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1. Homological preparations.

Exts and Hochschild cohomology. Let k be a (usually algebraically closed) field,
and let A be a k-algebra. Denote by A-mod the category of right A-modules and
consider the exact forgetful functor

w: A—mod — k —mod
Given two A-modules M and N, we shall always use the identification

o' Ext'y(M,N) ~ HH'(A, Homy(M,N)) for i =0, 1,2,

where Homy (M, N) is provided with the obvious left and right A-module struc-
tures. If L, and F, are A-free resolutions of M and N respectively, and if an element

¢ € BEatly (M, N)

is represented by the Yoneda cocycle,

€ = {€.} € [[Homa(Ln, Fuo1)

then ol(€) is gotten as follows. Let o be a k-linear section of the augmentation
morphism
p: Lo — M

and let for every a € A and m € M, o(ma) — o(m)a = do(z). Put,
o' (€)(a,m) = —p(&(2))

Typeset by ApS-TEX
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where
I Fo — N

is the augmentation morphism of F,. Then,
o' (€) € Dery(A, Homy (M, N))

and its class in HH'(A, Homy (M, N)) equals o (£).

Recall the spectral sequence associated to a change of rings. If 7: A — B is
a surjective homomorphism of commutative k-algebras, M a B-module and N an
A-module, then Eat% (M, N) is the abuttment of the spectral sequence given by,

EDY = Exth, (M, Ext? (B, N)).
There is an exact sequence,
0— B} — Eat) (M, N) — ES' — E2°,
which, for a B-module N, considered as an A-module, implies the exactness of
0 — Exth(M,N) — Eaxtly (M, N)
—s Homp(M,Homp(I/1?,N)) — Ext%5(M,N)
where [=ker 7. The corresponding exact sequence,

0— HHY(B, Homy(M,N)) — HH'(A, Homy(M, N))
— HOmA(g)AOP(I,HOmk(M,N))

in the noncommutative case is induced by the sequence

0 — Dery(B, Homy(M,N)) — Deri(A, Homy (M, N))
— HOmA(g)AOP(I,HOmk(M,N)).

Notice that in general we do not know that the last morphism is surjective. This,
however, is true if B=A/rad(A), where rad(A) is the radical of A, and A is a finite
dimensional, i.e. an artinian, k-algebra. In this case, B is semisimple and the
surjectivity above follows from the Wedderburn-Malcev theorem. Notice also that
in the commutative case,

Homagaer (I, Homy(M,N)) ~ Homp(I/I?, Homp(M, N))

as it must, since for ¢ € Homagaor (I, Homy(M,N)), a € A, and i € I, ai = ia,
and therefore

ap(i) = ¢(ai) = ¢lia) = ¢(i)a, ie. ¢(i) € Homp(M,N).

This implies that for B = A/p, M = A/p, N = A/q, where p C q are (prime) ideals
of A,
Exty(Afp, A/q) = Homa(p/p* A/q)
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and, in particular
Exty(A/a,Ala) = Homa(a/a*, A/q) = Ny,
the normal bundle of V(q) in Spec(A). If ¢ C p and q # p we find,
Eaty(Afp, A/q) = Extly, (Afp, A/q).

In [La 1], chapter 1., we considered the cohomology of a category ¢ with values
in a bifunctor, i.e. in a functor defined on the category morc of morphismes of c.
Recall that a morphism between the objects ¢ and 1’ is a commutative diagram,

¥

Cl ——=Co

|

¥

¢y ——ch.

It is easy to see that this cohomology is an immediate generalization of the projec-
tive limit functor and its derivatives, or if one likes it better, the obvious general-
ization of the Hochschild cohomology of a ring. In fact, for every small category ¢
and for every bifunctor,

G:ecxe— Ab

contravariant in the first variable, and covariant in the second, one obtains a co-
variant functor,
G more — Ab.

Consider now the complex,
D*(¢, G)

where,

e, 6)= [ Gleoey)

Ccg—C1 ~~~—>Cp

where the indices are strings of morphisms v; : ¢; — ¢;11 in ¢, and the differential,
d? : DP(¢,G) — DPl(c, Q)
is defined as usual,

(dpg)(wlv s 7¢i7 wi+17 s 7¢p+1) - ¢1€(¢27 s 7/¢p+1)
P
F (11, 0P, pa) + (0P TEW P

i=1

As shown in [La 1], the cohomology of this complex is the higher derivatives of the
projective limit functor h;nw applied to the covariant functor

morc

G : more — Ab.
This is the ”Hochschild” cohomology of the category ¢, denoted
H*(¢,G) .= H*(D*(¢,G)).
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Example 1.1. Let ¢ be a multiplicative subset of a ring R, considered as a category
with one object, and let R : ¢ x ¢ — Ab be the functor, defined for 1,4’ € ¢, by
R(1p, ") = 1*9)L., where * is left multiplication on R by v, and where 1, is right
multiplication on R by 9/, then

HOc, R) = {¢ € R| ¢ub = ¢ for all ¢ € c},

i.e. the commutant of ¢ in R.

Given a k-algebra A, and consider a subcategory ¢ of the category of right A-
modules. Let, as above 7w : ¢ — k — mod be the forgetful-functor, and consider the
bifunctor,

Homg, :cxXc¢c— k—mod

defined by
Homy(V;,V;) = Homy (V;, Vy).

Put,
Oo(e,7) := Ho(g, Homg).

It is clear that Og(c, ) is a k-algebra, and that there is a canonical homomorphism
of k-algebras,
770(2771-) : A — 00(27 7T)7

see §5.

Example 1.2. Let A be a commutative k-algebra of finite type, k algebraically
closed, and let Spec(A) be the subcategory of A-mod consisting of the modules
A/p, where p runs through Spec(A), the morphisms being only the obvious ones.
It is easy to see that the homomorphism

no(Spec(A), ) : A — Op(Spec(A), r)

identifies A/rad(A) with Og(Spec(A), ). 1If rad(A) = 0 we even find an isomor-
phism,
no(Simp*(A), m) : A >~ Op(Simp*(A), 7).

Here Simp*(A) is the subcategory of A-mod where the objects are A and the simple
A-modules, A/m, i.e. the closed points of Spec(A), and where the morphisms are
the obvious quotient morphisms A — A/m. no(Simp*(A), ) is, however not, in
general, an isomorphism. This is easily seen when A is a local k-algebra. To remedy
this situation we shall introduce and study a generalization O(c¢,7) of Og(c, )
defined in terms of the noncommutative deformation theory, see the next §’s.

§2. Noncommutative deformations.

The category a,., test algebras and liftings of modules.
Let a, be the category of “r-pointed” artinian k-algebras. An object R of @, is
a diagram of morphism of artinian k-algebras,

kréR

N,

k’l"
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Put, Rad(R) := kerp, such that,

R/Rad(R) ~ [ ks, ki =k

=1

A morphism ¢ : R — S of g, is a morphism of such diagrams inducing the identity
on k", implying that the induced map,

k" ~ R/Rad(R) — S/ Rad(S) ~ k"

is the identity. Pick idempotents e; € k™ C R such that
r
dei=1,  ee;=0if i A
i=1

For every (i, ), we shall consider the subspace R;; := e;Re; C R, and the pairing
Rij @k Rjk — Rk

given in terms of the multiplication in R.

Let
R = (Rij)
be the matrix algebra, the elements of which are matrices of the form
(aij)
with a5 € Ry, i,7 = 1,--- ,r. There is an obvious isomorphism of k-algebras
¢: R— R

defined by

Plo) = (esxe;).
identifying the sub k-algebra k" of R with the algebra of diagonal » x r-matrices.
Now, for any pair (i,7), 1,7 = 1,...,r, consider the symbol ¢;;, and let’s agree
to put all products of such symbols equal to zero. Then we define the (i, j)-test
algebra R(i,7) as the matrix algebra

Rii,j)=k"® i |- k-e; - for i # 7

R(i,i)= i | - klea] --- for i = j
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Denote by HH*(A,—) the Hochschild cohomology of the k-algebra A. If W
is an A-bimodule denote by Dery(A, W) the k-vectorspace of derivations of A in
W. Thus ¢ € Dery(A, W) is a linear map from A to W such that ¥ (a; - as) =

a1t (az) + Y (a1)as.
In particular, any element w € W determines a derivation i(w) € Derg(A, W)
defined by i(w)(a) = aw — wa. There is an exact sequence

0— HHY(A,W) - W — Derp(A, W) — HH*(A, W) — 0
If Vi, V; are right A-modules, then

Homy (V;,

Q<

)
), then a¢ is defined by (ag)(v) =

S

(

is an A-bimodule. In fact if ¢ € Homy(V;,

¢(va), and ¢a is defined by (¢a)(v) = ¢(v)a.
Moreover, we know that

HH (A, Homy (V;, V})) = Homa(V;, V})
HH'(A, Homy (V;,V})) = Extl(V;, V).
Fix a finite family V = {V;}I_, of right A-modules, and consider for every
Y € Deri(A, Homy (V;, V3))

the left R(i,j)-module and right A-module,

defined by

1 mMa
( v; GijU;' \| a ( via €5 (a, v;) +Ug.a) \|

S A v wa)

and the obvious left R(i,j)-action. The R(i,j)- and the A-action commute, there-
fore we have got a R(i,j) ® A-module, such that

K" QR Vij(W) = O, Vi

Vi;j (1) is called a lifting of V to R(i,j). It is easy to see that if 1) maps to zero
in HHY(A, Homy, (V;,V;)) = Exthy(Vi, V;) then the lifting Vi;(v) is trivial, i.e. iso-
morphic to the trivial one. Conversely, if V;;(¢) is trivial, then ¢» maps to zero in
Exth (Vi,V}).
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The noncommutative deformation functor.

We are now ready to start the study of noncommutative deformations of the
family V = {V;}7_,;. We shall assume that V is a swarm, i.e. that for all i,j =
1,2,...7,

dimy Eatly (Vi, V;) < oo,

Given an object p : R = (R; ;) — k" of a,., consider the left R-module (R; ;&5 V}).
p defines a k-linear and left R-linear map,

p(R) = (Rij x Vy) — @i Vi,
inducing a homomorphism of R-endomorphism rings,
A(R) : (Riy @1 Homy(Vi, Vi) — @i Endi(V;).

The right A-module structure on the V/s is defined by a homomorphism of k-
algebras,
no: A — DL Endg (V).

Definition 2.1. The deformation functor
Defy :a, — Sets
is defined for every R € a,, as the set,
Defy(R) € Sets
of isoclasses of homomorphisms of k-algebras,
{n'+ A— (Rij or Hom (Vi V5))}/ ~
such that,

ﬁ(R) 077/ = No,

where the equivalence relation ~ is defined by inner automorphisms in the k-algebra
Endr((Ri; ®k Vi) = (Ri; @k Homy(Vi, V).

Any such isoclass ' will be called a deformation or a lifting of V to R, and
usually denoted Vp.

One easily proves that Defy has the same properties as the ordinary deformation
functor.

Let 7 : R — S be a morphism of g, such that Rad(R)-ker 7 = 0. Morphisms like
this will be called small. 1f Vi € Defy(R) it is easy to see that Vg := S ®p Vg €
Defy(S) and that V = ker{Vr — S®grVr} is, as a left R-module, an R/Rad(R) =
k"-module. Put kerm = (Kj;), then V = (V;;) where V;; = K;; & V.

Consider now the k-vector spaces

Egj = Extd (Vi, V;)*
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i.e. the dual k-vectorspaces of Exti(Vi, V), and consider the k-algebra of matrices,

k 0
ng = + (EUEZ)
0 k

where as above, we assume all products of the €;;’s are equal to zero. Now let for
every 1,7 =1,...,r,and d = 1,2,

{t?j (f)}zgj1

e‘.i.
and let {wflj (/)},2, be the dual basis. Thus ek, = dimkEfj.

be a basis of E¢ i

ij
Consider the k-algebra

k 0
T = (B
0 k

d
e
freely generated as matrix algebra by the generators {tfj (f)}e " . An element of
-1
Eidj is then a matrix where the elements are linear combinations of elements of the
form:
i =t ()@t () & 2t (L)

]mfljm
J=jm 1<l <ef ., 1<jo<r, m>1
of F¢

171

,1]’37
d d
QE g, ®- 0B

Obviously
Ty = T /Rad(T")2.

where Rad(T1) is the two-sided ideal of T'! generated by (E}])

Lemma 2.2. Let R be an object of a, and suppose that there exists a surjective
homomorphism

¢o: Ty — R/Rad(R)?,

then there exists a surjective homomorphism
¢: T —R

which lifts ¢s.
Definition 2.3. For every object R of a,., put

Tr = (Rad(R)/Rad(R)*)*

and call it the tangent space of R.
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Lemma 2.4. Let ¢ : R — S be a morphism of a,. Assume ¢ induces a surjective
homomorphism
ol T — T

(or an injective homomorphism on the tangent space level). Then ¢ is surjective.

Notice that if we pick any finite dimensional k-vectorspaces Ij;, then there is a
unique maximal pro-algebra F' = F'(F};) in a, with tangent space

F is defined in the same way as 7%, above, with E< replaced by F.
To prove the existence of a hull for the deformation functor Defy the basic tool
is the obstruction calculus, which in this case is easily established:

Proposition 2.5. Suppose R % Sisa surjective small morphism of a,., i.e. sup-
pose kerg - Rad(R) = 0. Put ker¢ = (I,;). Consider any Vs € Defy(S). Then
there exists an obstruction

0(¢, V) € (Lij < Exty(Vi, V;))

which is zero if and only if there exists a lifting Vi € Defy(R) of Vs. The set of
isomorphism classes of such liftings is a psevdotorsor under

(Ii @1 Baty (Vi, V;)).
Proof.  As a k-vectorspace Vp = (R;; ® V;) maps onto Vg = (S;; ® V;). Since the

right action of A commutes with the left S-action the action of an element ¢ € A
on Vg is uniquely given in terms of a family of k-linear maps,

aij 2 Vi — Sy @ Vj.
We may of course lift these to k-linear maps
o(a)ij: Vi — Rij @V

inducing a lift of the action of each element of A on
B Si; 2 V;
j=1

to a k-linear action on §
@ Rij & V
j=1

The obstruction for this to be an A-module structure is, as usual, the Hochschild
2-cocycle
V?(a,b) = o(ab) — a(a) - o(b) € (Iij @y Homy(Vi, V).

The fact that this is a 2-cocycle follows from

(1) o(c)-9*(a,b) = - $*(a,b)
(2) ¥*(a,b) - o(c) = ¥*(a,b) - ¢



10 O.A.LAUDAL

and the obvious relation

di*(a,b,c) = ap?(b,c) —*(ab, ¢) + v*(a,bc) — ¥?(a,b) - ¢
=o(a )( (be) — o(a)o(c)) — ( (abc) — a(ab)o(c)) + (o(abe) — a(a)o(be))
— (o(ab) — o(a)o(b))o(c) =

Suppose the class of 2 in (I;; ®y Fat%(Vi, V;)) is zero. This means that ¢? = dg,
where ¢ € Homy (A, (I;; Q4 Homk(VZ,VJ)), 2(a,b) = do(a,b) = ap(b) — ¢(ab) +
¢(a)b. Let 0/ =0 + ¢ and consider,

o'(ab) — o'(a)o’(b) = o(ab) — o(a)o(b) + d(ab) — o(a)p(b) — d(a)o(b) — d(a)p(b) .

Since the matrix ¢(a)d(b) =0 as I;;- I =0, Vi, j,k and since o(a)p(b) = ap(b),
¢(a)o(b) =¢(a)b for the same reason, we find that ¢’ (ab) — o’(a)o’(b) =0, i.e. there
is a lifting of the A-module action to Vg = (Ri; ® V;).

If we have given one A-module action ¢ on Vp lifting the action on Vg, then for
any other ¢’ we may consider the difference

o' —o: A— (Ij; & Homy(V;, V)
Consider
Ao’ —0)(a.b) = a(o’ () — o (b)) — (o' (ab) — o (ab)) + (0" (@) — 7(a))b

As above we may substitute o’(a) for a and o(b) for b, and the expression becomes
zero. Thus ¢’ — o = € defines a class

¢ € (Iiy o Bty (Vi, ;).

If & =0, then & = do, ¢ € (I;; @k Homy,(V;,V;)) such that o'(a) — o(a) = ad — da.
Let ¢ = (¢i;), then ¢;; defines an isomorphism

QgiidJr(ﬁ:@Rij@Vjﬁ@Rij@Vj

J J
lifting the identity of € S;; ® V;. Moreover
J
o(a)(id + ¢)(vi) = o(a)vi + ad(vi)
= 0'(a)(vi) + dlavi) = (id+ ¢)o’(a)(vi)
since ¢(o’ (a)v;) = ¢(av;).

Therefore the A-module structures on
Ve = (Ri; @ Vj)

defined by ¢ and ¢’ are isomorphic. The rest is clear. [
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Theorem 2.6. The functor Defy has a prorepresentable hull, or a formal moduli
of V, H € a,., together with a versal family

V = (H,;&V;) € lim Defy(H/Rad(H)")
n>1
such that the corresponding morphism of functors on a,.,
p:Mor(H,—) — Defy

is smooth and an isomorphism on the tangent level. Moreover, H is uniquely
determined by a set of matric Massey products defined on subspaces,

D, C P Eaxt'(Vi, V) ® -+ Bat' (V)
p=2

with values in Ext?(V;, V).

Vi),

p—17

Proof. Notice first that p being an isomorphism at the tangent level means that p
is an isomorphism for all objects R of a, for which Rad(R)? = 0.

Word for word we may copy the proof (4.2) of [La 1], and the proof of [La 2.
In particular H/Rad(H)? ~ Ty and

Mor(H, R(i, j)) = Homy(Ej;, k) = Bty (V;, V;) = De fy(R(i, ).

g

Notice that the universal lifting of V to T4 is the T3 @ A-module Vs
Vi 0

- + (B o V)

0 Vo

with the obvious left T4-action and the right A-action defined as,

(L®vi)-a) =1@vi-a+ Y () ® W) ;(0)(a, v))
J4

where v; € V;, and where {t},(/)}; is the chosen basis of Ej;. Recall that
{103;(0)}32,, the dual base, consists of elements ¢7;(¢) € Euxt}(V;,V;), which may
be represented as elements of Dery(A, Homy(Vi, V;)).

To obtain H we kill obstructions for lifting Vo successively, to
T4 = TY/Rad(TY)?, T} etc. just like in the commutative case. The proof of the
existence of a prorepresentable hull for Defy can, of course, also be modeled on

the classical proof of M.Schlessinger [Sch]. This has been carried out by Runar lle,
see [Ile]. O

A general structure theorem for artinian k-algebras.
For every deformation Vi € Defy(R) there exists by definition an, up to inner
automorphisms, unique homomorphism of k-algebras,

Nvg : A — Endr(Ve) = (Ri; ® Homy(V;, V).
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Definition 2.7. Let V = {V;}]_; be any finite swarm of A-modules, and let H :=
H(V) be the formal moduli for V, and V the versal family. The k-algebra of
observables of the family V is the k-algebra,

OW) = Endp(V) = (Hi; ® Homy,(V;, V;))
We would like to describe the kernel and the image of the map,
n:A—O)
To do this we need to consider the matric Massey products of the form,
D, — ExtA(V“,V ),

the obvious generalizations of the matrix Massey products introduced in [La 2.
Here we shall describe these products using Hochschild cohomology. This is a
more convenient way of describing the map n and maybe also an easier way of
understanding the nature of the Massey products.
To simplify the notations, put

Exty (V) = (Eaty (Vi, Vi)
For [ = 2, the Massey product above is simply the cup product
Exth (V) ® Extly (V) — Ext? (V)

defined by: Let (¢7;), (¥%) € Ext)y(V), and express 1} as 1-Hochschild cocycles,
ie. ¥}, € Dery(A, Homy (V;, V;)), 07, € Dery(A, Homy(V;, V;)). The cup product
(i) U (7)) € Ext%(V), now denoted

(i), (W3)) € Eati(V)

is defined by the 2-cocycle in the Hochschild complex

(W), (3 (a, by = wa o Y3, (b) € Homy(Vi, Vi)

1 2 o . . . .
Suppose ((1;;), (¥;;)) = 0, this means that there exists, for each pair (i,k) a 1-

cochain ¢}2 in the Hochschild complex, i.e. a map
12 ¢ Homy (A, Homy(Vi, Vi)

such that d¢j? = (), (¥3))ak, i.e. such that for all a,b € A,

ij

aii (b) — ¢iit (ab) + @3t (a)b = Z%(a) 0 15, (b)
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Given classes ¢! = (), 9* = (¥7),9° = (¥7;) € Eaty (V) such that (!, 4?) =
(1p2,1%) = 0 there exists ¢12 = (¢pi2), ¢** = (¢3)) € Homy (A, Homy(Vi, Vi) such
that

dp'? = (1, ¢?),  de* = (¥*, 7).

Then there exists a matrix Massey product
(Wl 9% 0% € Bati(V)
defined by the 2-cocycle
W% %)k (a,b) =Y o @y (0) — Y k(@) (b)
J J

in Homy(A®y A, Homy(V;, V).

As in [La 2] we may go on and obtain a sequence of defining systems {D,}2° o
and Massey products, computing the relations of H (V).

Now if ¢ € A, denote by a; € Homy(V;,V;) its action on V;, i = 1,... ,d. Let
Endy(V) be the diagonal matrix (Endg(V;,V;)), contained in the matrix
Endi (V) = (Endi(V;,V;)). Put,

End(V)a = (a1,...,aq) € Endo(V) C End(V)
If @ € A is such that End(V)a = 0, this means that « acts trivially on each V;.
Let ¢ € Exth (V) be represented by 1-cocycles v;; € Derg(A, End,(Vi,V;)). 1If
End(V)a = End(V)b = 0, we find,
ig(ab) = ariz(b) + iz(a)b = 0
This shows that ¢ € Eatl (V) defines a unique k-linear map,

Y:{aeA| End(V)a =0} — Endg(V)

vanishing on all squares.
Let a € A, End(V)a = 0, and put

Exty(V)a=0
when 1(a) = 0, Vi € Extl (V). Consider the sub k-vector space of A
Ki={ac A| End(V)a = Ext},(V)a =0}

Let > a0t @ 97 € Extl (V) @ Extl (V) such that its Massey (cup-)product is
zero, i.e. such that:

> i 7y =0
Then there exists a 1-cochain ¢ € Homy (A, (Homy (V;,V;))) such that

dgp = (@', 97)
ij
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Since d¢ = 0 implies that ¢ represents an element of Extl (V) it is clear that ¢
defines a unique k-linear map

¢: Ky — Endi (V).

Let us denote by
ker(Extl,(V), Exty (V)

the subset of Exth (V) @ Extl (V) for which the Massey product (i.e. the cup
product) is zero. Then we may put

ker(Extl,(V), Exty(V))a =0

if for every d¢ € ker(Extl (V), Exty(V)), ¢(a) = 0.
Let

Ky ={ac A| End(V)a = Extyy(V)a = ker(Ext,(V), Ext (V))a = 0}

Continuing in this way we find a sequence of ideals { K, } >0, where Ko = ker{A —
End(V)} and, in general, K,, = {a € A | Dna = 0}.

Theorem 2.8. Let A be any k-algebra and let V = {V;}._, be a swarm of A-
modules. Then the kernel of the canonical map

n:A—OW)

is determined by the matrix Massey product structure of Ext%(V), i = 1,2. In fact

kern = m K,

n>0

Proof. By definition, the homomorphism of k-algebras
n:A— OW)

lifts the k-algebra homomorphism,

d
no: A— [ Enda(Vi).

i1
Modulo Rad(H)? n induces the homomorphism,

d
i=1

with,
0 i#j

m(@)y =g @ moa) + 3t () @ i@ =), by = { 1 i=

l
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Now, by construction H is the quotient of the formally free k-algebra T'' generated
by the independent variables {t;;(l), [ = 1,...,l;;} as explained above. The rela-
tions of 7! are generated by linear combinations of monomials in these variables of
the form,

l ki v
Yik = ZZ aity i (Wt (l2) -tk (1),

rlg,

corresponding to elements,
yir, € Bty (Vi, Vi)*

The coefficients « are expressed in terms of partially, but inductively well defined,
matric Massey products,

(Or: D —  Eaty(V)

such that, if the Massey product (1} (I1),... vwgl'r,l,k(lr)> is defined, then

v (W4 (L), ) G ))) = afiob

We therefore obtain a basis for H, as k-vector space, by picking, in a coherent
way, a k-basis for
coker{ Ext3(V)* — D} = (ker{ ), )"

Since K, = ker(),, the conclusion of the Theorem follows. [J

Remark 2.9. Let I;; be an extension of V; by Vj, then as a k-vector space F;; —
V; @ V; and the right action by A is defined for (v;,v;) € Eij, a € A by,

(vj,vi)a = (vja + wilj(a, v; ), via),
where,
wilj € Deri(A, Homi (V;, Vj))
defines an element,
71'13' € Eath(V;, Vi)

corresponding to [5;;. Suppose we consider an extension Fjj, of E;; by V. Then
as a k-vector space Fy, ~ V, ®© Ei; = Vi, ©V; @ V; and the action by A is defined
by
(Vg v5,vi)a = (vka + @(a, (vj,v:)),v5a + wilj(a, Vi), via).
By additivity
P(a, (vj,v:)) = ¢la, (v5,0)) + ¢(a, (0,v:)) .

Put

wiljo(av Ui) = (a Uz) wjo'icl(av Uj) - (;5((1, (Ujv 0))7 wzlkl(av Ui) - (;5((1, (07 Ui)):
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then the conditions on the action imply

¢?;;1 € Dery (A, Homi (V;, Vi)
%1'1}1 € Homy (A, Homy (V;, Vi)

and

1,1 ,01 _ 1,0
dwik *wjk O%j .

This means that 1@?1;1 € Eatl (V;, Vi) and that the cup product,
YUt Ut € Batd (Vi, Vi)

is zero.
Now, consider an extension I, of Fi; by Vi. As before the action of A on
Eijri is given by

(Ulvvkvvjvvi) - a

= (vi-a+ ¢la,vi, v, v:), vk - a + % (a,v;) + w;),;l(a, V), 05 - a -+ (a,v), v - a).
Put, as above,

100 — 41,0
JOL0 — 0.1

220’1(% vi) = ¢(a,vi,0,0)
w?l’l’l(a, vj) = ¢(a,0,v;,0)

Y (@, v5) = 6(a,0,0,v;)
The conditions on ¢ are expressed by:

dwo 01 _
01,1 _ ,0,0,1 _ ,0,1,0
dw =Y ° wjk

¢1’1’1 ¢0’1’1 ¢100+¢001 ¢1’1’0

This means that ;"' € Extl(Vi, Vi), that the cup product 17" wo,w

Ext% (V;, V) is zero, and that the Massey product
(Wi 050 0377 € Bata(Vi, Vi)

is zero.
It is clear how to continue.
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Corollary 2.10. Suppose the k-algebra A is of finite dimension, and let the finite
swarm V = {V;}I_, contain all simple representations, then

n:A—OW)
is Injective.
Proof. Let a € A, and suppose n(a) = 0. Since A as a right A-module is an
extension of the V’;s we may assume there are exact sequences of right A-modules

0 1 A Dicr,Vi—0
0 QQ Ql @ieIQVi —0
0 Qn QN1 ——=Dics, Vi—0

with Qv = @Biery,, Vi @nvi1 = 0. Since End(V)a = 0 it follows from the first
exact sequence above that 1-a¢ =a € Q1. Consider the exact sequence

0— PVi — 4/Q: — PVi —0

i€l iely
Since Extl(V)a = 0 it follows that 1-a = a € Qq. In fact, multiplication by
a is zeroon V;, i = 1,... ,r and on A/Qs it is therefore given by the elements in

Exth (V). Continuing in this way, we consider the extensions of extensions,

0——=Dicr,Vi—=A/Qs——=A/Qs ——0

0%@'[611\74,1‘/’5 A A/QN%O
Refering to (2.9), we know that the multiplication by @ € A on the right in the mid-

dle term is given inductively, by a family of cochains wfj € Homy(A, Homy(V;,Vj)),
with € € {0,1}", for 2 < n, such that
Ay = Y Vi Uit
£1+£'2:£
7

Now, this means that all these extensions are defined in terms of a series of well
defined Massey products each one containing 0. By the proof of Theorem (2.8), we
find that for all 4, j and all ¢, ¥7;(a, —) = 0.

This means that the action of ¢ € A must be 0,80 a = 0. [

The same proof works for the following,
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Corollary 2.10 bis. Suppose the k-algebra A is an iterated extension of the ob-
jects in the finite swarm V = {V;}I_,. Then

n:A—OW)
is Injective.

Corollary 2.11. Suppose A is an object of a,., and let V = {V;}I_, be the family
of simple representations, with V; ~ k;. Then

A~H
Proof. Obviously A is a left A-and a right A-module, flat over A, therefore A €
Defy(A). Let R € a, and pick an element Vi € Defy(R). Since

End(V) = | : e

this amounts to a homomorphism of k-algebras A — Endr(Vgr) = R, implying that
A is versal. But then the unicity of the hull of Defy gives us an isomorphism:

¢o:H— A
O

Example 2.12. Reconstructing an ordered set A and k[A], from the swarm
of simple modules.

Let A be an ordered set, see §1, and let A = k[A], V = {ka}rea. Then the
Corollary above implies that H ~ k[A].

1. By the general theory we know that A = k[A] is the matrix algebra generated
freely by the immediate relations A; > Ao, i.e. those for which {\* € A|A; > A* >
Ao} = 0, modulo relations of the form

(N> A (A3 > A3) - (A, > A)
= (N> A8 >A9) (7, > )

They correspond to the first obstructions, given by the n; term well defined Massey
products

Eaty (kv kyy) © -+ - 0 Ext)y (kxs o) — Ext? (kx k)
Eaty (kv kyz) @ -+ 0 Extly (ke Lok — Ext? (kx k)

There are as many relations as there are base elements of Eat? (kx, k).
2. Let us check this for the diamond, i.e. for A:

2/0\3
L
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One easily computes the Fzt’s,
0 i=j
Exth(kx, ky,) =< k for i=1,j=23
k for i=2,3, j=4

0 for (i,7) # (1,4)

Eaxt? (ky. k) =
wtalkn k) {k for i =1, j—4

The two cup-products
Extk(kkl,kxj) & Extk(kxj,kkl) — Exti(]@\l,]@%) for j = 2,3,

are non-trivial. At the tangent level we have:

E k k 0
0 k 0 k
Ho=1qg o & &
0 0 0 k

Therefore H must be a quotient of the matrix ring,

k tia-k tia-k (tiotes -k + tistsa - k)

T1: 0 k 0 t24-]€
0 0 k t3q - k
0 0 0 k

The kernel of 71 — H is given in terms of the cup products above. In fact, since
we have t§; Uth, =ty Uts, = y* where y* is the generator of Ext? (ky,,ky,), the
kernel of T1 — H is simply 13 ® t34 + t12 ® ta4 such that

k k k

k
k

H= L | = kA
k

0 k£ 0
0 0 k
0 0 0
as it should.

In general, we may reconstruct A from the tangent space Ty and the Massey-
products above.

The corresponding problem for finite groups, i.e. reconstructing G' from k|G|
is called the isomorphism problem. Due to some nice examples of Dade, we know
that this is hopeless. In fact there are two non isomorphic finite groups such that
their group-algebras are isomorphic for all fields.

Example 2.13. Given any scheme H = Spec(H), say the 2-dimensional affine
space given by H = k|x1, z2|. We shall be interested in the noncommutative moduli
space parametrizing subschemes of length 2 of H. We may do this by simply
considering a point in the space Spec(H ) together with a tangent direction, i.e. the
right H-module of the form,

V = klay, 22/ (27, 22),

and compute the formal moduli of V.
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Lemma 2.14. The formal moduli, H(V) of the H-module V. = H/(23,25), is
given as the completion of the k-algebra,

Q = k{t1,t2, w1, w2} /11, y2)

where
Y1 = [t1,t2] — ti|wr,wa] Yo = [t1,wa] — [t2, w1] — wilwi, wa],

and where the family of left 2-and right H-modules,

QR k2

is defined by the actions of x1 and x9, given by,

(0 & ot liwe
xl(l w1)7x2<w2 t2+w1w2)

Proof. Consider the obvious free resolution of V := H/(2%,25) as an H-module,

V<= H=<5—H*<;—H=<;—0
where we have,
do = (23, 22), dy = <_x;%) .
Consider the Yoneda complex, and pick a basis
(L1, ba;01, 9, }

of Ext},(V,V) represented by the morphisms of the diagram,

Vel gt g2 <t <=0
wj o
i, 2
Vel H=" <t g
wj o
i; iz
V<5—H~<5 H? o H 0
Here,
ﬂ - (170)7 tg - (Ovla)a
@1 = (21,0), &y = (0,21)
and,
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and finally,

Using this it is easy to see that ,
t: Ut =0, 1 Uty = —to Uty = §1,
and that

A2 1,2 e 152 Al
tiws = wits = —ya, w;t; =0, w;

where,
{1, 92}
is a basis for of Ext%(V,V) represented by the morphisms of the diagram,

V<l—pg <t
U1
i
P )i dg H;

“ g 0

dy

H 0
where 7 = (1) and g = (21). Therefore
—QQ :fl Uwg = N Ulgg = —ngd)l = —QA}QULtl, d)iUd}j :fiULtj = 0.

Now, consider the dual basis {t1,%2;w1, w2} generating the hull of the deformation
functor De fy[q, we find after a simple computation of the 3. order Massey products
the formulas we want.

Notice that we just have to compute the tangent situation and check that our
formulas give us a lifting of the quadratic relations and of the corresponding H-
action, to know that our result holds.

O
By a simple computation one checks that the k-points of €2 form an open dense
part of Hilb?A? containing V. Hilb?A? is the blow-up of (A? x A?)/Zs along the
diagonal. However, there are other simple representations of £2. The homomrphism,

g 0
0— g 2
k’tth’atl’atQ]

maping w; to -, shows that k|t1,?2] is a simple representation of .

ot

§3. Noncommutative modular deformations. Let V' be any right A-module
such that dimy FEat’y(V,V) < co. Consider the formal moduli 4 =: H, the formal
versal family V = H ® V| and the corresponding morphism of functors,

p:Mory (H,—)— Defy.
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We know that p is not, in general, injective. However, V is also a right AR End(V')-
module. As such it has a formal moduli 474 and there is a natural k-algebra
homomorphism, H4 — HAPnd, Let H$ be the unique maximal common quotient
of HA and HA""? Using the same construction as in [La, Pf], §2, we prove that
the composition,

po: Morg (Ho,—) — Mor, (H,—) — Defy

is injective.
At the tangent level, the homomorphisms,

HA _, ffABnd __ prEnd
looks like the canonical homomorphisms,

Representing elements of the Ext-groups as derivations, it is easy to see that the two
images are contained in the subspace Fatl (V, V)14 respectively Extl, ,(V,V)A.
Therefore the tangent space of Hyp must be contained in the subspace of invariants
under End4 (V) of the tangent space of H, Extl (V,V)Fnd,

The tangent space of the modular (prorepresenting) substratum, and almost split
sequences.
Consider as above a swarm V = {V;}7_, of A-modules, and consider the k"-
algebra
Enda(V) = (Homa(Vi, Vj)).

Suppose from now on that the modules V; are non-isomorphic, indecomposables,
and that for each i = 1,..,7. End4(V;) is a commutative local ring with maximal
ideal m,;.

Lemma 3.1. Under the above assumptions, the radical of End (V') has the form
miEnda(Vy) :

m; Enda(V;) Homa(V;, V;)

m, Enda(Vy)
Proof.  We need only check that rad(V') is an ideal, and this amounts to proving
that if ¢;; € Hom(V;,V;) i # j and ¢;; € Hom(V;,V;) then
bjidi; € m; C Enda(V;).

Suppose ¢;;¢i; is not in m,, then ¢;;¢;; is an isomorphism, and we may as well
assume that ¢;i¢;; = idy,. But then V; ~ V; @ ker¢;; which contradicts the
indecomposability of V;. [

In particular this lemma proves that if A is artinian and all V; are of finite type,
then for some N,
rad(V)N =0
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Obviously there is a left and a right action of End4 (V') on
Ty = (Baty(Vi, V).

The difference between these actions defines the action of the Lie algebra End (V)
on Ty. The invariants of Ty under the Lie algebra rad(V'), is equal to the invariants
under End4(V), therefore equal to,

Th, = {£ €TuNo € Enda(V), ¢€—¢&¢p =0},

containing the tangent space of the modular, or the prorepresentable substratum
Ho of H.
Lemma 3.2. Let £ € Tq,, with & = (&;), then for all ¢ = (¢1) € rad(V) we
have for i# j, and all |,

¢1,i6i,5 = 0

§ij¢i1 = 0.
Moreover, for all i, j

$i5€5.5 = &i,i%ig

Proof. Just computation. [J

Definition 3.3. In the above situation, an extension £ € ExtY (V;, V) is called a
left almost split extension (resp. a right almost split extension), lase (resp. rase)
for short, if for all pr; € r(V )i (vesp. ¢ € v(V)jk)

¢ri€ =0 (resp. &gy = 0).

An extension ¢ which is both a lase and a rase is called an ase, an almost split
extension.

This, of course, is nothing but a trivial generalization of the notion of almost
split sequence, due to Auslander, see [R].
Denote by Ext} (V;, V) (resp. Extl(V;,V;)) the subspace of Exth(V;, V;) formed
by the lase’s (resp. rase’s), and put
Ty = (Bt (Vi,V3)) € Tn
Th = (Bat,(Vi,V;)) € Tn
T =Th NTh = (Bati(Vi, V;)) € Th.

Observe that since the left and the right action of End(V') on Ty commute, End(V')
acts at right on T and at left on T%. Moreover, by the lemma above

T4 —TLNTY CTh,.

Observe also that if Enda(V;) = k & m,; the diagonal part of Ty, is exactly the
tangent space of the deformation functor of the full subcategory of mod 4 generated
by V, see |La 1].
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The structure of the modular substratum, and the existence of almost split se-
quences for artinian k-algebras.

Assume that A is artinian, and that the V/s are of finite type. Then Ty is a k-
vectorspace of finite dimension, and the radical rad(V') of End(V') acts nilpotently
on TH.

Corollary 3.4. Giveni € {1,...,r}, assume there exists one j € {1,... ,r} such
that Extl(Vi,V;) # 0. Then there exists a 7(i) € {1,...,r} such that,

Ext)(Vi, Vyi)) # 0.

Proof. This is simply Engels theorem for the right action of rad(V) on Ty. U

Theorem 3.5. Suppose V is such that every extension ¢ € Ext!(V;, V) is of the
form 0 — V; — I — V; — 0 with I/ a direct sum of Vi,’s. Then, for every
i=1,...,r, such that there exists a j = 1,... ,r for which ExtY,(V;,V;) # 0, there
is a unique ase of the form

0—=Vig — B =V, —0

Moreover, if we agree to put 7(i) = i for those i’s for which Ext%(V;, Vi) = 0 for
all k, then

T {l...,r} = {l,...,r}
is a permutation.

Proof. We already know that there exists a rase of the form
§i: 0= Vi) — B = Vi =0,

We shall prove that &; is also a lase. Let ¢g; € Homa(Vy, V;) for k # i, or pick an
element ¢;; € m; C FEnd(V;), and consider the commutative diagram,

Suppose Vi) — L is not split, then

Vri
0By — B, & E—V,—0
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Ve (o)
is split, since &; is a rase. Let pr.: Ey @ F; — Ej be the splitting. But then the
two following diagrams commute:

Ve
Here 9, is the composition of F; — Ep @ E; and the projection

Ve
B, & FE; — I and ¢y the induced map.

This means that (¢r;dix)& = & which is impossible since (¢gi¢ix) acts nilpo-
tently on Extl (V;, V(5)), and & is nonzero. Therefore V.(;y — Fj splits and §; is
also a lase, therefore an ase.

The unicity and the permutation property follows immediately from the follow-
ing: Assume there exist two ase’s & and &, of the form:

Then, since p} is not split, there exist liftings v;, 1! inducing morphisms ¢;, ¢;. But
then (¢;¢})¢; = & which means that ¢; is zero. Therefore an ase is unique and in
particular, 7(i) = 7(i'). Dually we prove that 7(i) = 7(i’) implies i = i’, so that 7

is a permutation.
We see that T looks like:
(o)
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where 0 if ,
EﬂﬂV@%){ WFi#ml) 1
k if j=7(i) and some Ext, (V;,V;) #0

O
Corollary 3.6. With the assumptions of the theorem above, we find that

T — {( )’{OlijEkv aij =0 if j# 7(i) }
Ho I Q5 € Extk(‘/l, ‘/z) ngﬂ € EndA(‘/Z), gbijozii = Oéjjgbji, Iflij

Remark 3.7. Consider again a not necessarily finite swarm V = {V;}}_, of noether-
ian A-modules. The k"-algebra

Enda(V)r == (Homa(Vi, V})), 1,5 <r

acts on
(Bxty (Vi, V5)), 4,5 <,

in the way described above. Suppose that the modules V; are non-isomorphic,
indecomposables, and that for each i, Fnd4(V;) is a local ring with maximal ideal
m;. Suppose moreover that any iterated extension is a direct sum of such V/s.
This is obviously the case when V = {V;}} | is the family of all indecomposible
A-modules, but holds in many other interesting cases, see [R].

Let H := H(V) and V be the prorepresentable hull and the formal versal family,

as defined in §2. For every quotient R of H in ay, such that
dimy, Rad(R)/Rad(R)? < oo

we consider the image V(R) € Defy(R) of V. Denote by L;(R) the i?*-line of
V(R). Li(R) is an A-module and a finite iterated extension of the Vj, therefore
a finite sum of indecomposables {L;(R,p)}, from our family. Obviously there is a
canonical surjection,

Li(R) — V,,

and a homomorphism of k-algebras,
v H — Enda(V(R)),
defined by left multiplication. Any element,
ri; € Rij CR
defines a homomorphism of right A-modules,
Tigy + Lj(R) — Li(R).

In particular, if r; ; is in the socle of R, this morphism induces a homomorphism
of right A-modules,
7’1'7]'* : ‘/J — LZ(R)
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Using this, we may consider different quiver-structures on the set of indecomposible
modules, {V;}} ;. The Auslander-Reiten quiver, see [R], is obtained by picking
R = Hy/Rad(Hy)?, a basis {h; ;} of Rad(Hy)/Rad(Hp)?, the dual tangent space
of Hy and letting the arrows arriving at an indecomposible V; be the compositions,

and the arrows leaving an indecomposible V; be the compositions,
hi ;
Vi =% Li(R) — Li(R,p).

For an arbitrary quotient R of H, we may construct another quiver containing more
information than the Auslander-Reiten quiver. Consider representatives

{7’17]'} S Rad(R)

of a basis of the dual tangent space Rad(R)/Rad(R)? of R, and let the arrows of
the quiver be the compositions

74,5 x

Lj(R,q) — L;j(R) =" Li(R) — L; (R, p).

There is a ring homomorphism,

R — Enda(V) = (Homa(Lj, L;)) = (Homa(Vg, V) "r9).

If this homomorphism is surjective, or an isomorphism, we find that the arrows of
the quiver generate, in an obvious way, all morphisms of the full sub-category of
A-modules defined by the family of indecomposibles V = {V;}. In both case, it is
easy to see that the relations in the quiver correspond to non-trivial cup and Massey
products of Exts(V;, V;). When A is artinian, and the family {V;} generates the
category of A-modules, it turns out that V is a projective generator. H defines a
quiver, with vertices corresponding to the indecomposible projectives, and

H = EndA(V)

is Morita equivalent to A. Moreover, H is determined by the quiver (with relations).
In particular, if {V;} is the family of simple A-modules, we shall see in the next
paragraph that,

A — (Hij © Homg(Vi, V3))

is an isomorphism, and that
Li = ®j=1,2,. Hi; ®Vj

is a projective A-module, for ¢ = 1,2, ..r. Since therefore

H =~ Enda(V) = (Homa(Lj, L))

is Morita-equivalent to A, the quiver of (projective) summands of V determines the
Morita-equivalence class of A.

We shall end this paragraph by proving the following easy result, see [K] for the
notions of Frobenius extension and Frobenius bi-module.
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Proposition 3.8. Suppose the following conditions hold:
(i) The family V = {V;} of right A-modules are either finite dimensional as
k-vector spaces, or such that,

Baty (Vi, Vi) = Batly (V] Vi),

(ii) The hull of the noncommutative deformation functor, H(V) = (H, ;) is a
finite dimensional k-vectorspace.
(iii) For each i, the projective cover of V; has a (finite) filtration with graded
components contained in the family V.
Then
n:A— OW)

is a Frobenius extension.

Proof. The assumption 1. implies that the versal family P = V as a left H and
right A-module has the duality property, *P = P*. The assumption 2. implies that
P as left H-module is finite projective, and the assumption 3. garantees that P, as
right A-module, is finite projective, therefore a Frobenius bi-module. [J

84. The generalized Burnside theorem.
In §2 we proved the following result,

Corollary 2.10. Suppose the k-algebra A is of finite dimension and assume the
swarm V = {V;}/_; contains all simple A-modules, then the natural k-algebra
homomorphism

n:A—OW) = (Hi; @, Homy(Vi, V;))

is Injective.

Recall also the classical Burnside-Wedderburn-Malcev theorems, see [Lang], and
|Curtis and Reiner]|.

Theorem (Burnside). Let V' be a finite dimensional k-vectorspace. Assume k
is algebraically closed and let A be a subalgebra of Endi (V). If V is a simple
A-module, then A = Endi (V).

Theorem (Wedderburn). Let A be a ring, and let V be a simple faithfull A-
module. Put D = Enda(V) and assume V is a finite dimensional D-vector space.
Then A ~ Endp(V).

Theorem (Wedderburn-Malcev). Let A be a finite dimensional k-algebra, k-
any field. Let v be the radical of A, and suppose the residue class algebra A/v is
separable. Then there exists a semi-simple subalgebra S of A such that A is the
semidirect sum of S and v. If S; and S, are subalgebras such that A = S; &,
i = 1,2, then there exists an element n € ¢, such that S; = (1 —n)-Ss- (1 —n)~1.

In this § we shall prove a generalization of the theorem of Burnside. In fact,
assuming the field k is algebraically closed and that V = {V;}!_, is the family of all
simple A-modules we shall prove that the homomorphism 7 of the above Corollary
(2.10), is an isomorphism.



NONCOMMUTATIVE DEFORMATIONS OF MODULES. 29

When A is semi-simple we know that Exztl(V;,V;) = 0 for all i,j = 1,... 7,
therefore the formal moduli H of V' is isomorphic to k£". This implies that

Endg(V) = @) Endy.(V;),
i=1

which is the classical extension of Burnsides theorem.
We shall need the following elementary lemma

Lemma 4.1. Let the k-algebra A be a direct sum of the right-A-modules V;,
i =1,...,d of the family V = {V}I_,. Then left multiplication with an element
a € A induces A-module homomorphisms

ai; € Homa(Vi, Vj), i,j=1,...,d.

Moreover, any k-linear map x : A — A expressed as x = (x;5) € Endi(V) :=
(Homy (V;,V;)), commuting with all ¢ = (pi;) € Enda(V) := (Homa(V;,V})) is
necessarily a right multiplication by some element & € A.

Proof. Trivial, since 2 commuting with all ¢ € (Homa(V;,V;)) commutes with
all left-multiplications by a € A, and therefore x(a) = a - 2(1), and we may put
z=ua(l). O

Corollary 4.2. Assume that the family of right A-modules V = {V;}7_, is such
that

(i) A é v
i=1

(ii) Homa(V;,V;) =0 fori#j

Then the canonical morphism of k-algebras

n: A — P Endi(Vi)

i=1

is injective. Moreover, 1 induces an isomorphism
A~ Endp, (V)
i=1
where D; = Enda(V;).

This, in particular, implies the Wedderburn theorem for semisimple k-algebras
A.
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Theorem 4.3 (A generalized Burnside theorem). Let A be a finite dimen-
sional k-algebra, k an algebraically closed field. Consider the family V = {V;}I_
of simple A-modules, then

A=O0OWV) = (Hi; ® Homi(Vi, Vj))

Proof. We know that the canonical map
n:A— OW)

is injective. Since Rad(A)" — 0 for some n, we know that A — A. The theorem
therefore follows from the following lemmas.
Lemma 4.4. Let A and B be finite type k-algebras and let ¢ : A — B be a
homomorphism of k-algebras such that the induced morphism

@9 : A — B/Rad(B)?
is surjective, then

p:A— B

is surjective.
Proof. Well-known. [J

Lemma 4.5. Let A be a finite dimensional k-algebra, k an algebraically closed
field. LetV = {V;}T_, be the family of simple A-modules. Then the homomorphism

n:A— OW)
induces an isomorphism

Rad(A)/Rad(A)? =~ (Eatly (Vi, V;)* sk Homy (Vi, Vj)).

Proof. The classical Burnside theorem implies that the canonical homomorphism
of k-algebras

A —— B Endy.(V7)
i—1

induces an isomorphism,
A/Rad(A) ~ @ Endy. (V).
i=1

According to the Wedderburn-Malcev theorem we may assume that A/Rad(A)? is
a semidirect sum,

A/ Rad(A) ® Rad(A)/Rad(A)?.
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Since Rad(A)/Rad(A)? is both a left and a right @_, End,(V;)-module
Rad(A)/Rad(A)? = (Eij)
each E;; being an Endi(V;)°? @i Endy(V;)-module. This, however, means that
E;j ~ Homy(V;, V;) ® k™

as a right Endy(V;)?? @i End,(V;)-module. Since we already know that 7 is an
injection, we must have,

Eij ~ Homy,(V;, Vy) ® k™9 C Eaty (Vi, Vi) ® Homi(V;, V).

We must show that this inclusion is an equality. Applying Hochschild cohomology
as in §1, we find:

E:vti‘(Vi,Vj) = HHl(A,Homk(Vi, V;)) = Dery(A, Homi(V;, V) /im d°
where d° is the differential
Homy,(V;,V;) — Deri(A, Homy (V;, V).

Clearly any derivation
¢ € Derp(A, Homy (V;, V;))

which is zero on Rad(A) induces a derivation
& € Dery(A/Rad(A), Homy (V;, V;))

which, since A/Rad(A) is semisimple, obviously is a coboundary, i.e. an element of
imd°.

Moreover, any derivation & € Dery(A, Homy(V;,V;)) induces the zero map on
Rad(A)? since &(r1 - 1) = ri€(re) + &(r1)re = 0 for ri,79 € Rad(A), and any
coboundary v € im d° must vanish on Rad(A) since v(r) = pr — ryp, for some ¢ €
Homy(V;, V;). Now, every A ®y, A-linear map Rad(A)/Rad(A)? — Endg(Vi, V;)
extends to a derivation of Dery(A/Rad(A)?, Homy(Vi, V;)). In fact, let ¢ be an
AP @, A-linear map

Rad(A)/Rad(A)? — Endy.(V;, Vy)
and define the map

i : A/Rad(A)* = A/Rad(A) €D Rad(A)/Rad(A)* — Endy.(V;, V)

Y(s,r) =o(r) + o(p(s))
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where p is the 1-Hochschild cochain on A/Rad(A) with values in Rad(A)/Rad(A)?
that, according to the Wedderburn-Malcev theorem, defines the semidirect sum
refered to above. Then,

Y((s1,71) - (82,72)) = V((81 - 82, 51p(82) — p(81 - 52) + p(81)82 + S1792 +7152))
= (s1r2 + 11852 + s1p(82) — p(s1 - s2) + p(s1) - s2) + @(p(s1 - 52))
= (s1,71)%((s2,72)) + ¥((s1,71))(52,72)

Therefore,
Eaty(Vi, Vi) = Homaorg a(Rad(A)/ Rad(A)*, Homi (Vi, V;))
= {¢: Rad(A)/Rad(A)? — Homy(V;,V;)| Ya € A, r € Rad(A), s.t.
pla-r) =a-p(r)and o(ra) = o(r) - a}
Since Rad(A)/Rad(A)? ~ (FE;;) with
Eij = (Vi @ Vy)™
it is clear that

Hom aora(Rad(A)/Rad(A)?, Homy (Vi, V;))
~ Hompnd,, (v;)or gy, Bndy (v;) (Vi @ V)" (Vi @ V)

o~ kT
which means that
Ei; ~ Exth (Vi, V))* @, Homg(Vi, Vj).

O

Now suppose, as above, that A is a finite dimensional k-algebra, and let V4 =
{Vi}r_, be any family of finite dimensional A-modules. Obviously

dimy Extt (V;, V;) < oo
for all p=0,1,2,... and therefore the endomorphism ring

O(VA) = EndH (V)

is a k-algebra such that
O(V)/Rad(0) = € Endy(V;).
i=1

This implies that V = {V;}_; is the family of all simple O(V)-modules. The
generalized Burnside theorem applies also in this case, showing that the operation

(4, V) = (0V), V)

is a closure operation. Moreover, we have the following,
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Proposition 4.6. Let 7 : A — B be any homomorphism of finite dimensional
k-algebras. Consider a family Vp = {V;}!_, of finite dimensional B-modules and
let V4 be the corresponding family of A-modules. Suppose moreover that Vp is the
family of all simple B-modules. Then there exists an, up to isomorphisms, unique
homomorphism of k-algebras

O(r) : O(Va) - OVp)~ B

extending T.

Proof. There is an obvious forgetful functor defining a morphism of functors on a,.,
" Defyy, — Defy,
which in its turn induces a k-algebra homomorphism
n:HVp) — H(Va)
unique up to isomorphisms, and therefore a k-algebra homomorphism
OWVa) = (H(Va)i; @ Homy(Vi, V;)) — (H(VB)i; @ Homi(V;, Vj)) = O(Vg)

obviously extending 7. By the generalized Burnside theorem, O(Vp) ~ B, and the
Proposition follows.

O

Remark 4.7. Up to now we have only considered finite families of A-modules such
that
dimy, Ezth (V;,V;) < oo, p=1,2.

Neither of these conditions are essential. Introducing natural topologies we may,
as in [La 1], treat general families of finite type A-modules. Notice also that if
r1 < g, there is an obvious canonical morphism

Uy = Gy,

inducing a restriction morphism of functors
De fy2) — Defy)

where V(1) = {V;}1,,V(2) = {Vi}.2,. Therefore we obtain an up to isomorphisms
unique k-algebra homomorphism

ro1 Havz)y = Ha v

However, this restriction morphism is not, in general, unique. The resulting prob-
lems will be dealt with later.
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§5. Filtered modules and iterated extensions. Let as above V = {V;}I_, be
a family of right A-modules, and let F; . ;, : s C Fs_y C -+ C Ey = FE be a
filtered module such that Ey/FEr1 ~ V;,. We shall, as before, refer to any such
filtered module as an iterated extension of V. Notice that for every p there is an
extension,

SP,PJrl S Extxléx(vipvvip+1)

given by the exact sequence.
0= Epp1/Epro — Ep[Fpro — By /Ep1 — 0.

Corresponding to the iterated extension Fj;, . ; we shall associate two ordered
directed graphs, I'(Z) and I'(F;). The first is gotten as the graph with nodes in
bijection with the modules of the family V, and with arrows 7, ,,, = €(ip,ips1)
connecting the node 4, with the node i,.1. The second, the extension type of the
iterated extension, is obtained from the first identifying two arrows €(ip,i,+1) and
€(iq,iq41) if the corresponding extensions &, 1 and &g 4+1 coincide. The "ordered”
k-algebra k[['] of the ordered graph I' is the quotient algebra of the usual algebra of
the graph I' by the ideal generated by all admissible words which are not ”intervals”
of the ordered graph. Say ...y ;(n — 1)v;;(n)y;k(n + 1)... is is an interval of the
ordered graph, then ~; ;(n — 1).y;x(n +1) =0 in k[T].

Example 5.1. Let us draw up all extension types for r,s < 3.
r=3,s=3: O—O0——Q

r=2,

§=23: (DQ@)
r=1,s5=3: @ @

®—>®O D@

The last example is a I'(E;) corresponding to the situation, iy = is = i3 = 1, and
&iv,in — &in,is The associated k-algebras are, respectively, the matrix algebras,

k k k
0 k k <k[€] k[E] ) <l€ k[e] ) <k[t172t2?1] ktl?g)
0 0 k 0 k 0 k[e] ktg?l k
with the obvious relations, and the k-algebras,

k{t,u}/(t?, u? ut), k[t]/(t®)

Lemma 5.2. Let H be any object of d., and let R € a,. Then Mor(H,R) has a
natural structure of an affine algebraic scheme Mor(H, R) = Spec(A(H, R)), and
there is a universal morphism,

¢:H — A(H,R)®y R
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Proof. Put (E; ;) = rad(H)/rad(H)?, and consider the affine space,
= 1[5 2 Riy
6]

with coordinates z; ;(I,m) =t; ;(I) ®a; ;(m), where {¢; ;(1)}; ; is a basis of E; ; and
{ri.;(m)}i; is a basis, and {=z; ;(m)}; ; is a dual basis of R; ;. An element

(Oé@j (l, m)) S AN

corresponds to a morphism ¢ € Mor(H, R) if, and only if, the corresponding map
tig() — Y i (l,m)ri;(m) € Ry

satisfies the relations of H. Let these, modulo a high enough power of the radical,
be polynomials in the generators ¢; ;(1), ; of the form

[t (D)) =0, p=1,...s

and let the relations of R be expressed in terms of,

Pig (M7 ( Zﬁdkmnﬁk(p) 1,7 =1,...m7

Then we obtain equations for Mor(H, R) given by (commutative) polynomial rela-
tions of the form,
Fp(Z@j(l,m)) = 0, P = 1, ...t

But then
tig (1) — > zi5(1,m)ri;(m) € A(H, R) ®y, Ri

where the coordinates z; ;(I,m) are subject to the conditions above, defines the
universal morphism ¢. U

Proposition 5.3. Let A be any k-algebra, V = {V;}7_, any swarm of A-modules,
i.e. such that,

dimy, Extk(‘/i,‘/j) <oo foralli,j=1,...,r

(i): Consider an iterated extension I of V, with directed graph I'. Then there
exists a morphism of k-algebras

¢ H(V) — k[l

such that B
E~ k[F]®¢V

in the above sense.
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(ii): The set of equivalence classes of iterated extensions of V with extension
type I', is a quotient of the set of closed points of the affine algebraic scheme

Al = Mor(H(V), k[I'])

(iii): There is a versal family V|I'| of A-modules defined on A[l'], containing as
fibres all the isomorphism classes of iterated extensions of Vs with extension type
I.

Proof. Any morphism ¢ : H — k[I'| in a, correspond to an iterated extension of
the V;’s. This may be expressed in the following way. As vector spaces, we have an
isomorphism,

kD] @, Ve V(I) =2 Vi, x Vig X -+ X Vi,

An A-module structure on this vectorspace, corresponding to an iterated extension
with extension type I', is given by a homomorphism of k-algebras,
i A— Endp(V;, x Vi, x - x V)

inducing a family of linear maps

Vppit,...prq s A— Endi(Vi,,V;

P’ p+q)

for0<p<p+qg<s.
Consider these maps as 1-cochains in the Hochschild complex

HC* (A, Homy, (V(T), V(T')))

The maps 1p p+1 correspond to the extensions &, , 1 above, and must therefore be
1-cocycles, or derivations. To obtain an A-module structure, corresponding to an
iterated extensions of V with extension type I', the conditions on these cochains
are: For all a,b € A,

Yppt1 (a)¢p+1,p+2 (b) = dYp,p+1,p+2 (a,b)
Yppt1 (a)¢p+1,p+2,p+3 (b) + Vp,pt1,p+2 (a)¢p+2,p+3 (b) = dYp pi1,p+2,p+3 (a,b)

Z wl,Q,,,,,m(a)wm,,,,,s(b) - d¢1,2,,,,,s(a, b)v
m=2,...,s—1

which means that all Massey products of the form

< Lipiprs Eipniprar o Siprg1ipig >

are defined and contain zero.

Now (i) follows from the very definition of H, generated as it is by a basis of the
dual Ext!’s, with relations exactly expressing the vanishing of the above Massey
products. (ii) and (iii) then follows from deformation theory, together with the
Lemma (4.9), above. O



NONCOMMUTATIVE DEFORMATIONS OF MODULES. 37

Example 5.4. Consider the extension I, of length 3 given as the composite
extension of & ; : 0« V; «— F;j; «— V; «—0and &, : 0 Eiy «— Fyj, «— V, « 0.
Take the pullback &; i of & ;i via V; — E;; and consider the diagram

0 0 0

} i 4
()evieEijere()

} b i

FEi = Eijk - Ejk

Oe—§e—
O—>§—>
O—>§—>

Let ¢;; € Dery(A, Homy(V;,V;)) be a Hochschild cocycle representing the class
&i,;- The multiplication with a € A on I;;, identified with V; x V; as k-vectorspace,
is given by

(vj,vi)a = (vja + i j(a,v;), via)

and the multiplication with ¢ € A on Fjj;, identified with Vi x V; x V; as k-
vectorspace, must be such that,

(Vk,v5,0)a = (vka + ;. k(a,v5),v5a,0).

If there exists an action of A on Fj;j;, consistent with the above, then one proves
the existence of a Hochschild cochain

¢i,j,k < HOmk(A, HOmk(‘/’iv Vk))

such that
dwi,j,k(av b) - %‘,j (a)%’,k(b)-

From this follows that the cup-product &;; U & is 0 in Eat?(V;, Vi), This is also
the criterion for the existence of &; ;. Moreover if £ and £’ are two extensions

SOFEZ]%EU]CF‘/]@FO

with the same pullback &;, then there is an extension
§ik 1 0= Vi Ly Vi 0

such that its pullback, via E;; — V;, is the difference £ — ¢’.
Consider for the iterated extensions F;j, the extension diagram

I: @%@%@
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the first one of the example (5.1) above, then the corresponding k-algebra is given
by,

i j k
k 0 0 0 0

i kok k0

kD] = j k ko0
K PR

Notice that F;j;, then corresponds to a morphism
¢ H — k[l
determined, modulo Rad?(k[I']) (i.e. the radical squared), by

iy = ¢lEi; — k, and & = ¢|Ej, — k

Here
i 7 k
0 0 0 0 0
1 0 0 k 0
Rad?(k[T)) = j 0 0 0
k 0 0
0

and ¢ is, according to the analysis above, "calibrated” by the morphism ¢; :
Ei — k, ie. by Eatl (Vi, Vi), as it should.

Corollary 5.5. (i): Given any finitely generated module M on a Noetherian ring
A, there is a finite set of primes (M), containing the set of associated primes
Ass(M), such that the module M is an iterated extensions of the corresponding
modules A/p for p € EF(M). The extension type of such an iterated extension is an
ordered directed graph I'(M) the nodes of which is E(M).

(ii): For any finite ordered directed graph T, with nodes corresponding to a
set of primes P C Spec(A), there is an affine versal family of A-modules M with
extension type I', and E(M) =P.

Proof. Obvious [J
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Now, let H(|T'|) be the formal moduli of the family |I'|. We know that any
iterated extension of the {V;}7_, with extension type, i.e. graph, I' corresponds to
a morphism in a,,

a: H — k[l].
Moreover the set of isomorphism classes of such modules is parametrized by a
quotient space of the affine scheme,

A(T) := Morq, (H(|T]), k[T).

Let a € A(T'), and let V(«) denote the corresponding iterated extension module,
then the tangent space of A(I') at « is,

TAr),a := Dery(H(|U']), k[']a),

where k[I'], is k[I'] considered as a H(|I'|)-bimodule via c. The obstruction space
for the deformation functor of o is HH?(H(|T'|), k[T']), and we may, as is explained
in [La 1], compute the complete local ring of A(T') at «. In particular we may
decide whether the point is a smooth point of A(T"), or not.

The automorphism group G of k[I'], considered as an object of a,, has a Lie
algebra which we shall call g. Obviously we have,

g = Derg(k[T], k[T]).

Clearly an iterated extension « with graph I' will be isomorphic as A-module to
g(a), for any g € G. In particular, if § € g, then exp(d)(«) is isomorphic to « as
an iterated extension of A-modules, with the same graph as «.

Consider the map,

a* : Dery (K[D], k[0]) — Dery(H (D), k[T]a).

The image of a* is the subspace of the tangent space of A(I") at v along which the
corresponding module has constant isomorphism class.
Notice that if o is a smooth point, and a* is not surjectiv then there is a positive-
dimensional moduli space of iterated extension modules with graph I' through «.
Clearly the kernel of a* is contained in the Lie algebra of automorphisms of the
module V (), and should be contained in Enda(V («)). From this follows that if
V(«) is indecomposable then kera* = 0. The Euler type derivations, defined by,

08(Yig) = PigYig, Pig €k
are the easiest to check! Notice however, that there may be discrete automorphisms

in G, not of exponential type, leaving a invariant. Notice also that an indecompos-
able module may have an endomorphism-ring which is a non-trivial local ring.

§6. Noncommutative algebraic geometry.
To any, not necessarily finite, swarm ¢ C mod(A) of right-A-modules, we may

associate two associative k-algebras, see [La 5], O(J¢|,7) = hLHVCI |O(V), and a

sub-quotient O (c), together with natural k-algebra homomorphisms,
n(le]) : A— O(|¢], m)
and,
n(e) : A — Ox(c)

with the property that the A-module structure on ¢ is extended to an O-module
structure in an optimal way.
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Definition 6.1. A swarm ¢ of right A-modules, such that n(¢) is an isomorphism
will be called an affine non-commutative scheme for A.

In particular, for finitely generated k-algebras, the (usually infinite) diagram
Simp% o (A) consisting of the finite dimensional simple A-modules, and the generic
point A, together with all morphisms between them, is a swarm. This is easily
proved. Moreover, consider for some finite family V = {V;}/_; C Simp(A) and
for any family of morphism ® = {¢; : A — Vi} in Simp% _(A) the corresponding
versal lifting,

Py A—V=>UH,;0V;),

then we find that,
O = Ox(Simp~ o (A)) C Endi(A),

and o € O if and only if for all finite & C Simp% . (A) there is an ay € Endy (V)
such that ay®y 4, = Py ¢, .
Now let

Simpcso(A) = USimpn(A)

be the set of (iso-classes of) finite dimensional simple right A-modules. An n-
dimensional simple A-module V' € Simp,(A) defines a surjectiv homomorphism of
k-algebras, p: A — Endi(V), the kernel of which is a two-sided maximal ideal my,
of A. Let Maz<o(A) be the set of all such maximal ideals of A, for n > 1. To
exclude some strange and for our purposes non-interesting cases, we shall assume
that our associative k-algebras A have the following property:

Rad(A)>® := N m" =0

meMax o0 (A),n>0

For want of a better name, we shall call such algebras geometric. This condition is
actually satisfied for most finitely generated k-algebras that we shall be interested
in, and in particular it is satisfied for the free k-algebra on d symbols, A = k <
21,22, ...,24 >, see [La 5.

Proposition 6.2. Let A be a geometric k-algebra, then the natural homomor-
phism,
n(Simp*(A)) : A — Or(SimpZ .. (A))

is an isomorphism, i.e. Simp% (A) is a scheme for A.

Proof. 1t is an easy consequence of the definition and the next Lemma 6.3 that the
morphism n(Simp*(A)) is injective for geometric k-algebras. The rest follows from
[La 5], (4.1).

O

In particular, Simp% (k < z1,22,...,24 >), is a scheme for k < 21,29,...,24 >.
To analyze the local structure of Simp,(A), we need the following, see [La 5],(3.23),
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Lemma 6.3. Let V = {V;},—1 ., be a finite subset of Simp<.c(A), then the
morphisme of k-algebras,

A — OW) = (H;; 2, Homy(V;, Vy))

is topologically surjective.

Proof. Since the simple modules V;, ¢ = 1,..,r are distinct, there is an obvious
surjection, 7g : A — Hi:1,,,,r End,(Vi). Put v = kerno, and consider for m > 2
the finite-dimensional k-algebra, B := A/v™. Clearly Simp(B) =V, so that by the
generalized Burnside theorem, see [La 5], (2.6), we find, B ~ OB (V) := (HZBJ Rk
Homy(V;,V;)). Consider the commutative diagram,

A——= (1 @) Homy(Vi, V;)) = O4(V)

|

B ————(H; & Homy,(V;, V;)) —*——= 04 (V) /m™

where all morphisms are natural. In particular « exists since B = A/t maps
into O4(V) /rad™, and therefore induces the morphism o commuting with the rest
of the morphisms. Consequently « has to be surjective, and we have proved the
contention.

O

Localization and topology. Let s € A, and consider the open subset D(s) = {V €
Simp(A)| p(s) invertible in Endy(V)}. The Jacobson topology on Simp(A) is the
topology with basis {D(s)| s € A}. It is clear that the natural morphism,

n:A—O(D(s),n)

maps s into an invertible element of O(D(s), 7). Therefore we may define the local-
ization A,y of A, as the k-algebra generated in O(D(s),n) by imn and the inverse
of n(s). This furnishes a general method of localization with all the properties one
would wish. And in this way we also find a canonical (pre)sheaf, O defined on
Simp(A).

Definition 6.4. When the k-algebra A is geometric, such that Simp*(A) is a
scheme for A, we shall refer to the presheaf O, defined above on the Jacobson
topology, as the structure presheaf of the scheme Simp(A).

In the next § we shall see that the Jacobson topology on Simp(A), restricted to
each Simp,(A) is the Zariski topology for a classical scheme-structure on
Simpn(A).

The algebraic (scheme) structure on Simp,(A). A standard n-commutator re-

lation in a k-algebra A is a relation of the type,

[al,ag,...,agn] = Z sign(a)ag(l)ag(g)...ag(gn) =0
0€Xan
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where {a1, as,...,a2,} is & subset of A. Let I(n) be the two-sided ideal of A gener-
ated by the subset,

{la1, a2, ..., an]| {a1,02,...,a0,} C A}.
Consider the canonical homomorphism,
pn: A— A/I(n) =: A(n).
It is known that any homomorphism of k-algebras,
p:A— Endg (k™) =: M, (k)

factors through p,, see e.g. [Formanek].

Corollary 6.5. (i). Let V;,V; € Simp<n(A) and put v = my, N'my,. Then we
have, for m > 2,
Ext,léx(viv VJ) = Ext}é&/rm(viv VJ)

(ii). Let V' € Simp,(A). Then,
Eaty(V,V) = Extly,,(V,V)
Proof. (i) follows directly from Lemma 4. To see (ii), notice that Eatl(V,V) =~
Derg(A, Endi(V))/Triv ~ Deri(A(n), Endi(V))/Triv =~ E:vti‘(n)(v, V). The

second isomorphism follows from the fact that any derivation maps a standard
n-commutator relation into a sum of standard n-commutator relations.

]
Example 6.6. Notice that, for distinct Vi, V; € Simp<,(A), we may well have,

Ext,léx(viv VJ) ?A Ext,léx(n)(viv VJ)

In fact, consider the matrix k-algebra,

and let n = 1. Then A(1) = k|z]|®k[z]. Put Vi = k[2]/(2)®(0), Vo = (0)®k|z]/(2),
then it is easy to see that,

Eaty(Vi,Vy) = k, Eathy(Vi,Vy) = 0,i # j,

but,
Bathy(Vi, Vi) = Eat))(Vi, Vi) = kyi = 1,2,
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Lemma 6.7. Let B be a k-algebra, and let V' be a vector space of dimension n, such
that the k-algebra B ® Endy, (V') satisfies the standard n-commutator-relations, i.e.
such that the ideal, I(n) C B® Endy (V') generated by the standard n-commutators
[¥1, 29, .., 22n], ;i € B® Endi(V), is zero. Then B is commutative.

Proof. In fact, if b1, bs € B is such that [b1,bse| # 0, then the obvious n-commutator,
(bie1,1)(baer,1)e1,2€2,9...n—1n-€nn — (b2e11)(bier,1)e1,2€2.9...n-1 n-€nmn

is different from 0. Here e; ; is the n x n matrix with all elements equal to 0, except
the one in the (7, j) position, where the element is equal to 1.

O

Lemma 6.8. If A is a finite type k-algebra, then any V € Simp,(A) is an A(n)-
module. Let V C Simp,(A) be a finite family, then HA() (V) is commutative. In
particular,

(1) E:vtA(n)(M Vi) =0, forV; #V;

(2) HAM(V) = HA(V)om™ == H(V)/[H(V), H(V)].

Proof. Since
A(n) — O(V) = M, (HAM™ (V)

is topologically surjective, we find using (Lemma 8), that 4 (V) is commutative.
This implies (1) and the commutativity of H4 (V). Consider for V' € Simp,(A),
the natural commutative diagram of homomorphisms of k-algebras,

\

Z(A(n)) A(n) H(V)®y End, (V)

H(V)com — H(V)com Q. Endy (V)

A

where Z(A(n)) is the center of A(n). The existence of « is a consequence of the ideal
I(n) of A mapping to zero in H(V)“°" «y, End, (V) ~ M, (H(V)*™). Therefore
there are natural morphisms of formal moduli,

HA(V) N HA(n)(V) N HA(V)com N HA(n)(V)com.
Since HAC(V) = HAC (V)™ the composition,
HA(n)(V) N HA(V)com N IJA(n)(‘/)com7

must be an isomorphism. Since by Corollary 4. the tangent spaces of H4() (V)
and H4(V) are isomorphic, the lemma is proved.

O
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Corollary 6.9. Let A = k < x1,..,24 > be the free k-algebra on d symbols, and
let V€ Simp,(A). Then

HA(V)com ~ HA(”)(V) ~ k[[tl, ...,t(d—l)n2+1]]

This should be compared with the results of [Procesi 1], see also [Formanek].
In general the natural morphism,

n(n): A(n) — H HAM(VY @, Endy, (V)

is not an injection.

Example 6.10. In fact, let

k k k
A=k k k|.
0 0 k

The ideal 1(2) is generated by [e11,€1,2,€22,€23] = e13. So

k k ok 00 k
A(2)(k k k)/(o 0 k)NMg(k)@Ml(k).
0 0 k 00 0

However,
[ H*®V) @k Endp(V) = Ma(k),
VeSimps(A)

therefore ker n(2) = My(k) = k.
Let O(n), be the image of n(n), then,

omyc [ HA(V) @k Endy(V)
VeSimp,(A)

and for every V' € Simp,(A),
HOM™(V)y ~ HAM (V).

Put B = [Tvcsimpn(a) HAM (V). Choosing bases in all V € Simp,(A), then

I[I EV) @k Endi(V) ~ M, (B),
VeSimp, (A)

Let x; € A,i=1,...,d be generators of A, and consider their images (x;q) €
M, (B). Now, B is commutative, so the k-sub-algebra C'(n) C B generated by the

,L' . . . . . .
elements {xpﬂ}zzlwd; p,g=1,..,n 18 commutative. We have an injection,

O(n) — Mn(C(n)),
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and for all V' € Simp,(A) there is a natural composition of homomorphisms of
k-algebras,
a: Mn(C(n)) — Mu(HA™(V)) — Endy,(V),

inducing a corresponding composition of homomorphisms of the centers,
Z(a) : C(n) — HAM(V) = k

This sets up a set theoretical injective map,
t: Simpn(A) — Max(C(n)),

defined by t(V) := kerZ(«).

Since A(n) — HAM(V) &y, End,(V) is topologically surjective, HA (V) @y
Endy (V) is topologically generated by the images of x;, i = 1, ..., d. It follows that
we have a surjective homomorphism,

~

C(n)t(v) — HA(n) (V)

Categorical properties implies, that there is another natural morphism,

~

HAW(V) = C(n)yv),
which composed with the former is an automorphism of 74 (V). Since

Moy [ HAW) @ End(V),
VeSimpn(A)

it follows that for m, € Max(C(n)), corresponding to V' € Simp,(A), the finite
dimensional k-algebra M, (C'(n)/m,?) sits in a finite dimensional quotient of some,

H HA(n)(V) ®k End, (V).
Vey

where V C Simp,,(A) is finite. However, by Lemma 4. the morphism,

A(n) — H HAM (V) @, Endg,(V)
Vey

is topologically surjectiv. Therefore the morphism,
A(n) — Mn(C(n)/m,?)
is surjectiv, implying that the map
HAW(V) = C(n)m,,
is surjectiv, and consequently, HA™ (V) ~ C'(n)m, .

We now have the following theorem, see Chapter VIII, §2, of the book [Procesi
2], where part of this theorem is proved.
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Theorem 6.11. Let V € Simp,(A), correspond to the point m, € Max(C(n)).
Then there exist a Zariski neighborhood U,, of v in Max(C(n)) such that any closed
point m/, € U corresponds to a unique point V' € Simp,,(A). Let U(n) be the open
subset of Max(C(n)), the union of all U, for V € Simp,(A). O(n) defines a
non-commutative structure sheaf O(n) := O Simpn(A) Of Azumaya algebras on the
topological space Simp,(A) (Jacobson topology). The center S(n) of O(n), defines
a scheme structure on Simp,,(A). Moreover, there is a morphism of schemes,

k:U(n) — Simpn(A),
Such that for any v € U(n),
S(n)w(w) = HAW(V)

Proof. Let p : A — Endi(V) be the surjective homomorphism of k-algebras,
defining V' € Simp,(A). Let, as above e; ; € Endy (V) be the elementary matri-
ces, and pick y; ; € A such that p(y; ;) = e; ;. Let us denote by o the cyclical
permutation of the integers {1,2,...,n}, and put,

Sk 1= Yok (1),04(2)> Yok (2),0+(2) Yok 21, @) - Yok k(s 83= D, sk €A
k=0,1,...n—1

Clearly s € I(n - 1) Since [egk(l)?ak(g),eak(g)?ak(g),€0k(2)?0k(3)...€0k(n)?ak(n)] =
ok (1),0%(n) € Endi(V), p(s) == 3 401 n_1P(sk) € Ende(V) is the matrix with
non-zero elements, equal to 1, only in the (6% (1), 0% (n)) position, so the determinant
of p(s) must be +1 or -1. The determinant det(s) € C(n) is therefore nonzero at the
point v € Spec(C(n)) corresponding to V. Put U = D(det(s)) C Spec(C(n)), and
consider the localization O(n)s; € My (C(n){det(s)}), the inclusion following from
general properties of the localization. Now, any closed point v’ € U corresponds to
a n-dimensional representation of A, for which the element s € I(n—1) is invertible.
But then this representation cannot have a m < n dimensional quotient, so it must
be simple.

Since s € I(n — 1), the localized k-algebra O(n)s; does not have any simple
modules of dimension less than n, and no simple modules of dimension > n . In
fact, for any finite dimensional O(n)s-module V, of dimension m, the image § of
s in Endg (V) must be invertible. However, the inverse §~! must be the image of a
polynomial (of degree m — 1) in s. Therefore, if V' is simple over O(n) 4y, i.e. if the
homomorphism O(n)y — Endg (V') is surjective, V must also be simple over A.
Since now s € I(n — 1), it follows that m > n. If m > n, we may construct, in the
same way as above an element in /(n) mapping into a nonzero element of Endy (V).
Since, by construction, I(n) = 0 in A(n), and therefore also in O(n)sy, we have
proved what we wanted. By a theorem of M. Artin, see [Artin], O(n)s; must be
an Azumaya algebra with center, S(n)¢sy := Z(O(n)s}). Therefore O(n) defines
a presheaf O(n) on Simp,(A), of Azumaya algebras with center S(n) := Z(O(n)).
Clearly, any V' € Simp,,(A), corresponding to m, € Max(C(n)) maps to a point
k(v) € Simp(O(n)). Let m(,) be the corresponding maximal ideal of S(n). Since
O(n) is locally Azumaya, it follows that,

S(n) ~ HOM(V) ~ HAM (V).

M) —
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The rest is clear.

O
Spec(C(n)) is, in a sense, a compactification of Simp,(A). It is, however not the
correct completion of Simp,(A). In fact, the points of Spec(C(n))— Simp,(A) may
correspond to semi-simple modules, which do not deform into simple n-dimensional
modules. We shall in the next § return to the study of the (notion of) completion,
together with the degeneration processes that occur, at infinity in Simp,(A).

Example 6.12. Let us check the case of A = k < 21,29 >, the free non-
commutative k-algebra on two symbols. Pick V' € Simpo(A), and let us compute
Ext (V,V). We would like to find a basis {t},}?_;, represented by derivations
;€ Deri(A, Endi(V)), i=1,2,3,4,5. This is easy, since for any two A-modules
Vi, Vo, we have the exact sequence,

0— Homa(Vi, Vo) = Homy(V1,Va) — Dery(A, Homy(Vh, V2))
— Exth (V1,Va) — 0

proving that, ExtY, (V1,Va) = Dery(A, Homy (V1,Va))/Triv, where Triv is the sub-
vector space of trivial derivations. Pick V € Simps(A) defined by the homomor-
phism A — My (k) mapping the generators x1,xe to the matrices

0 1 0 0
X1 = <0 0) =:€1,2, X2 2<1 0) =:€21.

Notice that
1 0 0 0
X1 Xy = <0 0) =:1ey,1 —e1, XoXy = <0 1) =:eg9 = €3,

and recall also that for any 2 X 2-matrix (ap q) € Ma(k), e;(ap q)e; = a; e ;. The
trivial derivations are generated by the derivations {0, q}p q—1.2, defined by,

Op,q(®i) = Xiep g — €p g Xi.

Clearly 61,1 + 022 = 0. Now, compute and show that the derivations v;, 1 =
1,2,3,4,5, defined by,

%(3@1) - O,fOI'Z' - 1727 %(3@2) - O,fori - 4757
by,
P1(ze) = 61,17¢2(3@2) = €1,2, Pa(z1) = 61,27¢4($1) = 62,1,¢5($1) =e2,1

and by,
Ps(z2) = eg1,

form a basis for Extl(V,V) = Dery(A, Endy(V))/Triv. Since Ext%(V,V) =0 we
find H(V) =k << t},tg,tg,t4,t5 >> and so H(V)com ~ k[[tl,tg,tg,t4,t5]]. The
formal versal family V', is defined by the actions of x1, x9, given by,

L 0 1+15 L 11 to
X1'<t5 ta )’X2'<1+t3 0)'
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One checks that there are polynomials of X1, X9 which are equal to t;e, 4, modulo

the ideal (t1,..,t5)?> C H(V), for all i,p,q = 1,2. This proves that C’(Q)v must be
isomorphic to H(V'), and that the composition,

A — A(2) — M2(C(2)) € Ma(H(V)))
is topologically surjective. By the construction of C'(n) this also proves that
C(2) ~ k[t1,ta, L3, L4, L5).
Computing we find the following formulas,
trX1 =14, trXo =14,

detX1 = —t5 — t3t5, deth = —tg — tgtg,
det(X1Xo) =1+ 2tz + 13 + tots

Moreover, the Formanek center, in this case is cut out by the single equation:
[ = det[ X1, Xo| = —((1+t3)? — tats)? + (t1(1 + t3) + tata) (ta(1 +t3) + t1ts).

From this follows that
Simpa(A) = A7 = V(J).

§7. The smooth locus of an affine noncommutative scheme.

Definition 7.1. Let V' € Simp,(A), then V is called formally smooth if,
Ext)(V,V) = HH*(A, Endy,(V)) =0
and smooth (or regular is better), if the natural k-linear map,
K : Derp(A, A) — Extl (V, V)

is surjective.

Notice that if,
HH?*(A,m) =0

for all maximal two-sided ideals of A, then Simp,(A) is smooth for all n.

Let V' € Simpn(A), and let v € Simp(Z(A)) be the point corresponding to V.
Denote by m, the corresponding maximal ideal of Z(A). Clearly Z(A) operate nat-
urally on the Hochschild cohomology, HH'(A, A), and the map  factors through,
HHY(A,A)/m,HH(A, A), so that if V is smooth, we obtain a surjectiv k-linear
map7

ko : HHY(A, A)/m,HH' (A, A) — Extly(V, V).

It follows that mazy e gimp(a) {dimiHH (A, A)/m, HH' (A, A)} is an upper bound
for the dimensions of the smooth locus of Simp,(A) for all n > 1.

Clearly the definition of (formal) smoothness also works for any representation
V.
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Proposition 7.2. If V € Simp,(A) is smooth or formally smooth, then the cor-
responding point v € Spec(C(n)) is also smooth.

Proof. Assume that V € Simp,(A) is formally smooth, then obviously the com-
pletion of the local ring of Simp,(A) at V is H(V)°°", which since H (V') has no
obstructions and therefore must be the completion of the free non-commutative k-
algebra, is a formal power series algebra, and thus V' is a smooth point of Simp,, (A).
Now, assume V is smooth, and consider the natural commutative diagram,

Deri (A, A)
p

Deri(A(n), A(n))

" \
A /

Derk(O(n){s}vO(n){s}) B

Deri(S(n), S(n)) ——— Deri(S(n), k(v)).

Notice that 3 is an isomorphism. This has been proved above. That p exists is
easily seen, since for any derivation § € Dery(A), and for any standard commutator
[21, 29, ...,29,] € I(n), we must have d([x1,22,...,22,]) € I(n). Notice that the
kernel of the homomorphism, A(n) — O(n) is the image in A(n) of
n= m"
meMax,(A),m>1

Clearly any derivation will map an element of n into n, proving the existence
of k. A is defined by localization at the point v € Spec(C(n)), as in the proof of
Theorem 12. We may assume O(n) s is a matrix algebra M, (S(n)), and use the
fact that any derivation of a matrix algebra is given by a derivation of the centre
and an inner derivation, (HH?! is Morita invariant). The inner derivation will map
to zero in Extk(V, V'), and so the composition of « and e is surjective.

U
Notice that for a smooth point v € Spec(C(n), Ext%(V, V) may well be different
from 0.

Examples 7.3. 1. Let S be any commutative algebra, and denote by b Ca C S
two ideals of S. Consider the k-algebra,

a11, ai2
A= {< ’ ) ’ Qi € S, a11 — 022 € 0,012,021 € b}.

a2,1, 0422



50 O.A.LAUDAL

Clearly the centre of A = A(2) = O(2), is S(2) = C(2) = S and a simple calculation
shows that,

A(l) ES {<a1’17 (}1’2) ’ di?j S b/ab, Z#], dl?l,&gg S S/bQ,&Ll — d272 S a/bQ}.

a1, @22

Then A(1) is the commutative k-algebra expressed by Nagata rings, i.e.

A(1) = ((/6%)[(a/6%)])[(b/ab)?].

Consider the subschemes V(a) C V(b) C Spec(S). Then, Simpa(A) = Spec(S) —
V(b) and a simple calculation shows that Simpi(A) = Spec(A(1)) is a thickening
of the affine scheme Spec((S/6%)[(a/62)]). In the special case,

S = klta,ta], a=(f,9),6 = (/)

where f,g € S, correspond to two curves, V(f),V(g) that intersect in a finite
set U, one finds that Simpa(A) is an open affine subscheme of Spec(S), and that
Simpi(A) = Spec(A(1)) is the disjoint union of the curve V(f) with itself, amalga-
mated at the points of U. If both V(f) and V (g) are smooth, and intersect normally
at the points of U, then the embedding-dimension of Simp;i(A) = Spec(A(1)) at a
point not in U, is 2, and at the points of U, 6!

2.Let in the above example, b = a = (¢1,t2), then Simpa(A) = Spec(S)—{(0,0)},
therefore not affine, and Simpi(A) = Spec(A(1)) is a thick point situated at the
origin of the affine 2-space Spec(S).

Example 7.4. Let us try to compute the Simps(A) for the non-commutative cusp,
i.e. for the k-algebra,
A=k <azy>/(2®—y?).

We first notice that the center Z(A) C A is the subalgebra of A generated by
t:= 2% =92 Put
ur = %y, v = ya’.

Then there is a surjective morphism,
k[t,t7Y < u,v > /(uvu — vuv) — A1)

mapping u to u; and v to vi. In fact, ujv; = 22 and viuv; = 3y, and finally
wiv U = 2y = vuqvr. (The relations with the equation of Yang-Baxter, if any,
will have to be discovered.)
Now let us compute the Simp,(A). It is clear that any surjectiv homomorphism
of k-algebras,
pv A — Endi (V)

will map Z(A) = k[t] into Z(Endg(V)) = k, inducing a point v € Simp(k[t]) = Al
This means that Simp,(A) is fibred over the affine line Spec(k[t]) = A'. Let
po(2)® = pu(y)? = k(v)1, where 1 is the identity matrix, and where x(v) is a
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parameter of the cusp. Then either v = origin =: 0 or we may assume x(v) # 0.
Consider now the diagram:

k[t =23 = ¢

\

A Po Endy, (V)

klal/(2? — K(v)) * klyl/(y* — #(v))

Clearly, if x(v) # 0 the simple representations of A are fibered on the cusp with
fibres being the simple representations of U := k[z]/(2® — x(v)) * k[y]/(y? — k(v)),
isomorphic to the group algebra of the modular group Slo(Z). Since the represen-
tation theory of Sl2(Z) is well known at least in small dimensions, we could hope to
use classical representation theory to describing the open subscheme of Simp,, (A)
corresponding to x(v) # 0, for all n > 1. We shall, however see that deformation
theory can be very usefull to understand the representations of Sls(Z) .

Moreover we shall have to work a little to find the fibre of Simp,(A) correspond-
ing to the singular point of the cusp. When n = 2 it is clear that we have no choice,

but to fix the Jordan form of p,(y) equal to the Jordan form of

pia)= (o o)

Let I(py(2)) be the isotropy subgroup of the action of Gl,, (k) on M, (k), at p,(z).
Set, theoretically, the fiber is then the double quotient,

I(po ()Gl (k) /1 (po ()
To find the scheme structure we may compute the formal moduli of the simple

module given by,
0 1 0 0
o= (4 o) m (3 0)-

We find the following, see [Jg-La-S]]|.

Proposition 7.5. Let A be the non-commutative cusp. Then

(i) Simp1(A) = Spec(kz,yl/(2® — y*))

(i) Simpo(A) is fibered on the cusp minus the origin, with fiber E(t) = Uy /T?
where U, is an open subscheme of the 3-dimensional scheme of all pairs of 2-vectors,
with vector product equal 1, and T? is a two dimensional torus, acting naturally
on Us.

(iii) S(2) = k[t2, 13, u].

(iv) The fiber E(0)) over o is given by,

o= (g 1) o=y, 5)

parametrized by the k-algebra k[t,u,v]/(t?,u?, (1 + v)t), i.e. it is the open sub-
scheme of the double line parametrized by v, with the point v = —1 removed.
(v) In particular we find that E(0)) is a component of Simpa(A).

We end these notes with some usefull refferences:
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