NONCOMMUTATIVE ALGEBRAS I:
WEDDERBURN-ARTIN THEOREM

DENNIS S. KEELER

1. INTRODUCTION

Convention 1.1. All rings R have a multiplicative unity 1. If ¢ : R —
S is a ring homomorphism, then ¢(1g) = 1g. In particular, if S is a
subring of R, then 1z = 1g (that is, the multiplicative unities of R and
S are equal).

Ideal means “two-sided ideal.” Our one-sided ideals tend to be right
ideals. Our modules tend to be right modules. Modules are unital in
that m1 = m for all m € M.

Definitions for ideals in R

WY I+J={i+j:iel,jeJ}

(2) IJ = {ivjr +igfo+ - +ingnix €1, jr € J}

(3) An ideal J is a mazimal ideal if whenever K is an ideal and
JC K C R, then K = R.

(4) An ideal P is a prime ideal if for all ideals I, J, if IJ C P, then
ICPorJCP.

(5) An ideal P is completely prime if for all a,b € R, if ab € P,
thena e Porbe P.

Warning: For noncommutative rings, completely prime is stronger
than prime. However:

Proposition 1.2. Let P be an ideal in R. Then the following are
equivalent:
(1) P is prime,
(2) for all right ideals I, J, if IJ C P, then I C P or J C P,
(3) for all left ideals I, J, if IJ C P, then I C P or J C P,
(4) for all a,b € R, if aRb C P, then a € P or b € P, where
aRb = {arb:r € R}.

Definitions for (right) modules

(1) Rg means R is thought of as a right module over itself,

(2) rR means R is thought of as a left module over itself,

(3) If X is a subset of a module M, then r.ann X = {r € R :
Xr = 0}. Check that r.ann X is a right ideal, and when X is a
submodule of M, that r.ann X is an ideal,

(4) a module M is simple if M # 0 and the only submodules of M

are 0 and M,
1
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(5) a module M is faithful if r.ann M = 0,
6) MW =M @---® M (n times).
Definitions for rings
(1) aring R is simple if 0 is a maximal ideal,
(2) aring R is primitive if R has a faithful simple module,
(3) aring R is prime if 0 is a prime ideal,
(4) aring R is a domain if 0 is completely prime, i.e., ab = 0 implies

a=0o0rb=0,
(5) a ring R is a division ring if every non-zero element of R is
invertible.

Proposition 1.3. In general, simple ring =—> primitive ring —
prime ring

Proof. (simple = primitive): By Zorn’s Lemma, R has a maximal
right ideal I. Then R/I is simple. Sincer.ann(R/I) # R (since 1 € R),
we must have r.ann(R/I) = 0. So R/I is a faithful simple module.
(primitive = prime) Let M be a faithful simple module and
suppose I, J are ideals with IJ = 0. Then MIJ = 0. Since M is
simple, we have M I =0 or MI = M. If MI =0, then I =0 since M
is faithful. If MI = M, then MIJ = MJ = 0, so J = 0 since M is
faithful. Since I = 0 or J = 0, we have that R is a prime ring. g

The theorems we’ll present are trivial in the commutative case. If R
is commutative and primitive, then R is simple, and hence a field.

Proof. Let M be a faithful simple R-module, with non-zero element .
Then xR = M since M is simple. Since R is commutative, r. ann(z) =
r.ann(zR) = 0. But r.ann(x) is the kernel of the natural R-module
epimorphism R — M given by r — zr. So R = M as R-modules. So
R is a simple R-module, and hence has only ideals 0 and R. Hence R
is also simple as a ring, and is a field. U

This is why “primitive rings” aren’t a topic in commutative algebra.

Note: for noncommutative rings, saying R is simple as a right mod-
ule over itself (i.e., Rg is simple), is stronger than saying R is a sim-
ple ring. For example, R = M;(C) is a simple ring, but it has non-
zero proper right submodules (its submodule of top row vectors for
instance). In fact, if Rp is simple, then R is a division ring. (Check.)

2. PRIMITIVE RINGS AND JACOBSON DENSITY

Proposition 2.1. Let D be a division ring and pM a left D-module
(also known as a left vector space). Let R = End(pM). (That is R is
the ring of all left D-module endomorphisms M — M.) Then Mg is a
faithful simple right R-module, so R is a primitive ring. O
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Example: if p M is infinite dimensional, then R = End(pM) is not
simple. This is because I = {f € R : f(m) is finite dimensional for all
m € M} is an ideal. (Check.) So R is a primitive, non-simple ring.

It turns out that any primitive ring R with faithful simple module
M is closely related to End(pM) for some division ring D. Our path
begins with

Lemma 2.2 (Schur’s Lemma). Let My be a simple module. Then
D = End(Mpg) is a division ring.

Proof. Let f € D, f # 0. Then since M is simple, Im f = M and
Ker f = 0. So f is onto and 1-1, hence invertible. O

Definition 2.3. Let D be a division ring and let R be a subring of
End(pM). Then R is dense in End(pM) if for every n € N and every
D-independent set {x1,...,z,} in M, and any yi,...,y, € M, there
exists r € R such that x;r =y; fori=1,... n.

Theorem 2.4 (Jacobson’s density theorem). Suppose R has a faithful
simple module Mg and D = End Mg. Then R is dense in End(pM).

Proof. First, since M is faithful, R is (isomorphic to) a subring of
End(pM).

Let {z1,...,2,} be D-independent on M, and let yq,...,y, € M.
We induct on n to show there is r with x;r = y;. If n = 1, then since
M is simple, x1R = M, so there is r with x1r = y;.

Now suppose we’ve proven the claim for n—1. Suppose for contradic-
tion that there does not exist r € R with z,,r # 0 and x;r = 0 for ¢ # n.
Then there is a right R-module homorphism f : M®™~ 1 — M given by
f(z1,...,xy_1) = x,. It is well-defined since if x;7 = 0 for 7 # n, then
x,7 = 0 as well. And f is defined on all of M~V by the induction hy-
pothesis. But f € Homgz(M "1 M = (Homg(M, M))"~1) = D=1,
So there are d; € D such that Z?;ll dix; = f(x1,...,2n_1) = Tp.
This contradicts the D-independence of the x;. So there is r such that
T,r # 0 and x;r = 0 for i # n.

The above argument would have been true for any indice, not just
n. So now choose r; such that x;r; # 0 and x;7; = 0 for all @ # j.
Choose 7’ such that (z;r;)r; = y;. Let r = Y ryr). Then z;r = y; as
desired. U

3. THE WEDDERBURN-ARTIN THEOREM
Recall the chain conditions:

Definition 3.1. A module M has ACC (the ascending chain condition)
on submodules if for any chain of submodules My, C M; C ..., there
exists 4 such that M; = M; for all j > ¢. Such a module is also called
noetherian. DCC (the descending chain condition) and artinian are
defined similarly.
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A ring R is right noetherian if Rg is a noetherian module. Left
noetherian and right/left artinian are defined similarly. A ring R is
noetherian if R is both right and left noetherian (and similarly for
artinian).

Theorem 3.2 (Wedderburn-Artin). Let R be primitive and right ar-
tinian. Then R = M, (D) for some n and division ring D. Hence R is
simple artinian (and noetherian).

Proof. Let D = End(Mg), which is a division ring by Schur’s Lemma.
Then R is dense in End(pM).

Let {x; : i € I} be a base for M over D. Let L; = r.ann{z; : j <i}.
Then L; D Ly D .... Those inclusions are strict, since by density, there
exists 7 € R such that z;7 = 0,5 < ¢ and ;v # 0. This leads to a
contradiction of DCC, unless [ is finite.

So M is finite dimensional over D, say of dimension n. Thus by
linear algebra, End(pM) = M, (D). Again by linear algebra, for R
to be dense, the injection R — M, (D) must be onto, and hence an
isomorphism. Il

The above is just one possible statement of Wedderburn-Artin. We
know of course that a prime artinian commutative ring is just a field.
This generalizes:

Proposition 3.3. Let R be a prime ring with a minimal right ideal L.
Then R is primitive.

Proof. Since L is minimal, L is a simple right R-module. Now we have
L(r.ann L) = 0. Since R is prime and L # 0, we have r.ann L = 0. So

L is faithful. Hence R is primitive. U

Corollary 3.4. Let R be a prime right artinian ring. Then R is simple

artinian and hence R = M, (D) for some n and division ring D. [
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