NONCOMMUTATIVE ALGEBRAS II & III: GOLDIE'S THEOREM

DENNIS S. KEELER

4. Semisimple rings

In this section, we will generalize the Wedderburn-Artin theorem. The rings we look at will be "quotient rings," taking the place of fields (or finite direct products thereof) in the commutative case.

Definition 4.1. An ideal is *semiprime* if it is an intersection of prime ideals. A ring is semiprime if 0 is a semiprime ideal.

Proposition 4.2. Let A be an ideal of R. Then the following are equivalent:

- (1) A is semiprime,
- (2) if I is an ideal and $I^2 \subset A$, then $I \subset A$,
- (3) if I is a right ideal and $I^2 \subset A$, then $I \subset A$,
- (4) if I is a left ideal and $I^2 \subset A$, then $I \subset A$,
- (5) if $b \in R$ and $bRb \subset A$, then $b \in A$.

(Check.)

As in the commutative case, we will connect semiprime artinian rings to prime artinian rings.

The main tool is

Lemma 4.3 (Chinese Remainder Theorem). Let R be a ring and let A_1, \ldots, A_n be proper distinct ideals such that $A_i + A_j = R$ when $i \neq j$. Then $R/(\bigcap_{i=1}^{j} A_i) \cong \prod_{i=1}^{j} R/A_i$.

Proof. The proof is as in the commutative case. \Box

Lemma 4.4. Let R be right artinian. Then any prime ideal is maximal and R has finitely many prime ideals P_i .

Proof. Let P be prime. Then R/P is prime right artinian, hence simple by Corollary 3.4. So P is maximal.

Let P_1, P_2, \ldots be all distinct primes. Then $P_1 \supset P_1 \cap P_2 \supset P_1 \cap P_2 \cap P_3 \supset \ldots$ Since R is right artinian, this chain stops for some n. If P is any prime, then $P \supset P_1 \cap \cdots \cap P_n$, and so $P \supset P_i$ for some i. Since P_i is maximal, $P_i = P$. So there are only finitely many distinct primes.

Theorem 4.5. Let R be semiprime right artinian. Then

$$R \cong \prod_{i=1}^{j} M_{n_i}(D_i)$$

for some n_i and division rings D_i . So R is artinian and noetherian.

Proof. Since R is right artinian, there are only finitely many primes P_i , and they are each maximal, so $P_i + P_j = R$ for $i \neq j$. Since R is semiprime, $0 = \bigcap_{i=1}^n P_i$. So by the Chinese Remainder Theorem, $R \cong \prod_{i=1}^n R/P_i$.

The conclusion then follows from Corollary 3.4.

П

We now turn to a different way of looking at semiprime artinian rings.

Definition 4.6. Let M be an R-module. Then the *socle* of M is the sum of the simple submodules of M, denoted soc(M). If M has no simple submodules, then soc(M) = 0.

A module is semisimple if soc(M) = M. A ring is (right) semisimple if R_R is semisimple.

Proposition 4.7. A ring R is semiprime artinian if and only if R is semisimple.

Proof. If R is semiprime artinian, then we know from Theorem 4.5 that $R \cong \prod_{i=1}^{j} M_{n_i}(D_i)$. It can be checked directly that such a ring is the sum of its minimal right ideals.

On the other hand, if R is semisimple, then let $R = \sum L_i$, with the L_i minimal right ideals. Then $1 = a_{i_1} + \cdots + a_{i_n}$ for some $a_j \in L_j$, $a_j \neq 0$. So $R = a_{i_1}R + \ldots a_{i_n}R = L_{i_1} + \cdots + L_{i_n}$. So R is a finite sum of L_i . Renumber those L_{i_j} as L_j . Then $R \supset \sum_{i>1} L_i \supset \sum_i i > 2L_i \supset \ldots$ is a composition series for R. Hence R is right artinian.

Now since each L_i is simple, $P_i = r. \operatorname{ann}(L_i)$ is primitive (because L_i is a simple faithful R/P_i -module). Since R is right artinian, these are prime ideals. Since $0 = r. \operatorname{ann}(1) = \cap r. \operatorname{ann}(L_i)$, we have that 0 is semiprime.

We shall return to semisimple rings soon.

5. QUOTIENT RINGS AND THE ORE CONDITION

In commutative algebra, the procedure for localization is relatively simple. Given any commutive ring R and multiplicatively closed subset S, we can form the localization RS^{-1} . For noncommutative rings, the procedure is not so simple. It is quite common to have multiplicatively closed subsets which do not yield a localization.

Let us be more specific about what we want.

Definition 5.1. Let R be a ring and let S be a multiplicatively closed subset $(1 \in S \text{ and if } a, b \in S, \text{ then } ab \in S)$. Then a ring Q is a *(right) ring of fractions* of R with respect to S if

- (1) There is a ring homomorphism $\nu: R \to Q$ such that $\nu(s)$ is invertible for any $s \in S$, with $\operatorname{Ker} \nu = \{r \in R : rs = 0, \text{ some } s \in S\}$.
- (2) every element of Q has the form $(\nu(r))(\nu(s))^{-1} = rs^{-1}$ (abusing notation) for some $r \in R$ and some $s \in S$.

We write $Q = RS^{-1}$.

The main possible problem with a given S is how to write $s^{-1}r = r'(s')^{-1}$ for some $r' \in R, s' \in S$. We would need that:

(i) Given $r \in R$, $s \in S$, there exists $r' \in R$, $s' \in S$ such that rs' = sr'Another issue is that if sr = 0, we must make sure that $\nu(r) = 0$. That is becase, we need $s^{-1}0 = s^{-1}sr = r = 0 \in Q$. Given the structure of Ker ν , we need that there is $s' \in S$ with rs' = 0. So (ii) If sr = 0 for $r \in R$, $s \in S$, then there is $s' \in S$ with rs' = 0.

Definition 5.2. A multiplicatively closed set S which satisfies (i) and (ii) is called a right denominator set.

We won't prove it here, but it turns out that R has a right ring of fractions with respect to S if and only if S is a right denominator set.

We will focus on a special multiplicatively closed set S, the set of all regular elements. An element s is regular if $rs \neq 0$ and $sr \neq 0$ for all $r \in R, r \neq 0$. It is easy to see that the set of regular elements is multiplicatively closed, and automatically satisfies (ii). For this special case, (i) is called the *Ore condition* and a ring R with S, the set of regular elements, satisfying (i) is called right Ore.

If R is right Ore, we say that R has a right quotient ring $Q = RS^{-1}$. The ring R is a right order in Q if Q is a right quotient ring of R. It is a fact that Q is unique up to isomorphism. Also, since $\text{Ker } \nu = 0$, we can think of $R \subset Q$.

There are many domains which are not right Ore, and hence have no right quotient rings. For instance, if k is a field, and $R = k\langle x, y \rangle$, non-commutative polynomials in k, then R is a domain and x, y are regular. But there are no non-zero polynomials f, g such that xf = yg, so one could not write $x^{-1}y$ in the form gf^{-1} .

6. Orders in semisimple rings

We will show that a large class of rings are right orders in semisimple rings. These are known as the semiprime right *Goldie* rings. Let us examine some of the properties they must have.

We need the following definitions

Definition 6.1. Let M be an R-module.

- (1) A submodule N of M is essential (or large) in M if $N \cap N' \neq 0$ for all submodules $N' \neq 0$ of M. This is written $N \leq_e M$.
- (2) A submodule N is uniform if $N' \cap N'' \neq 0$ for all non-zero submodules N', N''. That is $N' \leq_e N$ for every submodule N.

Essentialness (essentiality?) is connected to semisimplicity as follows.

Proposition 6.2. Let M be an R-module. Then M is semisimple if and only if M is the only essential submodule of M.

Proof. Suppose M is semisimple. Since soc(M) = M, if $N \subseteq M$, there must be a simple submodule S of M which is not contained in N. Thus $N \cap S = 0$, so N is not essential in M.

The other direction would require more lemmas and propositions, which we won't present. \Box

Definition 6.3. A ring R which has no infinite direct sum of right ideals and has ACC on ideals of the form $r. ann(A), A \subset R$ (called right annhilators) is called right Goldie.

Proposition 6.4. Let R be a right order in a semisimple ring Q. Then R is semiprime right Goldie.

Proof. Suppose N is an ideal with $N^2=0$. Then by Zorn's Lemma, there exists a right ideal N' with $N\cap N'=0$ and $L=N+N'\leq_e R_R$. If J is a non-zero right ideal of Q, then $rR\subset J$ for some non-zero $r\in R$ (because $rs^{-1}\in J$ implies $r\in J$). Since $L\cap rR\neq 0$, we have $LQ\cap J\neq 0$. So $LQ\leq_e Q$. Thus by the previous proposition, LQ=Q. So $1=\sum l_i s_i^{-1}$ and $\prod_i s_i=\sum_i (l_i\prod_{j\neq i} s_i)\in L$. So L contains a regular element. Now $NL=N^2+NN'=0$. Since L contains a regular element, we have N=0.

We leave it to the reader to check that if $\oplus L_i$ is a direct sum of ideals of R, then $\oplus L_iQ$ is a direct sum of ideals of Q. So the direct sum cannot be infinite.

Now suppose A_i , A_{i+1} are such that $\operatorname{r.ann}_R(A_i) \subseteq \operatorname{r.ann}_R(A_{i+1})$ where A_i are subsets of R. (Here the subscript R tells us that these annhilators are in R.) Let $B_j = \{q \in Q | q \operatorname{r.ann}_R(A_j) = 0\}$. Then $B_i \supset B_{i+1}$. Since $\operatorname{r.ann}_R(A_i) \subseteq \operatorname{r.ann}_R(A_{i+1})$, there exists $a_i \in A_i$ such that $a_i \operatorname{r.ann}_R(A_{i+1}) \neq 0$. Then $a_i \in B_i \setminus B_{i+1}$. Since Q is left artinian, we have DCC on the B_i . So we must have ACC on the right annhilators in R.

Of special note is that right noetherian rings are right Goldie, as are commutative domains.

7. Semiprime right Goldie rings have quotient rings

For this section, R is always a semiprime right Goldie ring. Most of our material comes from [1]. (Draft available online at

https://www.dcc.ufrj.br/collier/goldie.pdf.

Get the published version if you can, but the only real mathematical problem I know of is in the last line of page 11 of the draft: it should say $a^n x = 0$, not $a^n = 0$.)

Our main goal will be to show

Claim 7.1. A right ideal I of R is essential if and only if I contains a regular element.

Given the claim, we have

Theorem 7.2 (Goldie's Theorem). Let R be semiprime right Goldie. Then R has a ring of quotients.

Proof. Let $a, s \in R$, with s regular. Let $E = \{x \in R : ax \in sR\}$.

Now suppose I is a non-zero right ideal of R. If aI = 0, then $I \subset E$. If $aI \neq 0$, then $aI \cap cR \neq 0$ since $cR \leq_e R_R$. So $I \cap E \neq 0$. So $E \leq_e R_R$. Thus E contains a regular element s'.

Then there exists $b \in R$ such that as' = sb. So the right Ore condition holds.

First, we go about showing that if s is regular, then sR is essential. We need a lemma.

Lemma 7.3. Every right ideal contains a uniform right ideal.

Proof. Suppose not. Let I be a counterexample. Then there are non-zero $I_1, I'_1 \subset I$ such that $I_1 \cap I'_1 = 0$. Similarly, there are non-zero $I_2, I'_2 \subset I_1$ such that $I_2 \cap I'_2 = 0$ (and further $(I_2 + I'_2) \cap I'_1 = 0$. So $I'_1 + I'_2$ is direct. Continuing in this manner, we get an infinite direct sum $I'_1 \oplus I'_2 \oplus I'_3 \oplus \ldots$ This contradicts the righ Goldie condition. \square

So any semiprime right Goldie ring contains uniform ideals. It turns out that the maximal length n of a direct sum of uniform right ideals is an invariant of R, called the *Goldie rank* or *uniform rank* of R. The proof that this is an invariant is omitted.

Proposition 7.4. Let s be a regular element. Then $sR \leq_e R_R$.

Proof. Let R have Goldie rank n and let $U_1 \oplus \cdots \oplus U_n$ be a maximal direct sum of uniform right ideals. Since s is regular, $sU_i \neq 0$ and sU_i is uniform (check that right ideals in sU_i are of the form sI with I a right ideal in U_i , and that pairs of such non-zero ideals have non-zero intersection). Then $sU_1 \oplus \cdots \oplus sU_n$ is also a maximal direct sum of uniform right ideals.

If L is a right ideal, then by the previous lemma, it contains a uniform right ideal V. By the maximality of the length of the direct sum,

$$0 \neq (sU_1 \oplus \cdots \oplus sU_n) \cap V \subset sR \cap L.$$

Now we turn to showing that an essential right ideal contains a regular element. We need more lemmas.

Lemma 7.5. Let I be a right ideal such that all elements are nilpotent. Then I = 0.

Proof. Suppose there exists $a \in I, a \neq 0$. Consider the set of ideals

$$\mathbb{S} = \{ \text{r. ann}(za) : z \in R, za \neq 0 \}.$$

Since R is right Goldie, this set \mathbb{S} contains a maximal element, say $r. \operatorname{ann}(za)$.

Let $x \in R$. Then $axz \in I$, so there is n such that $(axz)^n = 0$. So

$$(xza)^{n+1} = xz(axz)^n a = 0.$$

Hence xza is nilpotent. Say $(xza)^k = 0$, but $(xza)^{k-1} \neq 0$. Then $\operatorname{r.ann}(za) \subset \operatorname{r.ann}((xza)^{k-1}) \neq R$. So $\operatorname{r.ann}(za) = \operatorname{r.ann}((xza)^{k-1})$. Thus $xza \in \operatorname{r.ann}(za)$. So (za)x(za) = 0. Since this is true for all $x \in R$, we have (za)R(za) = 0. Since R is semiprime, we have za = 0. This is a contradiction.

Lemma 7.6. Let $a \in R$. Then $a^n R \oplus r$. ann $(a^n) \leq_e R_R$ for all n sufficiently large.

Proof. Since R is right Goldie, there exists N such that $r. \operatorname{ann}(a^n) = r. \operatorname{ann}(a^{n+1})$ for all $n \geq N$. Let $n \geq N$. Choose $z \in a^n R \cap r. \operatorname{ann}(a^n)$. Then $z = a^n x \in r. \operatorname{ann}(a^n)$, so $(a^n)a^n x = a^{2n} x = 0$. Thus we have $x \in r. \operatorname{ann}(a^{2n}) = r. \operatorname{ann}(a^n)$, so $z = a^n x = 0$. Thus the sum $a^n R + r. \operatorname{ann}(a^n)$ is direct.

Now let I be a non-zero right ideal and suppose $(a^nR \oplus r. \operatorname{ann}(a^n)) \cap I = 0$. Since $I \not\subset r. \operatorname{ann}(a^n) = r. \operatorname{ann}(a^{kn})$, we have $a^{kn}I \neq 0$ for all $k \geq 0$.

We claim the sum

$$a^n I + a^{2n} I + \dots + a^{kn} I$$

is direct for k > 0. This is trivially true for k = 1. Suppose by induction this is true for k - 1. Let $x \in a^n I \cap (a^{2n}I + \cdots + a^{kn}I)$. So $x = a^n y = a^{2n}z, y \in I, z \in R$. So $(y - a^n z) \in r$. ann (a^n) . Thus $y \in I \cap (a^n R + r \cdot ann(a^n)) = 0$. But then $x = a^n y = 0$. So the sum of the $a^{kn}I$ is direct. This contradicts the right Goldie condition. \square

We finally complete the Claim 7.1.

Proposition 7.7. An essential right ideal contains a regular element.

Proof. Let E be a non-zero right ideal. Since $E \neq 0$, it contains a non-nilpotent element x by Lemma 7.5. By the previous lemma, let n be such that $x^n R \cap r$. $\operatorname{ann}(x^n) = 0$. Set $a_1 = x^n$. If r. $\operatorname{ann}(a_1) \cap E = 0$, then stop. If r. $\operatorname{ann}(a_1) \cap E \neq 0$, repeat the argument, replacing E with r. $\operatorname{ann}(a_1) \cap E$. Then we have non-zero $a_2 \in r$. $\operatorname{ann}(a_1) \cap E$ such that $a_2 R \cap r$. $\operatorname{ann}(a_2) = 0$.

Check that $a_1R + a_2R + (r. \operatorname{ann}(a_1) \cap r. \operatorname{ann}(a_2) \cap E)$ is a direct sum. If $(r. \operatorname{ann}(a_1) \cap r. \operatorname{ann}(a_2) \cap E) \neq 0$, then repeat to get a direct sum

$$a_1R + a_2R + a_3R + (r. \operatorname{ann}(a_1) \cap r. \operatorname{ann}(a_2) \cap r. \operatorname{ann}(a_3) \cap E).$$

Since R is right Goldie, this process must stop. So for some k, $(r. ann(a_1) \cap \cdots \cap r. ann(a_k) \cap E) = 0$. If we assume E is essential, then $r. ann(a_1) \cap \cdots \cap r. ann(a_k) = 0$.

Let $c_1 = a_1 + \cdots + a_k$. Since $\sum a_i R$ is direct, r. $\operatorname{ann}(c_1) = \operatorname{r.ann}(a_1) \cap \cdots \cap \operatorname{r.ann}(a_k) = 0$.

Now let $c = c_1^n$ where $c_1^n R \oplus r$. $\operatorname{ann}(c_1^n) \leq_e R_R$ by Lemma 7.6. Now $\operatorname{r.ann}(c_1^n) = \operatorname{r.ann}(c_1) = 0$. If zc = 0, then $\operatorname{r.ann}(z) \supset cR$ and cR is essential. So $\operatorname{r.ann}(z)$ is essential, and so is its superset $\operatorname{r.ann}(z^m)$.

Again, there is m such that $z^m R \cap r$. $\operatorname{ann}(z^m) = 0$. So $z^m R = 0$ since $\operatorname{r.ann}(z^m)$ is esential. So by Lemma 7.5, z = 0. Thus zc = 0 implies z = 0 and since $\operatorname{r.ann}(c) = 0$, we have that $c \in E$ is regular.

We leave it as an exercise to prove

Proposition 7.8. Let R be semiprime right Goldie. Then the quotient ring Q of R is semisimple.

Proof. Hint: Show that Q is also semiprime right Goldie. Then use Claim 7.1 along with Proposition 6.2 to show that Q is semisimple. \square

References

- [1] S. C. Coutinho and J. C. McConnell, The quest for quotient rings (of noncommutative Noetherian rings), Amer. Math. Monthly 110 (2003), no. 4, 298–313.
 MR 2004d:16001
- [2] T. Y. Lam, A first course in noncommutative rings, second ed., Springer-Verlag, New York, 2001. MR 2002c:16001
- [3] Louis H. Rowen, *Ring theory*, student ed., Academic Press Inc., Boston, MA, 1991. MR **94e**:16001

Department of Mathematics and Statistics, Miami University, Oxford, OH 45056.

 $E ext{-}mail\ address: keelerds@muohio.edu}$

URL: http://www.users.muohio.edu/keelerds/