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4. Semisimple rings

In this section, we will generalize the Wedderburn-Artin theorem.
The rings we look at will be “quotient rings,” taking the place of fields
(or finite direct products thereof) in the commutative case.

Definition 4.1. An ideal is semiprime if it is an intersection of prime
ideals. A ring is semiprime if 0 is a semiprime ideal.

Proposition 4.2. Let A be an ideal of R. Then the following are
equivalent:

(1) A is semiprime,
(2) if I is an ideal and I2 ⊂ A, then I ⊂ A,
(3) if I is a right ideal and I2 ⊂ A, then I ⊂ A,
(4) if I is a left ideal and I2 ⊂ A, then I ⊂ A,
(5) if b ∈ R and bRb ⊂ A, then b ∈ A.

(Check.) �

As in the commutative case, we will connect semiprime artinian rings
to prime artinian rings.

The main tool is

Lemma 4.3 (Chinese Remainder Theorem). Let R be a ring and let
A1, . . . , An be proper distinct ideals such that Ai + Aj = R when i 6= j.

Then R/(∩j
i=1Ai) ∼=

∏j
i=1 R/Ai.

Proof. The proof is as in the commutative case. �

Lemma 4.4. Let R be right artinian. Then any prime ideal is maximal
and R has finitely many prime ideals Pi.

Proof. Let P be prime. Then R/P is prime right artinian, hence simple
by Corollary 3.4. So P is maximal.

Let P1, P2, . . . be all distinct primes. Then P1 ⊃ P1 ∩ P2 ⊃ P1 ∩
P2 ∩ P3 ⊃ . . . . Since R is right artinian, this chain stops for some n.
If P is any prime, then P ⊃ P1 ∩ · · · ∩ Pn, and so P ⊃ Pi for some i.
Since Pi is maximal, Pi = P . So there are only finitely many distinct
primes. �
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Theorem 4.5. Let R be semiprime right artinian. Then

R ∼=
j∏

i=1

Mni
(Di)

for some ni and division rings Di. So R is artinian and noetherian.

Proof. Since R is right artinian, there are only finitely many primes
Pi, and they are each maximal, so Pi + Pj = R for i 6= j. Since R
is semiprime, 0 = ∩n

i=1Pi. So by the Chinese Remainder Theorem,
R ∼=

∏n
i=1 R/Pi.

The conclusion then follows from Corollary 3.4. �

We now turn to a different way of looking at semiprime artinian
rings.

Definition 4.6. Let M be an R-module. Then the socle of M is the
sum of the simple submodules of M , denoted soc(M). If M has no
simple submodules, then soc(M) = 0.

A module is semisimple if soc(M) = M . A ring is (right) semisimple
if RR is semisimple.

Proposition 4.7. A ring R is semiprime artinian if and only if R is
semisimple.

Proof. If R is semiprime artinian, then we know from Theorem 4.5 that
R ∼=

∏j
i=1 Mni

(Di). It can be checked directly that such a ring is the
sum of its minimal right ideals.

On the other hand, if R is semisimple, then let R =
∑

Li, with the Li

minimal right ideals. Then 1 = ai1 + · · ·+ ain for some aj ∈ Lj, aj 6= 0.
So R = ai1R + . . . ainR = Li1 + · · · + Lin . So R is a finite sum of Li.
Renumber those Lij as Lj. Then R ⊃

∑
i>1 Li ⊃

∑
i > 2Li ⊃ . . . is a

composition series for R. Hence R is right artinian.
Now since each Li is simple, Pi = r. ann(Li) is primitive (because

Li is a simple faithful R/Pi-module). Since R is right artinian, these
are prime ideals. Since 0 = r. ann(1) = ∩ r. ann(Li), we have that 0 is
semiprime. �

We shall return to semisimple rings soon.

5. Quotient rings and the Ore condition

In commutative algebra, the procedure for localization is relatively
simple. Given any commutive ring R and multiplicatively closed subset
S, we can form the localization RS−1. For noncommutative rings, the
procedure is not so simple. It is quite common to have multiplicatively
closed subsets which do not yield a localization.

Let us be more specific about what we want.
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Definition 5.1. Let R be a ring and let S be a multiplicatively closed
subset (1 ∈ S and if a, b ∈ S, then ab ∈ S). Then a ring Q is a (right)
ring of fractions of R with respect to S if

(1) There is a ring homomorphism ν : R → Q such that ν(s) is in-
vertible for any s ∈ S, with Ker ν = {r ∈ R : rs = 0, some s ∈
S}.

(2) every element of Q has the form (ν(r))(ν(s))−1 = rs−1 (abusing
notation) for some r ∈ R and some s ∈ S.

We write Q = RS−1.

The main possible problem with a given S is how to write s−1r =
r′(s′)−1 for some r′ ∈ R, s′ ∈ S. We would need that:
(i) Given r ∈ R, s ∈ S, there exists r′ ∈ R, s′ ∈ S such that rs′ = sr′

Another issue is that if sr = 0, we must make sure that ν(r) = 0.
That is becase, we need s−10 = s−1sr = r = 0 ∈ Q. Given the
structure of Ker ν, we need that there is s′ ∈ S with rs′ = 0. So
(ii) If sr = 0 for r ∈ R, s ∈ S, then there is s′ ∈ S with rs′ = 0.

Definition 5.2. A multiplicatively closed set S which satisfies (i) and
(ii) is called a right denominator set.

We won’t prove it here, but it turns out that R has a right ring of
fractions with respect to S if and only if S is a right denominator set.

We will focus on a special multiplicatively closed set S, the set of
all regular elements. An element s is regular if rs 6= 0 and sr 6= 0 for
all r ∈ R, r 6= 0. It is easy to see that the set of regular elements is
mutiplicatively closed, and automatically satisfies (ii). For this special
case, (i) is called the Ore condition and a ring R with S, the set of
regular elements, satisfying (i) is called right Ore.

If R is right Ore, we say that R has a right quotient ring Q = RS−1.
The ring R is a right order in Q if Q is a right quotient ring of R. It is
a fact that Q is unique up to isomorphism. Also, since Ker ν = 0, we
can think of R ⊂ Q.

There are many domains which are not right Ore, and hence have
no right quotient rings. For instance, if k is a field, and R = k〈x, y〉,
non-commutative polynomials in k, then R is a domain and x, y are
regular. But there are no non-zero polynomials f, g such that xf = yg,
so one could not write x−1y in the form gf−1.

6. Orders in semisimple rings

We will show that a large class of rings are right orders in semisimple
rings. These are known as the semiprime right Goldie rings. Let us
examine some of the properties they must have.

We need the following definitions

Definition 6.1. Let M be an R-module.
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(1) A submodule N of M is essential (or large) in M if N ∩N ′ 6= 0
for all submodules N ′ 6= 0 of M . This is written N ≤e M .

(2) A submodule N is uniform if N ′ ∩ N ′′ 6= 0 for all non-zero
submodules N ′, N ′′. That is N ′ ≤e N for every submodule N .

Essentialness (essentiality?) is connected to semisimplicity as fol-
lows.

Proposition 6.2. Let M be an R-module. Then M is semisimple if
and only if M is the only essential submodule of M .

Proof. Suppose M is semisimple. Since soc(M) = M , if N ( M , there
must be a simple submodule S of M which is not contained in N . Thus
N ∩ S = 0, so N is not essential in M .

The other direction would require more lemmas and propositions,
which we won’t present. �

Definition 6.3. A ring R which has no infinite direct sum of right
ideals and has ACC on ideals of the form r. ann(A), A ⊂ R (called
right annhilators) is called right Goldie.

Proposition 6.4. Let R be a right order in a semisimple ring Q. Then
R is semiprime right Goldie.

Proof. Suppose N is an ideal with N2 = 0. Then by Zorn’s Lemma,
there exists a right ideal N ′ with N ∩N ′ = 0 and L = N + N ′ ≤e RR.
If J is a non-zero right ideal of Q, then rR ⊂ J for some non-zero
r ∈ R (because rs−1 ∈ J implies r ∈ J). Since L ∩ rR 6= 0, we have
LQ∩J 6= 0. So LQ ≤e Q. Thus by the previous proposition, LQ = Q.
So 1 =

∑
lis

−1
i and

∏
i si =

∑
i(li

∏
j 6=i si) ∈ L. So L contains a

regular element. Now NL = N2 + NN ′ = 0. Since L contains a
regular element, we have N = 0.

We leave it to the reader to check that if ⊕Li is a direct sum of
ideals of R, then ⊕LiQ is a direct sum of ideals of Q. So the direct
sum cannot be infinite.

Now suppose Ai, Ai+1 are such that r. annR(Ai) ( r. annR(Ai+1)
where Ai are subsets of R. (Here the subscript R tells us that these
annhilators are in R.) Let Bj = {q ∈ Q|q r. annR(Aj) = 0}. Then
Bi ⊃ Bi+1. Since r. annR(Ai) ( r. annR(Ai+1), there exists ai ∈ Ai

such that ai r. annR(Ai+1) 6= 0. Then ai ∈ Bi \ Bi+1. Since Q is left
artinian, we have DCC on the Bi. So we must have ACC on the right
annhilators in R. �

Of special note is that right noetherian rings are right Goldie, as are
commutative domains.

7. Semiprime right Goldie rings have quotient rings

For this section, R is always a semiprime right Goldie ring. Most of
our material comes from [1]. (Draft available online at
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https://www.dcc.ufrj.br/ collier/goldie.pdf.
Get the published version if you can, but the only real mathematical
problem I know of is in the last line of page 11 of the draft: it should
say anx = 0, not an = 0.)

Our main goal will be to show

Claim 7.1. A right ideal I of R is essential if and only if I contains
a regular element.

Given the claim, we have

Theorem 7.2 (Goldie’s Theorem). Let R be semiprime right Goldie.
Then R has a ring of quotients.

Proof. Let a, s ∈ R, with s regular. Let E = {x ∈ R : ax ∈ sR}.
Now suppose I is a non-zero right ideal of R. If aI = 0, then I ⊂ E.

If aI 6= 0, then aI∩cR 6= 0 since cR ≤e RR. So I∩E 6= 0. So E ≤e RR.
Thus E contains a regular element s′.

Then there exists b ∈ R such that as′ = sb. So the right Ore condi-
tion holds. �

First, we go about showing that if s is regular, then sR is essential.
We need a lemma.

Lemma 7.3. Every right ideal contains a uniform right ideal.

Proof. Suppose not. Let I be a counterexample. Then there are non-
zero I1, I

′
1 ⊂ I such that I1 ∩ I ′1 = 0. Similarly, there are non-zero

I2, I
′
2 ⊂ I1 such that I2 ∩ I ′2 = 0 (and further (I2 + I ′2) ∩ I ′1 = 0. So

I ′1 + I ′2 is direct. Continuing in this manner, we get an infinite direct
sum I ′1 ⊕ I ′2 ⊕ I ′3 ⊕ . . . . This contradicts the righ Goldie condition. �

So any semiprime right Goldie ring contains uniform ideals. It turns
out that the maximal length n of a direct sum of uniform right ideals
is an invariant of R, called the Goldie rank or uniform rank of R. The
proof that this is an invariant is omitted.

Proposition 7.4. Let s be a regular element. Then sR ≤e RR.

Proof. Let R have Goldie rank n and let U1 ⊕ · · · ⊕ Un be a maximal
direct sum of uniform right ideals. Since s is regular, sUi 6= 0 and sUi

is uniform (check that right ideals in sUi are of the form sI with I a
right ideal in Ui, and that pairs of such non-zero ideals have non-zero
intersection). Then sU1 ⊕ · · · ⊕ sUn is also a maximal direct sum of
uniform right ideals.

If L is a right ideal, then by the previous lemma, it contains a uniform
right ideal V . By the maximality of the length of the direct sum,

0 6= (sU1 ⊕ · · · ⊕ sUn) ∩ V ⊂ sR ∩ L.

Thus sR ≤e RR �
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Now we turn to showing that an essential right ideal contains a reg-
ular element. We need more lemmas.

Lemma 7.5. Let I be a right ideal such that all elements are nilpotent.
Then I = 0.

Proof. Suppose there exists a ∈ I, a 6= 0. Consider the set of ideals

S = {r. ann(za) : z ∈ R, za 6= 0}.
Since R is right Goldie, this set S contains a maximal element, say
r. ann(za).

Let x ∈ R. Then axz ∈ I, so there is n such that (axz)n = 0. So

(xza)n+1 = xz(axz)na = 0.

Hence xza is nilpotent. Say (xza)k = 0, but (xza)k−1 6= 0. Then
r. ann(za) ⊂ r. ann((xza)k−1) 6= R. So r. ann(za) = r. ann((xza)k−1).
Thus xza ∈ r. ann(za). So (za)x(za) = 0. Since this is true for all
x ∈ R, we have (za)R(za) = 0. Since R is semiprime, we have za = 0.
This is a contradiction. �

Lemma 7.6. Let a ∈ R. Then anR ⊕ r. ann(an) ≤e RR for all n
sufficiently large.

Proof. Since R is right Goldie, there exists N such that r. ann(an) =
r. ann(an+1) for all n ≥ N . Let n ≥ N . Choose z ∈ anR ∩ r. ann(an).
Then z = anx ∈ r. ann(an), so (an)anx = a2nx = 0. Thus we have x ∈
r. ann(a2n) = r. ann(an), so z = anx = 0. Thus the sum anR+r. ann(an)
is direct.

Now let I be a non-zero right ideal and suppose (anR⊕ r. ann(an))∩
I = 0. Since I 6⊂ r. ann(an) = r. ann(akn), we have aknI 6= 0 for all
k ≥ 0.

We claim the sum

anI + a2nI + · · ·+ aknI

is direct for k > 0. This is trivially true for k = 1. Suppose by
induction this is true for k − 1. Let x ∈ anI ∩ (a2nI + · · · + aknI).
So x = any = a2nz, y ∈ I, z ∈ R. So (y − anz) ∈ r. ann(an). Thus
y ∈ I ∩ (anR + r. ann(an)) = 0. But then x = any = 0. So the sum of
the aknI is direct. This contradicts the right Goldie condition. �

We finally complete the Claim 7.1.

Proposition 7.7. An essential right ideal contains a regular element.

Proof. Let E be a non-zero right ideal. Since E 6= 0, it contains a
non-nilpotent element x by Lemma 7.5. By the previous lemma, let n
be such that xnR ∩ r. ann(xn) = 0. Set a1 = xn. If r. ann(a1) ∩ E = 0,
then stop. If r. ann(a1)∩E 6= 0, repeat the argument, replacing E with
r. ann(a1) ∩ E. Then we have non-zero a2 ∈ r. ann(a1) ∩ E such that
a2R ∩ r. ann(a2) = 0.
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Check that a1R + a2R + (r. ann(a1)∩ r. ann(a2)∩E) is a direct sum.
If (r. ann(a1) ∩ r. ann(a2) ∩ E) 6= 0, then repeat to get a direct sum

a1R + a2R + a3R + (r. ann(a1) ∩ r. ann(a2) ∩ r. ann(a3) ∩ E).

Since R is right Goldie, this process must stop. So for some k,
(r. ann(a1)∩ · · ·∩ r. ann(ak)∩E) = 0. If we assume E is essential, then
r. ann(a1) ∩ · · · ∩ r. ann(ak) = 0.

Let c1 = a1+ · · ·+ak. Since
∑

aiR is direct, r. ann(c1) = r. ann(a1)∩
· · · ∩ r. ann(ak) = 0.

Now let c = cn
1 where cn

1R ⊕ r. ann(cn
1 ) ≤e RR by Lemma 7.6. Now

r. ann(cn
1 ) = r. ann(c1) = 0. If zc = 0, then r. ann(z) ⊃ cR and cR is

essential. So r. ann(z) is essential, and so is its superset r. ann(zm).
Again, there is m such that zmR∩ r. ann(zm) = 0. So zmR = 0 since

r. ann(zm) is esential. So by Lemma 7.5, z = 0. Thus zc = 0 implies
z = 0 and since r. ann(c) = 0, we have that c ∈ E is regular. �

We leave it as an exercise to prove

Proposition 7.8. Let R be semiprime right Goldie. Then the quotient
ring Q of R is semisimple.

Proof. Hint: Show that Q is also semiprime right Goldie. Then use
Claim 7.1 along with Proposition 6.2 to show that Q is semisimple. �
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