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WEDDERBURN-ARTIN THEOREM

DENNIS S. KEELER

1. Introduction

Convention 1.1. All rings R have a multiplicative unity 1. If φ : R →
S is a ring homomorphism, then φ(1R) = 1S. In particular, if S is a
subring of R, then 1R = 1S (that is, the multiplicative unities of R and
S are equal).

Ideal means “two-sided ideal.” Our one-sided ideals tend to be right
ideals. Our modules tend to be right modules. Modules are unital in
that m1 = m for all m ∈ M .

Definitions for ideals in R

(1) I + J = {i + j : i ∈ I, j ∈ J}
(2) IJ = {i1j1 + i2j2 + · · ·+ injn : ik ∈ I, jk ∈ J}
(3) An ideal J is a maximal ideal if whenever K is an ideal and

J ( K ⊂ R, then K = R.
(4) An ideal P is a prime ideal if for all ideals I, J , if IJ ⊂ P , then

I ⊂ P or J ⊂ P .
(5) An ideal P is completely prime if for all a, b ∈ R, if ab ∈ P ,

then a ∈ P or b ∈ P .

Warning: For noncommutative rings, completely prime is stronger
than prime. However:

Proposition 1.2. Let P be an ideal in R. Then the following are
equivalent:

(1) P is prime,
(2) for all right ideals I, J , if IJ ⊂ P , then I ⊂ P or J ⊂ P ,
(3) for all left ideals I, J , if IJ ⊂ P , then I ⊂ P or J ⊂ P ,
(4) for all a, b ∈ R, if aRb ⊂ P , then a ∈ P or b ∈ P , where

aRb = {arb : r ∈ R}.

Definitions for (right) modules

(1) RR means R is thought of as a right module over itself,
(2) RR means R is thought of as a left module over itself,
(3) If X is a subset of a module M , then r. ann X = {r ∈ R :

Xr = 0}. Check that r. ann X is a right ideal, and when X is a
submodule of M , that r. ann X is an ideal,

(4) a module M is simple if M 6= 0 and the only submodules of M
are 0 and M ,
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(5) a module M is faithful if r. ann M = 0,
(6) M (n) = M ⊕ · · · ⊕M (n times).

Definitions for rings

(1) a ring R is simple if 0 is a maximal ideal,
(2) a ring R is primitive if R has a faithful simple module,
(3) a ring R is prime if 0 is a prime ideal,
(4) a ring R is a domain if 0 is completely prime, i.e., ab = 0 implies

a = 0 or b = 0,
(5) a ring R is a division ring if every non-zero element of R is

invertible.

Proposition 1.3. In general, simple ring =⇒ primitive ring =⇒
prime ring

Proof. (simple =⇒ primitive): By Zorn’s Lemma, R has a maximal
right ideal I. Then R/I is simple. Since r. ann(R/I) 6= R (since 1 ∈ R),
we must have r. ann(R/I) = 0. So R/I is a faithful simple module.

(primitive =⇒ prime) Let M be a faithful simple module and
suppose I, J are ideals with IJ = 0. Then MIJ = 0. Since M is
simple, we have MI = 0 or MI = M . If MI = 0, then I = 0 since M
is faithful. If MI = M , then MIJ = MJ = 0, so J = 0 since M is
faithful. Since I = 0 or J = 0, we have that R is a prime ring. �

The theorems we’ll present are trivial in the commutative case. If R
is commutative and primitive, then R is simple, and hence a field.

Proof. Let M be a faithful simple R-module, with non-zero element x.
Then xR = M since M is simple. Since R is commutative, r. ann(x) =
r. ann(xR) = 0. But r. ann(x) is the kernel of the natural R-module
epimorphism R → M given by r 7→ xr. So R ∼= M as R-modules. So
R is a simple R-module, and hence has only ideals 0 and R. Hence R
is also simple as a ring, and is a field. �

This is why “primitive rings” aren’t a topic in commutative algebra.
Note: for noncommutative rings, saying R is simple as a right mod-

ule over itself (i.e., RR is simple), is stronger than saying R is a sim-
ple ring. For example, R = M2(C) is a simple ring, but it has non-
zero proper right submodules (its submodule of top row vectors for
instance). In fact, if RR is simple, then R is a division ring. (Check.)

2. Primitive rings and Jacobson Density

Proposition 2.1. Let D be a division ring and DM a left D-module
(also known as a left vector space). Let R = End(DM). (That is R is
the ring of all left D-module endomorphisms M → M .) Then MR is a
faithful simple right R-module, so R is a primitive ring. �
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Example: if DM is infinite dimensional, then R = End(DM) is not
simple. This is because I = {f ∈ R : f(m) is finite dimensional for all
m ∈ M} is an ideal. (Check.) So R is a primitive, non-simple ring.

It turns out that any primitive ring R with faithful simple module
M is closely related to End(DM) for some division ring D. Our path
begins with

Lemma 2.2 (Schur’s Lemma). Let MR be a simple module. Then
D = End(MR) is a division ring.

Proof. Let f ∈ D, f 6= 0. Then since M is simple, Im f = M and
Ker f = 0. So f is onto and 1-1, hence invertible. �

Definition 2.3. Let D be a division ring and let R be a subring of
End(DM). Then R is dense in End(DM) if for every n ∈ N and every
D-independent set {x1, . . . , xn} in M , and any y1, . . . , yn ∈ M , there
exists r ∈ R such that xir = yi for i = 1, . . . , n.

Theorem 2.4 (Jacobson’s density theorem). Suppose R has a faithful
simple module MR and D = End MR. Then R is dense in End(DM).

Proof. First, since M is faithful, R is (isomorphic to) a subring of
End(DM).

Let {x1, . . . , xn} be D-independent on M , and let y1, . . . , yn ∈ M .
We induct on n to show there is r with xir = yi. If n = 1, then since
M is simple, x1R = M , so there is r with x1r = y1.

Now suppose we’ve proven the claim for n−1. Suppose for contradic-
tion that there does not exist r ∈ R with xnr 6= 0 and xir = 0 for i 6= n.
Then there is a right R-module homorphism f : M (n−1) → M given by
f(x1, . . . , xn−1) = xn. It is well-defined since if xir = 0 for i 6= n, then
xnr = 0 as well. And f is defined on all of M (n−1) by the induction hy-
pothesis. But f ∈ HomR(M (n−1), M ∼= (HomR(M, M))(n−1) = D(n−1).
So there are di ∈ D such that

∑n−1
i=1 dixi = f(x1, . . . , xn−1) = xn.

This contradicts the D-independence of the xi. So there is r such that
xnr 6= 0 and xir = 0 for i 6= n.

The above argument would have been true for any indice, not just
n. So now choose rj such that xjrj 6= 0 and xirj = 0 for all i 6= j.
Choose r′j such that (xjrj)r

′
j = yj. Let r =

∑
rjr

′
j. Then xjr = yj as

desired. �

3. The Wedderburn-Artin Theorem

Recall the chain conditions:

Definition 3.1. A module M has ACC (the ascending chain condition)
on submodules if for any chain of submodules M0 ⊂ M1 ⊂ . . . , there
exists i such that Mi = Mj for all j ≥ i. Such a module is also called
noetherian. DCC (the descending chain condition) and artinian are
defined similarly.



4 DENNIS S. KEELER

A ring R is right noetherian if RR is a noetherian module. Left
noetherian and right/left artinian are defined similarly. A ring R is
noetherian if R is both right and left noetherian (and similarly for
artinian).

Theorem 3.2 (Wedderburn-Artin). Let R be primitive and right ar-
tinian. Then R ∼= Mn(D) for some n and division ring D. Hence R is
simple artinian (and noetherian).

Proof. Let D = End(MR), which is a division ring by Schur’s Lemma.
Then R is dense in End(DM).

Let {xi : i ∈ I} be a base for M over D. Let Li = r. ann{xj : j ≤ i}.
Then L1 ⊃ L2 ⊃ . . . . Those inclusions are strict, since by density, there
exists r ∈ R such that xjr = 0, j < i and xir 6= 0. This leads to a
contradiction of DCC, unless I is finite.

So M is finite dimensional over D, say of dimension n. Thus by
linear algebra, End(DM) ∼= Mn(D). Again by linear algebra, for R
to be dense, the injection R → Mn(D) must be onto, and hence an
isomorphism. �

The above is just one possible statement of Wedderburn-Artin. We
know of course that a prime artinian commutative ring is just a field.
This generalizes:

Proposition 3.3. Let R be a prime ring with a minimal right ideal L.
Then R is primitive.

Proof. Since L is minimal, L is a simple right R-module. Now we have
L(r. ann L) = 0. Since R is prime and L 6= 0, we have r. ann L = 0. So
L is faithful. Hence R is primitive. �

Corollary 3.4. Let R be a prime right artinian ring. Then R is simple
artinian and hence R ∼= Mn(D) for some n and division ring D. �
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