain.
(ii) Let R be a simple ring. Show that Z(R) is a field.

11. Azumaya algebras

Given the second part of the exercise above, we now define another
important class of algebras. First we need another definition.

Definition 11.1. Let R be a ring. Then Rop is the opposite ring, where
Rop has the same additive structure as R, but where a · b = ba when ·
denote multiplication in Rop and juxtaposition denotes multiplication
in R.

If R is an algebra over a commutative ring C, then Re = R⊗C Rop.

Definition 11.2. Let R be a simple ring which is finite dimensional
over its center. Then R is a central simple algebra.

Notice that since a central simple algebra R is a finite dimensional
vector space over Z(R) (a field by Exercise 10.7, it must be that R is
artinian. Thus R ∼= Mn(D) for some division ring D which is finite
dimensional over Z(D) ∼= Z(R). In fact, central simple algebras are
also tied to matrix rings as follows.

Proposition 11.3. Let R be a central simple F -algebra with [R : F ] =
n. Then Re ∼= Mn(F ). �

We wish to generalize the concept of central simple algebras to a
much more general case.

Definition 11.4. Let C be a commutative ring and let R be a C-
algebra. Then R is Azumaya if

(1) R is a faithful, finitely generated projective C-module.
(2) Re ∼= End RC

So we have that any central simple algebra is Azumaya, given Propo-
sition 11.3. Some of the importance of Azumaya algebras comes from

Proposition 11.5. Let R be a C-algebra. Then the following are equiv-
alent:
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(1) R is Azumaya,
(2) C = Z(R) and R is a projective Re-module,
(3) there is a category equivalence

{C-modules} → {right Re-modules}
given by R⊗ •. �

Azumaya algebras are tied to PI theory by the following theorem.

Theorem 11.6 (Artin-Procesi). Let R be a C-algebra. Then R is
Azumaya of constant rank n2 if and only if R satisfies all multilinear
identities of Mn(Z), but there is a multilinear identity f of Mn−1(Z)
such that no non-zero homomorphic image of R satisfies f . �
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