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Homological algebra, abelian and derived

categories

ICTP Tieste 2004

Michel Van den Bergh

Chapter I

Reminder of some notions about general

categories.

General categories: settheory

The theory of categories fits somewhat unconfom-

fortably inside set theory. Luckily one can usually

ignore set theory.

Possible foundation

Godel-Bernays axioms: "sets" and "classes".

There is no set of all sets, but there is a class of all

sets.

Mild extension of classical set theory (Zermelo

Fraenkel axioms).

Alternative

"Universes": more flexible, but requires a more

serious extension of set theory.

General categories: axioms

A category C consist of the following data:

• A class of "objects" Ob(C).

• For every X, Y € Ob(C) a set of "maps":

X -> Y denoted by Hom c (X , Y).

• For every X,Y, Z £ Ob(C) a "composition"

H o m c (X,Y) x H o m c ( Y , Z ) ^ H o m c (X,Z):(f ,g)^gof

with the following axioms:

• Composition is associative.

• For every X E Ob(C) there is an element

idx € Homc(X, X) behaving as a left and right

identity for composition.

Remark If follows that idx is unique.



Examples

Set : The category of (all) sets.

G r p : The category of groups.

A b : The category of abelian groups.

R n g : The category of rings (with unit).

T o p : The category of topological spaces with

continuous maps.

etc...

Note Any set can viewed as a category with no

(non-identity) arrows.

Properties

Standard properties of maps in these concrete cate-

gories can be mimicked in abstract categories.

Example A map / : X —> Y is an isomorphism if it

has an inverse i.e. there is a map g : Y —>• X such

that fg = idy and gf = idx-

Two objects are isomorphic if there is an isomorphism

between them.

We will see a systematic way of doing this below using

representable functors.

Size matters

• A category is small if Ob(C) is a set.

• A category is essentially small if the class of

isomorphism classes of objects forms a set.

• A "big" category is a category without the

restriction that Homc(—, —) is a set.

Size is often implied by context.

Functors

Definition Let C, V be categories. A functor

F : C —> T> consists of

• F o r a l l X , y G Ob(C) maps

F : Homc(X, Y) -»• B.omv{F{X),

such that

• For all X G Ob(C) one has F( id x ) =

For all maps f : X ^>Y, g :Y ^> Z\nC

Notation

F u n ( C , T>) : functors C —> V (a class in

general, a set if C, V are small).

Cat: the category of small categories.



Examples

Very common functors are Forgetful functors

(which forget part of a structure).

Ab ->• Set

Rng -> Ab

Top - • Set

Examples of non-forgetful functors:

• U : R n g -> G r p : R h^ R* where

= { x G G ya; = xy = 1}

• Set —> A b : S" i—» Z51 where ZS1 is the free

abelian group with basis S.

Standard properties of functors

Definition Let F : C -> V be a functor. F

is faithful (resp. full, resp. fully faithful) if for all

X,Y G Ob(C) the map

is injective (resp. surjective, resp. bijective).

Example The forgetful functors on the previous

transparency are all faithful, but not full.

Definition A full subcategory of a category V

is a category C such that Ob(C) C Ob(Z>)

and such that for all X , Y G Ob(C) we have

H o m c ( X , Y) = Homx, (X, Y)

Note A full subcategory is uniquely determined by

its set of objects. We say that C is spanned by its

set of objects.

Note If C is a full subcategory of V then the

obvious inclusion functor / : C —> T> is fully

faithful.
10

Contravariant functors

A functor as defined above is often called a

covariant functor. We also use contravariant

functors which invert the direction of arrows.

Definition If C is a category then C° is the

category with

• Ob(C°) = Ob(C).

• For all X,Y E Ob(C) : HomCo {X, Y) =
Hom c(y,X).

Definition Let C, V be categories. A contravariant

functor F : C -> V is a functor F : C° -> V.

Remark A functor F : C°

as a functor C —• P ° .

I? is the same thing

Natural transformations

Definition Let F, G : C -^ V be functors. A

natural transformation 9 : F —> G consists of, for all

X G Ob(D), a map 0(X) : F(X) -»• G(X) in £>

such that for every map / : X -^ Y in C the following

diagram is commutative

6(X)
F(X)

F(Y)
0(Y)

G(X)

G(f)

G(Y)

Notation Hom(F, G) : the natural transformations

F - > G .

Note If C, X> are categories then Fun(C, V) is itself a

category (the maps are the natural transformations).

Thus in particular the Horn-sets in Cat are categories.

Cat is more than just a category. It is a so-called

2-category.

11 12



Isomorphism and equivalence

F :C functor.

Definition A F is an isomorphism if it has an inverse

for F i.e. a functor G : V —> C such that GF = ide,

FG = i d c

Isomorphisms between categories are quite rare.

Definition F is an equivalence if it has a quasi-inverse,

i.e. a functor G : V —> C such that GF = ide in

Fun(C, C), FG ^ id© in Fun(£>, V).

Definition

• The essential image of F consist of the objects

in Ob(£>) which are isomorphic to objects in the

image of F.

• F is essentially surjective if its essential image is

Ob(X>).

Theorem F is an equivalence if and only if it is fully

faithful and essentially surjective.

Isomorphism and equivalence II

Example Let F i n S e t be the full subcategory of

Set spanned by the finite sets and let / be the

full subcategory of Set spanned by 0 and the

intervals { 1 , . . . , n\ for n = 1, 2, 3 , . . . .

Then / and F i n S e t are equivalent.

Indeed the obvious map

F : / -»• FinSet

is clearly fully faithful and essentially surjective.

Note F has no canonical quasi-inverse!

13 14

Representable functors

Let C be a category and X <E Ob(C). We define

functors

Homc(-,X) : C° -> Set : Y ̂  Homc(F,X)
Homc(X, - ) : C -> Set : Z i-> Homc(X, Z)

Theorem (Yoneda) Let F : C° - • Set be a

contravariant functor. Then the map

Set be a

is a bijection.

Theorem (dual version) Let G : C

covariant functor. Then the map

HomPun(C]Set)(Homc(X,-),G)

is a bijection.

Corollary The functors (the "Yoneda embeddings")

C^Fun(C°,Set) : X ^ Romc(-,X)
C° -> Fun(C, Set) : X i-> Homc(X, - )

are fully faithful.

Representable functors II

Definition A contravariant functor F : C° —> Set is

representable if

for some X € Ob(C).

In that case : The object X, together with the isomor-

phism F = Home(—, X) is called a representing

object for F.

Analogously : a covariant functor G : C —> Set is

representable if

for F € Ob(C).

15 16



Representable functors III

Note By Yoneda's theorem: a representing object

is unique, up to unique isomorphism.

Given natural isomorphisms

6 : Homc(-,X) -»• F

and

6' :

there is a unique isomorphism / : X —>• X' in C

such that the following diagram is commutative.

Homc(-,X)

Homc(-J)

Homc(-,X
/)

F

F

Monomorphisms and epimorphisms

General principle Use Yoneda embeddings to define

properties of objects and maps.

Definition / : X —» Y is a monomorphism if

Homc(Z, / ) : Romc{Z,X) -> Hom c (Z, Y)

is an injection for all Z € Ob(C).

Traditional (equivalent) definition

A map / : X —> Y is a monomorphism if for all

diagrams

Y

such that / p = fq one has p = q.

17 18

Monomorphisms and epimorphisms II

Definition / : X —>• Y is an epimorphism if

Homc(/, Z) : Homc(Y, Z) -> Homc(X, Z)

is an injection for all Z G Ob(C).

Traditional defintion

A map / : X —» y is an epimorphism if for all

diagrams

y z

such thatp / = qf one hasp = q.

Remark An isomorphism is both a mono- and

an epimorphism but the converse is not generally

true. Counter examples: R n g and T o p .

Split maps

If we have a commutative diagram

then / is mono and g is epi.

We say

• A monomorphism / is split if g exists as in the

diagram.

• An epimorphism g is split if / exists as in the

diagram.

19 20



Generators

Definition An object G in a category C is a

generator if

Homc(G,-) :C^Set

is faithful (i.e. is injective on Horn-sets).

Traditional definition:

G is a generator if for all pairs with p ^= q

v

X XY

q

there is a map / : G —> X such thatp / 7̂  qf.

Dual notion : cogenerator.

Examples

• The singleton is a generator for Set and T o p .

• The two element set is a cogenerator for Set.

• Z is a generator for A b and G r p .

• Z[X] is a generator for R n g .
21

Limits

Let / be a small category and N : I —>• C a functor.

A cone over N is an object X in C together with maps

for all i € Ob(J)

(H : X -> N(i)

such that for all q : i —> j in I there is a commutative

diagram

l im TV is a universal cone over TV (unique if existing).

The ̂  are sometimes called the "projection maps"

Alternative (ambiguous) notation

22

Limits exist in Set

Let iV : / —> Set be a functor. Then

l im iV

will stand for the following concrete construction.

It is the set of all

subject to the condition :

Vp:i -> j in / : N(p)(a,i) = (ij.

The pi are the restrictions of the projection maps

Construction works in other "concrete" categories

(e.g. A b , Rng) .

Definition using representabie functors

We work again in a category C. The universal

property may be restated as:

Homc(—, lim N(i)) = lirrije/ Homc(—, 1

(limit in Set)

(= as contravariant functors).

Usual formulation : there are isomorphisms

Homc(X, lim N(i)) = limHomc(X, N(i)

"natural in X"

Notation If

/ : X -»• l im N(i)

is a map then we write ft for the composition

X -4 lim N(i) ^ N(k)

It is the projection of / on Homc(X, N(k)).
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Special limits

Products If / is a set (no arrows) then a functor

JV : / - > C

is the same as a set of objects N(i) £ Ob(C).

The limit is denoted by

and is called the product of the N(i).

Finite products (i.e. if / = { 1 , . . . , n}) are written

as:

N(l) x • • • x N(n)

Limit (or product) over the empty set

The limit over (the unique) functor N : 0 —> C is a

final object in C, i.e. an object F such that for all

X EC:

Functors and diagrams

Principle Diagrams can be viewed as functors.

Example Let / be the category.

p—-+q

• two objects p, q;

• one (non-identity) arrow a : p —> q

A functor M : / —> C is determined by

• Objects X = M(p), y = M(q).

• A map / : X —> y , given by / = i l f (a) .

I.e. a functor Af : J —> C is the same as a (very

small) diagram

in C.

Notation : Maps(C) = Fun( C)-

25 26

Functors and diagrams II

Example Let J be the category.

a

with "relation" 8a — r)f3.

(i.e. there are 4 objects p, q, r, s and 5 non-identity

arrows a , (3,7, 5, 5« = 7/?).

A functor J —> C is a commutative diagram in C.

Special limits II

Equalizers The limit of a pair of arrows

/
y\_ ^ Y

a

is called the equalizer of / , g.

Pullbacks (fiber products) The limit of a diagram

X

f

is called the pullback (or fiber product) of ( / , g).

Notation : X x z Y

27 28



Completeness

A category C is complete if it has all limits.

Equivalent with : All products and equalizers

exist.

Proof Assume products and equalizers exist.

If N : / —> C is a functor then l im N is the

equalizer of

Y\N(i)

where

-̂ * n
>• c/>:i—>j in /

b:i-,j = (j) O pi

Definition A functor is continuous if it commutes

with all (existing) limits.

Example The representable functors Home ( X , -

and Homc(—, X) are continuous.

Colimits

The dual notion of a limit is a colimit.

Universal property

N(p)

3! colimTV

a co-cone

Equivalent condition : There are isomorphisms

Homc(colimi6/iV(z), Y) ^ lim Home(AT(i), Y)
iei

natural in Y.

Note We only refer to limits in Set (not colimits).

Dual notions : Coproduct (\J), initial object,

coequalizer, pushout, cocomplete, cocontinuity.
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Chapter II

(Pre-)addititive and abeiian categories.

Pre-additive categories

Definition A pre-additive category is a category where

the Horn-sets have the additional structure of an abeiian

group and compositions are bilinear.

Example A b is pre-additive.

Example If R is a ring then Mod( i? ) , the category of

left i?-modules is pre-additive. Note: A b = M o d ( Z ) .

Example Assume C pre-additive and | Ob(C) = 1

e.g. Ob(C) = { * } . Then C is determined by R =

Endc (*). It is easy to see that R is a ring (always with

unit).

A pre-additive category with one object is the same as a

ring!

Alternative name for a pre-additive category (Mitchell)

"A ring with many objects."

Excercise If C is pre-additive and / is small then

Fun(J , C) is pre-additive (in a natural way) as well.

31 32



Additive functors

Definition A functor F : C —>• V between

pre-additive categories is additive if the maps

F : Homc(X, Y) ->• Uomv(F(X), F(Y))

are linear.

Notation Add(C, V): additive functors C —> V.

33

Basic example

• Let R be a ring, considered as pre-additive

category with one object *.

• Let F : R —>• A b be an additive functor.

F is determined by

• An abelian group M = F(*).

• A map of abelian groups:

F:R->KomAh(M,M)

compatible with composition. I.e. it should be

a ring map.

Putting for r G R, m G Af: r • m = F(r)m

defines a left i?-module structure on M.

This construction yields an isomorphism between

Add(R, Ab) and Mod(R)

For a small pre-additive category C we put

Mod(C) = Add(C, Ab)
34

Special properties

C pre-additive category.

For X e Ob(C) put

lx '• the identity \dx in Homc(X, X)

Ox '• the zero map in Homc(X, X)

Definition A zero object in C is an object X such that

lx =0x

Proposition The properties of being an initial, final or

zero object are equivalent.

Notation A zero object is denoted by ... 0.

Special properties continued

Let (Mi)i£i be objects in C and assume Yii^i Mi

exists.

As for general categories we have "projection maps"

Pk : IL M* - Mk

For / : X -> [ ^ Mi put /*, = pkf. Under the

isomorphism

Homc(X, n , Mi) ̂  n , Homc(X, Mt)

fk is the image of / under the projection on Home {X, Mk\

We now also have "inclusion maps"

qj-Mj^UiMi

which are defined by

(Qj)k =
0 otherwise

Note Here we notice the importance of having a

canonical element 0 in every Home(X , Y).
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Special properties continued

The coproduct in a pre-additive category is usually

denoted by ©.

Assume ffi?;M?; exists.

We again have canonical maps

There is also a canonical map

c : ®iMz -> n , Mi

Defined as follows

Biproducts

The similarity between products and coproducts in pre-

additive categories leads to the notion of a biproduct.

Fix a finite set of objects M\,..., Mn.

Definition A biproduct of M i , . . . , M n is

• an object A"

• maps qi : Mi —>• TV, p,; : A^ —>• M?;

satisfying

Homc(eiMi,

Denote the projection on Home (M i , Mj) by

Then

0 otherwise

37

I Mi tii= j

0 otherwise

One easily proves.

• Biproducts are unique up to unique isomorphism.

• The coproduct and the product of the Mi (if they

exist) are biproducts.

• A biproduct is both a product and a coproduct.

38

Special properties continued

Using biproducts one obtains.

Theorem Let M i , . . . , Mn be objects in C. Then

M i x • • • x Mn exists if and only if M i ® • • • © Mn

exists. In that case the canonical map

c : Mi © • • • © Mn -> Mi x • • • x Mn

is an isomorphism.

Functors

Since biproducts are defined by equations, the

following is clear.

Theorem An additive functor between pre-additive

categories preserves biproducts (and hence finite

products and coproducts).

39 40



Additive categories

Definition A pre-additive category is additive if

• it has a zero object and

• finite products (or equivaientiy coproducts or

biproducts) exist.

Remark It is of course sufficient that binary

products exist.

Remark A zero object is a final object so it is a

product over the empty set.

Example A (non-zero) ring viewed as a pre-

additive category is not additive. In fact it has no

zero object.

Example If R is a ring then the category Mod( i?)

is additive.

Example More generally if C is a small pre-

additive category then Mod(C) is additive.

Kernels

C an additive category, / : M —>• iV a map in C.

Definition The kernel ker / of / is the puiiback of the

diagram

M

(need not exist)

Universal property

ker/ -

3 ! ' • • •

M

X

N

I

N

41 42

Kernels II

Definition using representable functors

ker / —• M is the kernel of / : M —>• N if for all

X e Ob(C) the sequence

0 -»• Homc(X, ker / ) -> Homc(X, M) -»• Homc(X, N)

is exact

In particular

• ker / —>• M is a monomorphism.

• / is a monomorphism if and only if ker / = 0.

Cokernels

C an additive category, / : M —>• N a map in C.

Definition The cokernel coker / of / is the pushout of

the diagram

M f

0
(need not exist)

Universal property

M
f

N

X

N

coker/

3!
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Cokernels II

Definition using representable functors

TV —> coker / is the cokernel of / : M —> N if for all

X e Ob(C) the sequence

0 -> Home (coker / , X) -> Home (N, X) -> Home (M ,

is exact.

In particular

• TV —• c o k e r / is an epimorphism.

• / is an epimorphism if and only if coker / = 0.

Abelian categories

Assume that / : M —> iV has both a kernel and a

cokernel.

Consider the following commutative diagram.

ker / —^ M coker /

c o k e r i ••••>- k e r j

The universal properties for kernel and cokernel imply

that the dotted arrow exists and is unique.

Definition An additive category is abelian if

• Every map / has a kernel and a cokernel.

• The canonical map coker ker / —> ker coker /

is an isomorphism.

We call coker ker / = ker coker / the image of /

and denote it by i m / .

45 46

Examples

Here are some examples of abelian categories.

• If A is abelian then so is A° (ker and coker are

exchanged).

• If R is a ring then M o d ( i l ) is an abelian category.

• Assume R is a (Z-)graded ring. I.e. R comes with

a decomposition

R = ®n£Z-Rn

such that RmRn C Rm+n- A graded i?-module

is an i?-module with a (given) decomposition

M = ®nMn such that RnMm C Mn+m-

The category Gr(R) of graded i?-modules is

abelian.

• (For those who know) If X is a topological space

then

P r e ( X ) : Presheaves on X

S h ( X ) : Sheaves on X

are abelian categories.47

A non-example

Let T be the category of torsion free abelian groups (as

a full subcategory of A b ) .

• !F has arbitrary products and coproducts (computed

as in A b ) .

• J- clearly has kernels (computed as in Ab) .

Less obvious : F also has cokernels.

coker^r / = cokerAb / / { tors ion}

However the identity coker ker = ker coker does

not hold.

Example
X 2

X 2

z • > • :

X2

The dotted arrow is not an isomorphism.

48



A non-example II
x2

Note Z —> Z has zero kernel and cokernel. So

it is both a monomorphism and an epimorphism.

However it is clearly not an isomorphism.

Remark Conversely in an abeiian category, the

identity cokerker = kercoker implies that

a map which is both a monomorphism and an

epimorphism is an isomorphism.

Epi-mono factorization

We have a commutative diagram

/ 3
ker/ M N coker /

p X / q
im /

Note

• p is epi (being a cokernel).

• q is mono (being a kernel).

We say : / = pq is the epi-mono factorization

of/.

49 50

Exact sequences

We work in an abeiian category A.

Consider a diagram

M U N ^ p o;

with gf = 0.

We obtain a commutative diagram

9
kert/ N P

M-

(since gqp = 0

Definition The

canonical map

q.. q

>• i m f
P J

and p is epi we obtain gq =

diagram (*) is exact (at N)

i m / —> ker g

s an isomorphism.

51

= 0).

if the

Generalization

Definition A sequence of maps

P ° ) p ! > . . . " - 1
 ; p " " ,

is exact if

for all i and

im do = ker d\

im di = ker d<i

1 YX\ fi -i l^"^T* fi
1111 LLf-i — 1 JtvCl U/77

52



Special cases

0 ^ M A N

is exact iff / is a monomorphism.

is exact iff g is an epimorphism.

is exact iff gf = 0 and the canonical map M —> ker g

is an isomorphism. We call this a (short) left exact

sequence.

M L, N 1+ p^o

is exact iff gf = 0 and the canonical map coker / —>

P is an isomorphism. We call this a (short) right exact

sequence.

Short exact sequences

A diagram of the form

0->M->iV->P->0

which is exact, is called a short exact sequence.

Below we frequently encounter the category

Ex(*4) of short exact sequences in A The

morphisms in Ex(.4) are commutative diagrams

0 M N P 0

0 *• M' >• N' >• P' *• 0

is an additive category in a natural way.

53 54

Split exact sequences

Assume that we have a short exact sequence in an

abelian category

0 A B C 0

with p split by q . I.e. pq — idc-

One proves : There is a (unique) left splitting p' of q

such that

A B C

is a biproduct of A and C.

Proposition A short exact sequence is split on the left

if and only if is split on the right. In that case the middle

object is a biproduct of the outer objects.

Corollary Split exact sequences remain exact under

application of any additive functor.

Note : Any biproduct yields a split short exact se-

quence.

55

Left and right exact functors

Let F : A —>• B be an additive functor between abelian

categories.

We know : F preserves finite (co)products.

Definition

• F is left exact if it preserves left exact sequences

(or equivalently: kernels).

• F is right exact if it preserves right exact sequences

(or equivalently: cokernels).

• F is exact if it preserves short exact sequences (or

equivalently, if it is both left and right exact).
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The Freyd-Mitchell embedding theorem

Theorem Let A be an essentially small abelian

category. Then there exist a fully faithful exact

functor

A ->• Mod(R)

where R is some ring.

This is the basis for the technique of diagram

chasing. I.e. to prove theorems in an abelian

category we may assume that we are dealing with

objects in a module category.

Warning We need to be careful applying this prin-

ciple. For example a product of exact sequences

is exact in a module category but not in a general

abelian category.

Reason: the Freyd-Mitchell embedding functor

does not need to preserve products.

However: being additive the F-M functor pre-

serves finite (co)products.
57

The five lemma

Start with a commutative diagram with exact rows.

D'

p\ 1

A' *• B' *• C

Theorem If

• (3,8 are isomorphisms.

• e is mono.

• a is epi.

then 7 is an isomorphism.

E'

58

(exact rows)

0 —

The snake lemma

ker / ^ ker g s~ ker h

I ,.k
A

A'

-^ B

A
I

C

4
\

•'• > c o k e r / —s- cokerg —>- cokerh

The snake lemma asserts that
• The dotted arrow exists (in a canonical way).

• We obtain an exact sequence

ker / —» ker g —>• ker h —»

c o k e r / —>coker g —>coker h

Additional info

• If A —> B is mono then so is ker / —> ker (/.

• If B' —> C ' is epi then so is coker g —>• coker / i .

Projective objects

A abelian category.

Definition An object P E Ob(A) is projective if

H o m ^ ( P , —) is an exact functor.

Since Horr id (P, —) is always left exact this is equiva-

lent to

• An object P G Oh(A) is projective if and only if

Hor r id (P, —) sends epimorphisms to surjections.

This leads to the usual definition in terms of commutative

diagrams:

A ^B >0
v.

P
Other characterization : P is projective if and only if

any epimorphism

A 0

splits.
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Projective objects: properties

Proposition If (Pi)iEi are projective objects then

so is ®ieiP% (if the latter exists).

Follows from

which is exact.

Proposition If P © Q is projective then so are P

and Q.

A B

P P'
(/.o)

(1.0)

p

Definition If X = P © Q then P, Q are said to

be summands of X .

Modules

Let R be a ring.

Defintion A free R module is one which is of the

form R®1 for some set / .

Proposition The projective modules are precisely

the direct summands of free modules.
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Injective objects

Short definition : The injective objects in A are the

projective objects in A°.

Proposition The following are equivalent for E €

Ob{A).

• E is injective.

• Horriyi( —, E) is exact.

( - , E) sends monomorphims to surjec-

B

E

• Any monomorphism

0 *• E *• A

splits.

Example Q and Q / Z are injective objects in A b .

In general : Injective objects are quite complicated.
63

tions.

0 *• A

Chapter

Grothendieck's AB properties.
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Note about limits and colimits

An abeiian category has all finite limits and colimits.

This follows from the fact that (co)equalizers and

finite (co)products exist.

Example : The equalizer of

A B

is the kernel of / — g.

An abeiian category is (co) complete if and only if

it has all (co) products.

Grothendieck's list

Grothendieck made up a list of possible good

properties of abeiian category A.

The relevant properties are (AB3-5) and their duals

(AB3*-5*).

(AB3) A is cocomplete.

(AB4) A satisfies (AB3) and coproducts are exact.

I.e. if we have a family of exact sequences

0 -> At ->• Bt ->• C% -> 0

indexed by a set / then

n ^ rp\. A . ^ /T> . D. ^ a^ -(^ • ^ f)

is also exact.
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Filtered partially ordered sets

Definition Let ( / , < ) be a partially ordered set.

We say that / is filtered if for all i, j G / there

exists k G / such that % < k, j < k.

Construction A partially ordered set may be

viewed as a category as follows.

Hom/(i, j) =
otherwise

( { * } is a fixed singleton). The compositions are

defined by * o * = *.

Colimits over filtered posets

Fact Let / —• Mod( i?) be a functor with / a

filtered partially ordered set.

colim ie/M(i) =
iei

where

(m e M(i)) ~ (n E

3k e I,i,j < k,M(i ->• k)(m) = M{j -> k){n)

Terminology If C is a category then a set of

objects (Mi)iei indexed by a partially ordered set

is a functor M : I -> C with M(i) = M{.
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The (AB5) axiom

(AB5) A satifies (AB3) and filtered colimits are exact.

I.e. if we have a family of exact sequences

o -^ Ai -+ B% - • a -+ o

indexed by a partially ordered set / then

—>• colim7;G/ Ai —>• colini,;e / Bj —> colim7;G/ C7; -

is also exact.

Fact Mod(.R) satisfies (AB5) and (AB4*). Typical

categories in algebraic geometry (i.e. sheaves)

satisfy (AB5) and (AB3*).

Note about generators

Proposition

Let A be a cocomplete abelian category. Then

G G Oh{A) is a generator if and only if for any

A G Ob (A) there is an epimorphism

G®1 ^A

for some / .

Proof Excercise.
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Grothendieck categories

Definition A Grothendieck category is an abelian

category which has a generator and which satisfies

(AB5).

Grothendieck categories have some highly non-

obvious properties.

Proposition A Grothendieck category satisfies

(AB3*).

Proposition A Grothendieck category has enough

injectives. I.e. any object has a monomorphism to

an injective object.

The Gabriel-Popescu theorem

The deepest result about Grothendieck categories

is the Gabriel-Popescu theorem.

Proposition Let A be a Grothendieck cat-

egory and let Q be a generator of A. Put

S = E n d ^ ( G ) . Then the functor

Honu(G, - ) : A -> Mod(S°)

is fully faithful (and has an exact left adjoint).

Note Let A G Ob(.A). The right S module

structure on H.om^(G, A) is obtained from the

composition
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The embedding theorem

For A an essentially small abelian category put

Lex(.A) = {left exact additive functors A° —» A b }

Theorem Lex(A) is a Grothendieck category

and the functor

A ^ Lex(.4) : A ^ Hom^(-, A)

is fully faithul (Yoneda!) and exact.

Remark One may show that Lex(*4) is in a

certain sense the formal closure A under filtered

colimits.

Alternative notation

Ind(^)

Chapter IV

Morita theory
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General Morita theory

Let A be a cocomplete abelian category.

Definition A £ Ob(*4.) small if for any family of objects

(Bi)i£i the canonical map

ffii Ho i ru(A, Bi) -> RomA{A, ©*£;)

is an isomorphism.

One proves : A projective object P 6 Mod(-R) is

small if and only if it is finitely generated.

Definition A small projective generator in A is called a

progenerator.

Theorem Assume that P 6 Ob(*4) is a progenerator.

Put S = End^(P) . Then the functor

H o m u ( P , -) : A ^ Mod(S°)

is an equivalence of categories.

Note This result may be deduced from the Gabriel-

Popescu theorem but here the proof is much easier.

Proof

We have to prove that Horn_A (P, —) is fully faithful and

essentially surjective.

Full faithfulness

We have to prove that the natural map

Hom^(M, N) -> Homs(Hom^(P, M), Hom^(P, N))

is an isomorphism for all M, N £ A.

We use the fact that the functor

F : Horns(Hom^(P, - ) , Hom^(P, N)) : A° -> A b

is left exact (since P is projective), and sends sums to

products (since P is small).

Furthermore we have

F(P) = , P),Homyi(P,iV))
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Proof cont'd

Since P is a generator we may construct a right

exact sequence
®i ^ M _^ o

for sets / , J. This yields a commutative diagram

0 ->- HomA(M,N) - ^ Hon-iA(P,N)XI ->- KomA(P,N) x J

I I I
0 =»- F(M) s- F(P)XI >- F(P)XJ

Since F ( P ) = H o m ^ P , A/") the two rightmost

vertical maps are iso's. Hence so is the leftmost

one.

Proof cont'd

Essential surjectivity

Let Z e Mod(S°). We have to write it (up to

isomorphism) as H o m ^ ( P , X).

Idea : We can do this if Z = S®1'. Take

X = P®1.

For general Z construct a short exact sequence

S®J £, s@i _^ z _, 0

Since Hom_4(P, —) is fully faithful there is some

f : p®J _> p®i

such that

g = RomA(P,f)

It now suffices to take

X = coker/

77 78

A converse result

If there is any equivalence

H :A^ Mod(S°)

between a cocomplete abelian category and

a module category then S = E n d ^ ( P ) for

a progenerator P in A, and furthermore the

equivalence is of the form Hom_4(P, —).

Hint : Take a (quasi-)inverse H~x for H and let

Morita equivalent rings

Definition Rings R, S are Morita equivalent if

Mod(R°) ^ Mod(S°).

Applying the above theory with A = Mod(R°) we

obtain a second equivalent definition.

Definition Rings R, S are Morita equivalent if S =

EndR(P) for a progenerator P e Mod(i?°).

Example If P = i?n then 5 = Mn(R) (n X n-

matrices over R).
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Notes on duality

If M e Mod(Pt) then we define the dual M* e

Mod(R°) of M as:

M* = Homfl (M,R)

As usual there is a canonical map

evM : M —>• M** : m H ( ^ H (f>(m))

One proves

• If P is finitely generated projective then evp

is an isomorphism.

• (—)* defines a (contravariant) equivalence

between the categories of finitely generated

left and right projective P-modules.

Duality for progenerators

Note If P is a finitely generated projective in

Mod(i?) then P is a progenerator if and only if R

is a summand of some P®n.

We obtain : P is a progenerator if and only if this

is the case for P*.
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Morita equivalence for left modules

• Assume Mod(i?°) 9* Mod(5°).

• This equivalence corresponds to a progenerator

P € M o d ( i r ) with S =

Then P* = Hom_R(P, R) is a progenerator of

Mod(f l ) .

Mod(P) 9* Mod(T°
Hence

• But one has

T = EndR(P*) 9* EndR(P)° = S°

• Thus we obtain

Mod{R) 9* Mod(SrO°) = Mod(S)

Conclusion : One has Mod(i?°) ^ Mod(S10)

if and only if Mod(i?) ^ Mod(5>).
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Chapter V

Presheaves and sheaves.
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Presheaves

Throughout let X be a topologogical space.

Let Open(X) be the set of all open subsets of

X. We view Open(X) as a partially ordered set

(ordered by inclusion), and hence as a category.

We define the category of presheaves of abelian

groups on X as

Pre(X) = Fun(Open(X)°, Ab)

Alternative definition

A pre-sheaf T (of abelian groups) consists of

• For every open ( J c X a n abelian group J-(U).

• For every inclusion of opens U C V: restriction

maps pv,u '• 3~{V) —» J-(U).

such that for every inclusion of opens U C V C W

we have equality

pv,u ° pw,v — pw,u

Notation : For x E ^(V) we write x\U = pv,u(x).

Terminology The elements of the J-(U) are called

sections of J-. The elements of J- are called global

sections.

Easy : Pre(X) is an abelian category. Kernels and

cokernels can be computed on each open set.

•» Q){U) = ker(f(U) -> Q{U))

+ g){U) = coker(^([/) -> g(U))
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Sheaves

Definition A sheaf is a presheaf T such that

• for every open U d X

• and every open covering [JiGl Ui = U

• and every family of sections Si E T{Ui)i

• such that Si\Uin Uj = Sj\Ui D Uj

• there exists a unique section s G 3~(U)

• such that s\Ui = Si for all i.

For a presheaf J- the "sheaffification" a^F is defined by

the following universal property for any sheaf Q:

. • • • • ' 3 !

Roughly speaking : aT is constructed by first dividing

out the sections which are locally zero and then by

adjoining new sections which are defined on a covering.

Abelian structure

Notation : Sh (X) is the full subcategory of

P re (X ) whose objects are sheaves.

Fact: Sh(X) is an abelian category.

However: The inclusion

Sh(X) C Pre(X)

is left exact (it preserves kernels), but not right

exact (it does not preserve cokernels).

Principle : The non-exactness of this inclu-

sion functor is the basis for the theory of sheaf

cohomology.

Formula :

coker S h ( x ) ( .F - > < ? ) = a(coker P r e ( x ) (J c ' - • Q))

Fact: The sheaffification functor

a : Pre(X) -> Sh(X)
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Stalks

Let T be a presheaf on X and x G X. Let

Open(X,x) = {U E Open(X) | x E £/}

(viewed as poset and as category)

The stalk of T at x is defined as

J ^ = COlimt/eOpen(X,x)° F{U)

One proves : (.F)z = (aJ~)x.

Since Open(X, x)° is filtered(l) one also sees

that {—)x is an exact functor on Pre(X) and on

Sh(X).

One proves : A diagram in Sh(X)

is exact at T if and only if for all y G X

sr- Jy r> &y

7~L'u

is exact at Qv.
89

Example: the exponential sequence

X : manifold.

O : the sheaf of complex valued continuous functions

on X (with the additive abelian group structure).

O* : functions which are everywhere non-zero (with the

multiplicative group structure).

Z p : the constant presheaf with values in Z.

Z = a (Z p ) (the constant sheaf with values in Z).

Fact: There is an exact sequence of sheaves.

0 -> Z - • O ^ O* -> 0

(look at stalks).

However this sequence is usually not exact as

presheaves.

Example : Let X = C* and let / <E O* {X) be the

non-zero function z i—> z. f is not of the form exp(<7),

as log / cannot be made continuous on C*.
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Grothendieck categories

Fact : Both P r e ( X ) and S h ( X ) are Grothendieck

categories. Hence they have enough injectives.

Formula :

colimljSh(x) Fi = a(colim i jPre(X) Ti)

Generators for P r e ( X )

U C X open.

^ Z UVCU

0 otherwise

Formula :

Fact: The Z ^ are generators for P r e ( X ) .

Generators for S h ( X )

Zc/ = a(Z^)

Fact: The %u are generators for S h ( X ) .

Special properties of S h ( X )

Pre (X ) has enough projectives, but Sh (X)

usually has not.

P re (X ) satisfies (AB4*) but Sh(X) only

satisfies (AB34*).
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Chapter VI

Classical homological algebra.

Complexes

Definition A graded category is a category C with an

automorphism s : C —> C (the shift functor).

Convention : We write

A[n] = snA

and

Home (A B) = Homc(>l,£[n])

Terminology : Hom^ (A, B) are the maps of

degree n.

Notations : | / | = d e g / = n.

We obtain compositions
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Graded objects

If T> is any category then the category Gr(X>)

of graded objects over V is the category of

sequences of objects in V

with Horn-sets.

HomGr(I>)((An)n , (Bn)n) =

Shift functor

s((An)n) = (An+1)n

Complexes II

If A is abelian then so is Gr(*4.) and ker, coker

may be computed componentwise.

Definition A complex over A is

• An object A in Gr(A).

• A map d E Ho r r iQ j . ^ (A, A) with d2 = 0.

Standard view

> An - ^ An+1 ^ ^ An+2 -> • • •

with dn+idn = 0.

(shift to left).
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Complexes III

The category C(A) has as objects the complexes

over A and Horn-sets:

Homc(A)((A,d),(Af,d')) =

{/ e HomGrM)((A,d), (A',d')) | d'f = fd}

fr,i + l fn + 2

A>n A' A'"
n+1 Y^ A"+2

an+l

C(A) is also abelian and ker, coker may be

computed termwise.

(!)
Grading (A,dA)[l] = (A[l],-dA).

Homology

(A,d) eC(A).

H(A) = ker d/imd

Homology functor

H : C(A) ->• Gr(A)

Notation : Hn{A) = H{A)n.

—*• -An • A n + i

Hn(A) =
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The long exact sequence for homology

Let

O^A^B^C^O

Then there exists a connecting morphism

such that there is a long exact sequence

The long exact sequence II

Remarks

• The result is proved using diagram chasing.

• The statement must be completed by saying

that any map between short exact sequences

yields a map between the corresponding long

exact sequences (viewed as complexes). The

only problem is the connecting morphism

which requires some diagram chasing.

• Will give a better proof later using derived

categories.
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For i

Homotopy

Gr(A) we define

UomGr(A)(A, B) = (Rom^l(A)(A, B))n e Gr(Ab)

UA,BE C(A) then HomGr (a4 ) (A, B) becomes an

element of C{A) by defining

d(f)=dBf-(-l)nfdA

We denote this complex by H o m c ^ j (A, B)

Note : If | / | = 0 then / G H o m c ( A ) (A, B) if and

only if d(f) = 0 .

Definition / , g € Homc(^)(-A, -B) are homotopic if

f - g = dhiorhe Hom^ 1 ^ (A , _B). I.e. if

f — g = + /i

Notation : / ~ g (h is called the homotopy connecting

/ and g).

Note : Two homotopic maps induces the same map on

homology (since in homology, dA, ds become zero).
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The homotopy category.

We define the homotopy category K(A) of A as

follows:

• Ob(K(A) = Ob(C(^)).

• ForA,BeOb(K(A)

RomK{A)(A,B) = H°(Eomc{A)(A,B))

The composition in Hom C ( ^ ) (A , B) induces

a composition in K(A) which is well defined

because of the following identity:

Identity : For arrows of degrees m, n

we have

Note : The category K(A) is (almost never)

abelian (in contrast to
102

Fundamental diagram

C(.A)
.rf

H

K(A)

General principle Homological algebra takes place

in the homotopy category (and later : in the derived

category).

Note : Any additive

F :A^B

functor can be lifted to a functor

C(F) : C{A) -> C{B)

(evaluating termwise). This yields a well defined functor

K(F) : K{A) -> K(B)

The above diagram is compatible with these functors.
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Analogy with topology

Principle The notion of homotopy equivalence for

complexes is analogous to the notion of homotopy in

algebraic topology.

Put / = [0,1]. Let X,Y £ T o p .

Definition f , g : X ^ Y are homotopy equivalent if

there is a map

h:X x I^Y

such that there are commutative diagrams

X X I X x I

X
f

X

In algebraic topology one constructs a functor

C : T o p -> C ( A b )

(the singular chain complex) such that if / , g are

homotopy equivalent then so are C ( / ) , C(g).
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Projective resolutions

Definition A has enough projectives if for any A €

Ob(A) there is an epimorphism:

with P projective.

Definition A projective resolution of A € Ob(A) is a

complex of projective objects

together with a map Po —>• A such that

is exact.

Note : If A has enough projectives then a projective

resolution always exists.

C P

Pi »- kerp( >• Po **- A

Note : If we drop the requirement that the Pi are

projective then we speak of a (left) resolution of A.

Uniqueness of projective resolutions

Principle

• Maps between objects lift to maps between

projective resolutions.

• Such a lifted map is far from unique but it is

unique up to homotopy.

projective resolution of A

\ ^P-2^P-i^P0^A —

3/o
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Y

resolution of A

The lifted map / : P —>• Q is unique in K(A).
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Uniqueness II

Apply lifting of identity to two resolutions an object.

f - 2 Q - I

9-2 ! 3-1 ;

V
Po -^ A -+ 0

Now

is a lifting of the identity on A. Hence gf ~ idp.

Likewise / ( / ~ idQ.

Conclusion Projective resolutions are unique up

to (unique) isomorphism in K(A).

Uniqueness III

Assume that A has enough projectives. Pick for

any A E Ob(A) a projective resolution P(A)

in C(_4). We obtain a commutative diagram of

functors.
P K(A)

H°

A
The diagonal arrow is naturally isomorphic to the

identity functor.

Note : Different choices of projective resolutions

yield naturally isomorphic functors A —> K(A).
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The horseshoe lemma

Principle : Assume we have an exact sequence

0 ^ A-> B -> C - > 0

and projective resulutions

>• P-2 —^ P-i —^ Po —^ A —>- 0

Qo C —>- 0

Then we can construct a commutative diagram of

projective resolutions

P-2 — ^ P-

\ \

A

such that

is exact (necessarily split in Gr(A)).

Construction

0

Y
kerp -> A ^0

Y
ker(l , (f)

Y
kerp'

109

Y
0 0 0

The snake lemma (applied to the dotted rectangle)

implies that

0 —> k e r p —>• k e r ( l , 0) —> k e r p ' —>• 0

is exact.

Hence We may repeat to obtain the desired

resolutions.
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Left derived functors

Assume

• F : A —>• B is a right exact functor.

• .A has enough projectives.

For A E 0b(v4) fix a projective resolution

> P _ 2 -> P _ x -> P o -^ A ^ 0

We appy F to this projective resolution.

If F is not exact then this will in general not be an

exact sequence.

We define

Well definedness and functoriality

• We may als write

LiF(A) = H-\K{F){P))

(since homology may be computed in the homotopy

category).

• Two projective resolutions P, Q of A are canoni-

cally isomorphic in K(A).

• Thus K{F)(P) and K(F)(Q) are canonically

isomorphic in K(B).

• Hence H-\K{F){P)) and H-l(K(F)(Q))

are canonically isomorphic. We identify them and

write them as L-iF(A).

By lifting maps in A to projective resolutions (unique in

the homotopy category!) we obtain functors

UF : A -> B

Note : LQF(A) ^ A (canonically).
The sequence of functors

derived functor of F.

is called the left
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Example: Tor-functors

Let R be a ring and let M be a right .R-module.

Then we have a right exact functor.

M®R-: Mod(R) -> Ab

The derived functors are written as

Torf(M,-)

Example

Assumed = Z. We will compute Torf (M,Z/pZ) .

Projective resolution

0 -> Z -^> Z -> Z / p Z ->• 0

Tensoring...

M ®z Z

But M(g)ZZ ^ M , etc... Thus Torf (M , Z/pZ)

is the homology of the complex

Hence

Torf(M,Z/pZ) =
M/pM

ker(M -

0

explaining the notation "Tor(sion)"

ifi = 0

M) if i = 1

i f i> 1
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The long exact sequence

F : A, B right exact, A enough projectives.

Theorem Assume that we have a long exact sequence

Then there are "connecting maps"

5,, : LiF(C) -> L

such that there is a long exact sequence

LIF{I3)
LlF{C) :::^,.

F{A) F(B)

Proof of theorem (sketch)

We start by using the horseshoe lemma to construct a

commutative diagram of projective resolutions

> P-2

\
^ R-2

I
>Q-2

such that

—3-P-i

1
—>- i? i

1
-^Q-i

— ^ Po

1
— ^ i?o

1
-^Qo

—^ A

I
—> B

\

O-> P -> R

is exact in

Since this sequence is split in Gr(A) we obtain an

exact sequence

0 -+ C(F)(P) ^ C(F)(i?) ^ C(F)(Q) -+ 0

in Gr(i5). This sequence is then also exact in C(£>).

It now suffices to apply the long exact sequence for

homology.
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Proof cont'd

The proof is incomplete as the constructed connecting

maps may depend on the chosen projective resolutions.

Proving that this is not the case is slightly tricky.

Main point: Suppose we have a commutative diagram

of complexes.

Proof cont'd

o

0

A B

•A' 0

and we have constructed projective resolutions of the

top and the bottom row using the horseshoe lemma

0 P RQ

Y Y Y
0 —>- A —>• B — ^ C —^0

0 —>- p' —>- R' —>- Q' —>- 0

Y Y j

0 —> A' —> B' —> C —> 0
Then these resolutions may be assembled in one big

commutative diagram. 117

If we take the two exact sequences equal then

the long exact sequence associated to the two

projective resolutions yields that the resulting

connecting maps are the same.

The proof also yields.

Proposition A map between short exact se-

quences give a map between the corresponding

long exact sequences.
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Another property

F, A, B as above.

Proposition The functors LiF for i > 0 are zero

on projective objects.

Proof This is trivial since a projective object is its

own projective resolution.

(5-functors

Definition Let (Fl)i€z be a series of functors be-

tween abelian categories A, B such that for any exact

sequence

there is given a connecting morphism

6* :F\C) -^F^'

which fit in a long exact sequence

•'••••'•'•is- F l ( A ) >• Fl(B) > • F"l(C) ••—.•:.••••

Assume furthermore that any map between short exact

sequences gives rise to a map between long exact

sequences (in a functorial way). Then we say that the

{Fl)i (together with the 5l) form a 5-functor A —> B.
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Examples

• Let A, B be abelian categories. Then the

functors (H% : C(A) -> B form a 6-

functor.

• Let F : A —> B be a right exact functor

between an abelian categories, such that A

has enough projectives. Then the functors

(L-iF)i form a 5-functor.

Morphisms between ^-functors

Definition A morphism (Ft)i —• (G l ) i between

5-functors is a sequence of natural transformation

0i . pi _^ QI compatible with the connecting

maps. I.e. for any exact sequence

0 ^ A^ B -> C ->0

there is a commutative diagram

Example If 6 : F —>• G is a natural transformation

then we obtain a corresponding morphism L9 :

(L-iF)i —» (L-iG)i of 5-functors.
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Universal <5-functors

is a universalDefinition A (5-functor (F

homological S -functor if

• Fl = 0 for i > 0.

• For any 5-functor (Gl)i and any map 9° :

G° —>• F ° there is a unique extension of 9°

to a map of 5-functors 9 : (G*)4 —• ( F ^ i .

Note : Being given by a universal property, a uni-

versal homological 5-functors (F%)i is determined,

up to unique isomorphism, by F°.

Characterization of universal

homological (5-functors

Definion An additive functor H : A —>• B

is coeffaceable if for any A e Ob (^4) there

exists an epimorphism u : P ^ A such that

H(u) = 0.

Theorem Let (Fl)i be a 5-functor A —>• B.

Assume that

• i ^ = 0 for i > 0

• F% is coeffaceable for i < 0.

Then (F%)i is a universal homological 5-functor.

Example Let F : A —> B be a right exact functor

and assume that ^4 has enough projectives. Then

the 5-functor (L-iF)i satisfies the hypotheses of

the theorem and hence is universal.
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Proof

Assume (Fl)i satisfies the conditions of the theorem,

let (Gl)i be an arbitrary 5-functor A —> B and let 8°

be a map G° -> F°.

We need to construct (for i > 0)

v . Lx —> r

compatible with the connecting morphisms, i.e. for any

exact sequence

0 ^ B ->C -»• A-><3

we should have a commutative diagram

Proof cont'd

We proceed by induction. 9° is already given.

Assume that we have constructed (6~l)i<n. Let

A E Oh (A) and construct a short exact sequence

-^iu) = 0.

If 6~n~1(A) exists then it should be equal to

9~n~l(A, u), defined by the dotted arrow in the

following diagram

(P)
0!

We want

n~1 (A, u) is independent of u.

is a natural transformation compatible with the

connecting maps.
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Proof cont'd

Consider first a commutative diagram of the form.

0 — > • B — > • P ^ ^ A—^0

Y Y , Y
0 —>• B' —^ P' - ^ A' - ^ 0

with F-"-1^) = F-"-1^') = 0.

Then we get a diagram

G~n(B)

(A,u)

F~n(B) >• F~nF(B')

where the trapezoids and the middle square are commu-

tative. Since the lower diagonal arrows are monomor-

phims this implies that the outer square is commutative

as well.
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Proof cont'd

Thus we obtain a commutative diagram

_

In particular:

Since two coeffacings of F~n~1 at A

can be dominated by a third we obtain that

0~n~1(A, u) is independent of u.

Dropping the u's from the diagram we see that

Q-n-i j S a n a t u r a | transformation.
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Proof cont'd

Now we prove that 9~n~1 is compatible with the

connecting maps. We start with

P A0 —>- B" ~

Y

(given exact sequence)

?~n~1{y) = 0. If follows that F~

0 as well.

This gives a commutative diagram

0

0

and a similar one for (Fz

Proof cont'd

The proof now ends with a final commutative diagram

n-n-l

l(A)

F — n — 1

B

B F~n(B)

The left square is commutative by the construction

of 8~n~x (and its independence of the coeffacing of

F~n~l at A). The right square is commutative since

9~n is a natural transformation. Therefore the outer

rectangle is commutative, finishing the proof.

Note : This proof illustrates the technique of degree (or

dimension) shifting. By construction exact sequences

with suitable middle term one reduces things to lower

degree.

129 130

Tor as a bi-functor

Write temporarily

11 Torf (M, - ) = Torf (M, - )

Let N be a left i?-module and let Mod(i?°) be

the category of right -R-modules. Then we have a

right exact functor

-®RN : M o d ( i T ) - • Mod(i?°)

Denote the left derived functors by

' T b r ? ( - JV)

Theorem There are isomorphisms

1 Torf (M, N) ^ u Torf (M, N)

natural in M, N.

Proof

We first show that

1 Torf (-, N) 9* n Torf (-, N)

Since both functors have the same value for i — 0,

it is sufficient to show that n T o r f ( - , N) is a

univeral homological 5-functor. I.e. it is sufficient

that

• u T o r f ( - , N) is a 5-functor.

n Tor f (Q, N) is zero for i > 0 if Q is

projective.
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First assertion

We prove u T o r f ( - , N) is a 5-fuctor.

Take a projective resolution of N

> P-2 -> P-i -> Po -> iV -> 0

and an exact sequence

0 -> M ' -> M -> M " -> 0

Tensoring with a projective i?-module is exact so we

obtain a commutative diagram with exact columns

M'®RP2 —

1
M®RP2

- ^ M'®RP1 —

\
—~ M(S>RP1

-S» M'®RP0

1
-=- M®RP0

••• >- M"ig>RP2 >- M"®RP\ >- M"(g)RPQ

The long exact sequence for homology yields the

connecting maps.

Remark The connecting maps are independent of the

chosen resolution of iV since this resolution is unique

up to homotopy.
1 33

Second assertion

We prove u Torf (Q, N) = 0 for i > 0, Q
projective (or flat).

Let the resolution of N be as above.

P-l o

Tensoring with Q is exact. So we obtain an exact

sequence

So we have indeed T o r f (Q, N) = 0 for i > 0.

To finish the proof we need that the isomorphism
7 T o r f ( - , JV) 9* / J T o r f ( - ,JV) is natural in

N. This follows easily from the fact that they are

universal homological 5-functors.
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Acyclic objects

Let F : A —> B be a right exact functor. Assume that

A has enough projectives.

Definition An object A e Ob(^ l ) is acyclic for F if

= Ofori < 0.

Note : Any projective object is acyclic but there are

usually others.

Proposition Let M 6 Oh(A) and assume there is a

resolution by acyclic objects

• • • A-2 -> - 4 - i - • A o - • M -> 0

Then (

Homological characterization of

flatness

Proposition The following are equivalent for

M e Mod(i?°).

(1) M is flat (i.e. M ®R - is exact).

(2) Torf (M, N) = 0 for all TV G Mod(R).

(3) M is acyclic for all functors — ®R N.

Proof (1)=>- (3) has already been shown. (3) ^>

(2) is trivial. (2) => (1) follows from the long exact

sequence for M 0R —.
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Flat dimension

Definition Let M G Mod(i?°). The flat dimension

fdM

of M is the minimal length of a resolution of M by right

flat objects (by convention it is infinite if such a resolution

does not exist).

Proposition The following are equivalent for M £

• Tor£+i (M,iV) = 0 for all TV 6 Mod(i?).

• Torf (M, N) = 0 for all TV £ Mod(i?) and all

i > n.

Proof

We start with a preliminary computation. Assume that

we have a resolution as in (*). If we break up this

resolution in short exact sequences

0

0

M -^ 0

• fd M < n.

• For any resolution

0 -> M-n -^ F-n-

with Fo,..., F n i

flat.

f 1 _ , , Fo -^ M -^ 0

(*)
flat we have that M—n is

0 -^ M_ n

then from the long

obtain for j > 0.

Torf(M_n,7

-^F-n+1 -> M _ n + i -

exact sequence for — (g>

V)^Torf+1(M_n+i,

^ • • •

n N we

N)

(**)
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Proof cont'd

(1)=> (4) We now have a resolution as in (*) with

M_n f lat . It follows from (") that T o r f ( M , i V ) =

0 for i > n.

(4)=>(3) This is trivial.

(3)=> (2) It follows from (**) that T o r f ( M _ n , JV) =

0 for j > 0 for all AT. Hence M _ n is flat.

(2) =H1) A resolution of length n as in (*) always

exists. For example take the Fi projective.

Weak dimension

Definition The right weak dimension

r. w. dimi?

of R is the maximum of the flat dimensions of all right

i?-modules. The left weak dimension is defined similarly.

Definition The Tor-dimension

Tdimi?

of R is the minimal number n such that To r ^ (M , JV) =

0 for i > n + 1 and all M e Mod(_R°),

N £ Mod(i?) (infinite if such a number does not

exist).

Theorem There is equality

1. w. dim R = Tdim R = r. w. dim R

Proof The second equality follows from the proposition

on flat dimension. The first equality follows by symmetry.

Below we write : w. dim R = r. w. dim R.
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Dual notions

• We say that A has enough injectives if for any A

there is a monomorphism A ^ E with E injective

(example: Mod( i? ) has enough injectives).

• If A has enough in injectives then we may construct

injective resolutions

0 - • A ->• Eo - > Ei - • E2 - > • • •

• Such resolutions have the usual functoriality and

uniqueness properties in the homotopy category.

• If F : A —>• B is a left exact functor then we define

the right-derived functors of F as RlF(A) =

H\C(F){E)). This is well-defined and functorial

in the usual sense.

An exact sequence

B
yields a long exact seqeunce

Dual notions II

• A (5-functor (Fl)i is a universalcohomological

S-functor if F% = 0 for i < 0 and for any

5-functor (G1), and any map 6° : F ° ->• G°

there is a unique extension of 8° to a map of

5-functors# : (F?;), -> {G1)l.

• An additive functor H : A ^ B \s efface-

able if for any A G Ob(*4) there exists

an monomorphism u : A —>• £" such that

) - 0.

with the usual naturalitj^properties.

• If (F* ) i is a 5-functor such that Fi = 0 for

i < 0 and F* is effaceable for i > 0. then it

is a universal cohomological 5-functor.

• If F : A - • B is left exact then ( i

is a universal cohomological 5-functor.

142

Ext-functors

Let A be an abelian category.

Definition Assume that A has enough injectives and

let A 6 Ob(A). Then we define

as the right derived functor of

- ) :.A-> Ab

Definition Assume that A has enough projectives and

let B € Oh(A). Then we define

as the right derived functors of

Honu(-,£) :i°

Note A has enough projectives if and only if A° has

enough injectives.

Ext-functors II

One proves as for the Tor-functors.

Theorem If A has both enough injectives and

projectives then there are isomorphisms

1 Ext\(A, B) ^ n Ext^(A, B)

natural in A, B.

Below we write Ext\(A, B) for both I Ex t^ (A, B)

and n E x t \ ( A , B) whenever these are defined.
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Not enough projectives or injectives

A is an essentially small abelian category then we

may define

Ext\(A,B)=ExtlQd{A)(A}B)

One may show : This coincides with the ear-

lier definitions if there are enough injectives or

projectives.

Homological characterizations of

projectives and injectives

Principle The results proved for Tor have analogs

for Ext . For example:

Proposition Assume that A has enough pro-

jectives. Then the following are equivalent, for

P G Ob(A).

(1) P is projective.

(2) Ext\(P, B) = 0 for all B G O b ( ^ ) .

(3) P is acyclic for all functors H o m ^ ( - , B) =

0.

There is of course a dual result for injective objects.
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Projective and injective dimension

Definition Let A be an abelian category with

enough projectives.

• Assume that A has enough projectives and

A G Ob (A) . The projective dimension

pd(A)

of A is the minimal length of a finite projective

resolution of A (as usual infinite if such a finite

resolution does not exist).

• Assume that A has enough injectives and

B G Ob(*4). The injective dimension

id(B)

of B is the minimal length of a finite injective

resolution of B
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Global dimension

As for Tor one proves.

Proposition Assume that A has enough projectives.

Then the following numbers are the same.

• The maximum of the projective dimensions of the

objects in A.

• The mininum number n such that E x t \ ( A , B) =

0 for all i > n and all A, B G Ob(y^).

There is a dual result for injective dimensions.

Definition We define the global dimension g ld im A of

A as one of the following numbers (whenever they are

defined):

• The maximum of the projective dimensions of the

objects in A.

• The mininum number n such that E x t ^ ( j 4 , B) =

0 for all i > n and all A, B e Ob(.4) .

• The maximum of the injective dimensions of the

objects in A.
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Global dimension of rings

R a ring. Mod(i?) has both enough projectives

and injectives. We put

r. gldim R = gldim Mod(R°)

(right global dimension)

1. gldim R = gldim Mod(i?)

(left global dimension)

We have

w. dim R < r. gldim R

w. dim R < 1. gldim R

Special results for rings

It is well-known that E € Mod(i?°) is injective if we

have the following lifting property for all right ideals I.

0 ^ I >~ R

E

This leads to

Proposition The following are equivalent for E £

Mod( iT ) .

(1) E is injective.

(2) Ext f l ( i? /J , E) = 0 for all right ideals I C R.

(3) E is acyclic for all functors Honi i j ( i? / / , —).

This leads to:

Proposition r. gldim R is also equal to

suppd(i?/J)

with / a right ideal in R.
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Noetherian rings

Reminder A ring R is right noetherian if any right

ideal is finitely generated.

Equivalent : Every submodule of a finitely

generated right module is finitely generated.

Terminology : A ring is noetherian if it is both left

and right noetherian.

Note A finitely generated right module over a

right noetherian ring has a resolution consisting of

finitely generated projective modules.

Fact If R is right noetherian then every finitely

generated flat right module is projective.

For a right noetherian ring this leads to

w. d im R = r. g ld im R

and hence for any noetherian ring

1. gldim R = r. gldim R

Commutative rings

R a commutative ring.

One has

gl dim R = sup Rm
m

where m runs through the maximal ideals of R

and R is the localization of R at m (i.e. invert

R-m).

This reduces the problem to local rings (i.e. rings

with a unique maximal ideal).

Theorem Let R be a commutative noetherian

ring with maximal ideal m. The following are

equivalent.

• gl dim R = n.

• pd(R/m) = n.

• R is a regular local ring of dimension n. I.e.

/ m m/m2 = n.
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Graded rings

If A is a graded ring then we put

r. gr. gldim A = gldim Gr(A°)

In a similar way we define graded weak, graded flat,

graded projective and graded injective dimension.

Let fc be a field.

Definition A is connected graded if

• Ai = 0 for i < 0.

• Ao = k.

• Ai is finite dimensional over k if i > 0.

Notation We write simply k for the graded A-bimodule

A/(A>0).

Theorem Assume that A is connected graded. One

has

r. gldim A = r. gr. gldim yl = gr. pd(kA)

= gr. pd(Ak) = 1. gr. gldim A = 1. gldim A

= w. dim A = gr. w. dim A
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Rings of low global dimension

The following result is classical.

Artin-Wedderburn Theorem Let R be a ring. Then

r. gldim R = 0 (or equivalents 1. gldim R = 0) if

and only if

R = YT^1Mmi(Di)

with the D{ being skew fields.

Examples of global dimension one

The free algebra

Upper triangular matrices

So-called "hereditary orders"

k[x] k[x]

xk[x] k[x]
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Polynomial rings

General result:

gl dim R[x] = l + gl dim R

Hence in particular

fc[xi,..., xn] = n

An example of global dimension three

"Non-commutative projective planes"

A = k(x,y,z)/(fi,f2,f3)

/i = ayz + bzy + ex

ji = azx + bxz + cy2

f3 = axy + byx + cz2

(a, b, c) e P2 - {finite "bad" set}

A is connected graded with deg x = deg y =

degz = 1.

Resolution of A^.
. ex bz ay .

(xvz^ ifVte) .(y)
. x y z \ . o hi, (ij- (••y . o v ~ '
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Sheaf cohomology

Let Sh(X) be the category of sheaves on a

topological space X. Recall that Sh(X) has

enough injectives (being a Grothendieck category).

Define the (left exact) global section functor as

T{X, - ) : Sh(X) - • A b : T i-> T{X)

For a sheaf T we put

W\X,T) = RlY{X,T)

Chapter VII

Derived categories and triangulated

categories
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(Universal) localization of categories

C category, S C Maps(C).

Definition An S-inverting map is a functor C —>• B such

that the elements of S axe mapped to isomorphisms.

Proposition There is a "universal" S-inverting functor

defined by the following universal property

B
S inverting

C

' •

Q S~lC

Sketch of construction

• Ob(5'"1C) = Ob(C).

• Morphisms in S~1C are (composable) formal paths

with fi in C and Si in S, modulo a suitable

equivence relation.
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Simplifying conditions

Definition S is multiplicatively closed if it con-

tains all the identy maps and is closed under

composition.

Defintion A multiplicatively closed set is saturated

if for maps s, t in C with s,t G S we have

sESotES

Fact We can replace a set of maps always by

its multiplicative closure or saturation without

changing the corresponding localization.
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Ore sets

Principle Localization becomes a lot easier if the Ore

conditions hold.

Definition Let S be a multiplicatively closed set of

maps. S is Ore if the following conditions hold.

(ORE1) For all s : Z -> Y in S, f : X -> Y in C there is

a commutative diagram

W

s'es ;
V

(think: s " 1 / = f's'-1).

(ORET) Dual condition.

(ORE2) For X ~Y in C the following are equivalent

- 3s G 5 such that s / = sg.

- 3t <E S such that / t = gt.
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Localization for Ore sets

Let S C Maps(C) be an Ore set.

New construction of S~1C

1C) = Ob(C).

Morphisms are equivalence classes of dia-

grams

X

(think/s"1).

Y
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Equivalence relation

x1
•Si / \ /l

X Y X

if there is a commutative diagram

h

Y

Note : Not required that ui,U2 E S. Automatic

if S is saturated.

V
X

Composition of diagrams

,....-x2 ....
. • • • • ' t ' . . . • • • • ' " • • • • - , . / ' • • • • • .

Xi (ORE1) yj

/

y
z
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Alternative diagrams

Principle We may also define S~XC via equiva-

lence classes of diagrams of the following type.

Technical problem

A priori "Hom"-sets in S~1C might not be

sets.

Will be solved later in concrete cases.

tes

X Y

(think: t~1g). The result is the same!

We go from the old diagrams to the new diagrams

(and back) via the Ore conditions.

9 .-•'

X (ORE1) Y
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X

Ore localization preserves

pre-additivity

x1
s / \ f

X2
t / \ 9

Y X Y

Y

(OREV): u.e'S ; P

V

——x 2
(think: u is a common denominator for s, t).

_ def u

Sum =

X

The derived category of an abelian

category

A abelian category.

Definition A —> B in C(A) is a gt/as/-

isomorphism if i f ( / ) is an isomorphism.

<Sq.i = {quasi-isomorphisms in C(A)}

Properties

• S'q.i. is a saturated multiplicatively closed set

containing all isomorphisms.

• 5*qj is not an Ore set.

Definition D(A) = S'1 C(A).

167 168



Elementary properties

Commutative diagram

C(.A) *• S^1 C(A) = D{A)

Gr(A)^

Similary The shift functor —[1] on C ( A ) descends to

a shift functor — [1] on D(A).

Define

D(A) : A -> 0)

Commutative diagram

A V D{A)

H°
I

A

Hence i is fully faithful.

Convention : We view i as an inclusion.
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Application

New definition of Ex t without assuming enough

projectives or injectives.

Ext\(A,B)=RomD{A)(A,B[n})

We will show : this coincides with our earlier

definitions.
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The cone of a morphism: topological

inspiration

/ : X —> Y continous map.

cone(X) = / \ = Xxl/((x, 1) - (V, 1))

cone(/) =

Schematically

A

/ \

\
\

- AIt
Y

The cone of a morphism: topological

inspiration II

There are maps

X -4 Y -> cone(/) -»• SX (*)

where

A

SX = /'" A = Xxl
(x,o)~(x',oy

\ /

(the unreduced suspension of X).

Note The composition of two consecutive maps in

(*) is homotopic to a constant map.

Remark The functor SX is a kind of shift functor

on topological spaces.
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The cone of a morphism between

complexes

/ : A -»• B in C{A).

Informally

An

t

dn dn+1

Construction

B

Ai+2

fn

>- An+2

© /™+2

B

Matrix convention

Assume

A,B,C,... E abelian (or additive) category

/A\

B

C

W

n^ A © B © C

Maps

A' @B' © C" ©

will be written as matrices.

173 174

The cone of a morphism between

complexes II

/ : A -»• £ map in C(^ ) .

cone(/) = A[l] © B as graded objects

d,
d-irii 0

'cone(/)
/

Helices
/ (?) d o )

A —> B > cone(f) •

We may extend this to an infinite sequence

^ cone(/)

Terminology We will call this the helix of / .

Convenient summary

cone(/)

( i )

A
f

-> B
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Note Composition of any two maps is zero in K(A).
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Long exact sequences

Proposition

• H° (helix) is exact.

• Let C be a complex. Then

Homx(i)(C, helix)

and

Homx(_4.) (helix, C)

are exact.

Proof (sketch) We have an exact sequence in

0 ->• B cone(/) 0

split in Gr(*4). The long exact sequence

for homology for this exact sequence of com-

plexes turns out to be precisely H°(helix).

Proof cont'd

Since the sequence is split in Gr(.4) applying

, —) = H o m G r ( ^ ( C , —) yields a

short exact sequence

0 -> Horn ^—• Homc( -4) (C, cone(/))

( 1 0 )

) (C, helix)

is the long exact sequence for homology associ-

ated to this short exact sequence.
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Note on the functoriality of cones

Clearly cone(—) defines a functor

Maps(C(^)) - • C(A)

The world would be much nicer if cone(—) would

define a functor on maps in the homotopy category

but this is not the case.

Functoriality cont'd

More precisely Suppose we have a diagram in C(.4)

A

V

C

B

D

commutative in K(A) then we can construct a corre-

sponding commutative diagram of helices in K(A)

cone(/)

A
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Functoriality cont'd

However The construction of r turns out to depend

on the chosen homotopy between qf and gp.

There is no natural choice!

Weak result If p, q are isomorphims then for any

homotopy the constructed r will be an isomor-

phism.

The derived category via the homotopy

category

The homology functor is defined on K(A) so we

can speak about quasi-isomorphims in K(A).

One may prove : The natural functor

S-,1 C(A) - S^K(A)

is an isomorphism of categories.

It requires checking that S~]
iK(A) satisfies the

required universal property.
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The Ore condition

The interpretation

D{A) = S-'

simplifies life considerably since we have the following

fundamental result.

Proposition Sq/L is an Ore set in K(A).

Example (ORE1) We must complete in K(A) for

t £ Sq\., g arbitrary.

D -->C

A^+B

We define D, s, f by the following helix

cone(-g,t)
def

( i )

A®C
183

D[i\

-^ B

Example cont'd

Since the composition of any two maps is zero in a

helix we have

-gs + tf = O

Furthermore : The long exact sequence for

homology yields that s is a quasi-isomorphism.
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Triangles

Principle The cone of a map plays the role of kernel

and cokernel in the homotopy category. We need a

substitute for the axiom ker coker = coker ker in an

abelian category.

Triangles : Let V be graded a category.

A triangle (X, Y, Z, u, v, w) in V is a sequence of

objects and maps

X

also written as

Z

Triangles II

A map between triangles is a commutative diagram

X *~ Y * Z

X1 *- Y' >- Z' >- X'[l]

Notation : A ( P ) : the category of triangles in T>.

X
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Pretriangulated categories

Definition A pretriangulated category is a graded

pre-additive category T> together with a full subcategory

A(P)dist C A(X>)

of distinguished triangles satisfying the following axioms.
(TR1a)

0

A A

is distinguished.

(TR1b) A triangle isomorphic to a distinguished one is

distinguished.

(TR1c) For all u : A —> B € Maps (P) there is a

distinguished triangle

C

A -^ B

Pretriangulated categories II

(TR2) (the rotation axiom) A triangle

C
W / \ V

(1)

A

is distinguished if and only if the following

triangle is distinguished.

B
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Pretriangulated categories III

(TR3) (the double helix axiom) A commutative di-

agram with rows which are distinguished

triangles may be completed to a map between

distinguished triangles

A

A1

B

B'

C

h
Y

a-

A[l]

\f[1]

A'[I]

Note on axioms

• An abelian category is an additive category

satisfying extra axioms.

• A pretriangulated category has extra structure

besides extra axioms.

Note also The axioms of a pretriangulated cate-

gory only assert the existence of certain objects.

These objects are in no way unique or functorial.

Contrast with : ker, coker in an abelian category

are functorial.
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Elementary properties

V pretriangulated.

Proposition Let

C

A

be a distinguished triagle.

• The composition of any two arrows is zero.

• For any D G Ob(X>), Romv(D, - ) and

H o m p ( - , D) applied to the corresponding

helix yield long exact sequences.

Elementary properties II

Consider (TR3).

A -^-^ B — = ^ C — ^ A[l]

f

A'
V

/[l]

B'

Proposition If / , g are isomorphisms then so is h.

Proof It follows from the long exact sequence and the

five lemma that Homx>(Z), h) is an isomorphism for

any D.

Corollary A distinguished triangle is up to isomorphism

determined by its base.

A B

id A i d B

A' B'

C

V

C
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Notation for top of triangle with base u : cone(n)

(determined up to iso).
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Additivity

Proposition A pretriangulated category is addi-

tive.

Proof Consider a distinguished triangle

C

\
A

One proves

• v is split mono, w is split epi.

Definition A distinguished triangle where one of

the arrows is zero is called a split triangle.

Coproducts

Proposition If there are distinguished triangles

indexed by i e /

Ai ^ Bt ^ Ct ^ Ai[i]

such that

© . A . cih . R . C£\ • f^ -

exist (e.g. if / is finite), then

is distinguished.
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Localizing Ore set

V pretriangulated.

S C Maps(D): Ore set.

Definition S is localizing if the following holds:

(Loci) s e S <^ s[l] e S.

(LOC2) If in (TR3) f,g G S then h may be chosen in

S as well.

Localization of pretriangulated

categories

S C Maps(D) localizing Ore set.

S~1V is a graded category.

[1] =
X Y) X[l] Y[l]

Definition A triangle in S~lrD is distinguished

if it is isomorphic (in S~1V) to the image of a

distinguished triangle in V.

Proposition S~lrD is pretriangulated.
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Note on functors

Definition An additive functor F : V —>• £

between pretriangulated categories is exact if

it sends distinguished triangles to distinguished

triangles.

Example If S is localizing in T> then the functor

Q:V ^ S~XV

is exact.

The homotopy category is

pretriangulated

Definition A triangle is K(A) is distinguished if it

is isomorphic to a standard triangle of the form

±U cone(/)

Proposition With this choice of distinguished

triangles K(A) is pretriangulated.
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The derived category is

pretriangulated

Proposition Sqj, C K(A) is localizing.

Corollary The derived category

D(A) = S-}

is pretriangulated.

Exact sequence of complexes

Theorem Assume that

0 ^A^^.B^^C ^
p <i

is an exact sequence in C(^4), split in

vq = lc vu = 0

pu = lA pq = 0

up + qv = 1B

Then

A[l]

is a distinguished triangle in K(A).
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Exact sequences of complexes II

Theorem Assume that

The octahedral axiom: motivation

Assume we have monomorphisms in

is an exact sequence in C(.4).

There is a (canonical) map

in D(A)

such that

is a distinguished triangle in D(A).

Proof Use the functoriality of cone( —) in

A

0

B

C

cone(-u) >- A[l]

c 0

(cone(O))

The long exact sequences for homology yields that

w' G 5q.i..

Take w = p o (w')~1 201

split in Gr(.4).

This yields 4 triangles in K(A).

A >• B >• B/A

202

More symmetric representation: the

octahedron

Top

Bottom

C/B -<-

(1) d C/A d

B/A

C

(1)
-*- A

+ = commutative, d = distinguished.
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Octahedra in pretriangulated

categories

V pretriangulated.

Definition A octahedron in T> is a diagram of the form

Top

Bottom

A' C

(1) d B'B' d

c'
(1)
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Triangulated categories

Definition A pretriangulated category V is triangulated

if the following axiom holds

(TR4) Any two consecutive maps

A -^ B - ^ C

may be completed to an octahedrom.

Remark The top of the octahedron is determined up to

isomorphism by / , g.

Remark The most useful part of the octahedron remains

Localization of pretriangulated

categories

Theorem If I? is triangulated and S C Maps(X>)

is localizing then so is S~1V.
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Homotopy category and the derived

category

Theorem The homotopy category is triangulated.

Proof is an easy, but tedious verification.

Corollary The derived category is triangulated.

Subcategories of the derived category

A abelian category, A' C A a full abelian (i.e.

closed under ker, coker) subcategory of A.

The following full subcategories of D(A) inherit

its triangulated structure.

D+(A) = {A e D(A) | H\A) = 0 for i < 0}

= {A(ED(A) I H\A) =Ofori>0}

Db(A) = { i G D(A) | Hl(A) = 0 for

and for * = , + , — , b.

D*A,(A) = {Ae D*(A) | Wi: H\A) e A'}

Remark There is an obvious exact functor

0}

In general this functor is neither full nor faithful.
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Truncation functors

r<n : C(.A) - C(A)

Definition

I A dn

T<n\' ' ' *• An—1 * An 'r An

= • • •—> An-i —> k e r d n —> 0 -

One has

' i f * ( A ) i f i <

0 if i > n

Hence : r < n preserves quasi-isomorphisms. So there

is a corresponding functor.

r<n : D(A) -

Dual truncation functor

/ . d T l - l A A

T>n\- • • —> An-1 > An —> A n

= • • • 0 —> 0 —>• coker d n _ i —> A n +

Naive truncation functors

r<n : C(A)

Definition

Note cr<n does preserves quasi-isomorphisms

and hence does not define a functor on the derived

category.
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Left closed objects

5 C Maps(C) : Ore.

Definition

(1) A E Ob(C) is left closed if Home (A, —) sends

elements of S to isomorphisms.

(2) C has enough left closed objects if

MA G C : 3s : A' -> A £ 5

such that y l ' is left closed.

Theorem Assume that C has enough left closed

objects. Let Clc be the corresponding category. Then

the inclusion

Clc" ^ C

induces an equivalence

In particular : S~1C may be identified with a full

subcategory of C.

Hence : "Hom"-sets in S~XC are actually sets.
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Left closed objects II

Assume that C has enough left closed sets.

Fact (A',s) as in (2) is unique up to unique

isomorphism.

Pick a representant

LA SA A

(we call this a (left) "resolution" of A).

Fact II L can be made functorial using the

following commutative diagram.

SA
LA

3 ! [ L f

Y

A

f

B

Formula: B.om.s-ic(A, B) = H.omc(LA, B).

Principle : Horn's in localized categories may be

computed using resolutions.

212



Left closed objects III

One proves : The functor

L : C -> Clc

sends the elements of S to isomorphisms.

The associated functor

C— 1/7 /7I.C

is an equivalence, and a quasi-inverse to the

earlier functor

Q | C l c : Clc -»• ^ " ^

Left closed objects in

Definition A e i f (.4) is acyc//c if -f f(A) = 0.

Excercise A map is a quasi-isomorphism if and

only if its cone is acyclic.

Excercise P G K(A) is left closed is and only

if, for all A acyclic we have

RomK{A)(P,A) = 0

Definition A left closed object in K(A) is called

homotopicallyprojective. Category : K(A)h'p'.

Define C~(*4): complexes which are zero in

high degree (short: right bounded complexes).

K~(A): corresponding homotopy category.

Proposition A right bounded complex consisting

of projectives is homotopically projective.
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Left closed objects in K (A)

One proves (using truncation functors)

Proposition Assume that A has enough projec-

tive. Then for any A E C~(A) there exists a

quasi-isomorphism

such that P is right bounded complex consisting

of projectives

Hence K~ (A) has enough left closed objects.

Notation K~(P(A)) : full subcategory of

K~(A) of complexes consisting of projectives.

Corollary D~(A) = K~{P{A)).

Unbounded complexes

R ring.

Notation

K{R) = K(Mod(R))

D(R) = D(Mod(R))

Proposition K(R) has enough homotopically

projective (=left closed) objects.

Corollary

D(R) =* K(R)hp
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Warning

Not every complex consisting of projectives is

homotopically projective.

Example Consider (for R = Z)

V4Z X 2
A : • • • - ^ Z / 4 Z ^

This complex is acyclic.

If it where homotopically projective then

RomK(R)(A,A)=0

\.e.A = 0mK(A).

But then (excercise) : A ®Z/AZ Z/2Z =

Z/2Z

0 in K(R)

A <g> Z/2Z : ... m> Z/2Z

Not acyclic and hence not zero.

Dual notions

Terminology and notation: right closed, ho-

motopically injective, K(A)h:L, C+(A),

Left bounded complexes of injectives are

homotopically injective.

If A has enough injectives then D+(A) =

K+(I(A)) where K+(I(A)) is the ho-

motopy category of left bounded injective

complexes.
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Grothendieck categories

Theorem Assume that C is a Grothendieck

category. Then K(C) has enough homotopically

injective (=right closed) objects.

Corollary D(C) = K(Cf\

Very useful theorem.

Proof is difficult!

Note about Ex t

A abelian category with enough injectives.

Inclusion (fully faithful).

Recall principle Horn's in localized categories

may be computed using resolutions.

A, B G A. Pick an injective resolution.

0 —• B E2

We compute

KomD{A)(A, B[n]) = RomK{A)(A, E[n])
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Note about essentially small

categories

A essentially small, abelian.

Recall We have two definitions for Ex t in A.

Ext A(A,B) = UomD(A)(A,B[n])

and

Fact These definitions are equivalent.

We know : Ind(A) is a Grothendieck category, hence

has enough injectives.

One may show that the natural functor

D\A) - Db
A(lnd(A))

is fully faithful.

Thus for A, B £ A we have

BomDiA)(A,B[n}) = HomD(Ind(v4))(A, B[n])

Derived functors: introduction

F : A —> B : additive functor between abelian

categories.

Commutative diagram

K{A)

D(A)

> K(B)

D(B)
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Fact If F is not exact there will be no >~

making the diagram commutative...

Sometimes there is a best approximation (theory

of Kan extensions).
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Abstract left and right derived functors

Consider

The right and left derived functors RF and LF of F

are determined by the conditions that there should be

isomorphisms

HomFun(c>£) (F, GoQ)^ HomF u n ( p ,£ ) (RF, G)

Hom F u n ( C ) £ ) (Gog,F) ^ Hom R i n ( c , £ ) (G,LF)

natural in G.

Note Since RF, LF are representing objects for cer-

tain functors, they are unique up to unique isomorphism.

Putting G — RF {LF) and considering id_RF (id

we obtain associated maps

rjF :F ^ RF o Q

3Q -> F

Existence of right derived functors

F :C -> £: functor.

S C Maps(C) : Ore.

Proposition Assume that C has enough right

closed objects. Then RF exists and is determined

by the following commutative diagram.

R,F

I.e. RF=(F\ Cc) o R

Principle : Derived functors may be computed

using appropriate resolutions.

Note : Construction may be done in triangulated

setting and yields exact functors.
224



Derived functors in D*(A)

F : A —> B functor between abelian categories.

* = 0,+,-,&.

K*(A) K{B)

QoK(F) Q

D*(A) ? >D(B)

Look for

R(QoK(F)) L{QoK{F))

Notation (in case of existence).

RF LF

Terminology : Left and right derived functors of F.

Classical derived functors

Example

F : A —> B, * as above.

One obtains : RF exists in the following cases.

• If * = + and A has enough injectives.

• If * = 0 and A is a Grothendieck category.
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Note on classical derived functors

F : A —> B functor between abelian categories.

Assume A as enough injectives.

Recall principle Derived functors are computed

by resolutions.

Pick A £ A together with an injective resolution

0 -> A -»• Eo E2

Then

= H\R(Q o

= H\K{F)(E))

So the new definition of RlF coincides with the

old one.

Standard derived functors : R H o m
(-, - ) : K(A)° x K(A) ->•

Assume : .4 has enough injectives.

Pick A <E K(A). Then

ft/HomA(i, -) : D+{A) -

exists ( 1 / = second factor).

We obtain : a bifunctor:

fl//Honu(-, - ) : K{A)° X .D+(^) -»• D(A)

One shows : for B G D(>t)

i?/jHom^(-,S) : K{A)° -> D(^)

preserves standard triangles and quasi-isomorphisms.

We obtain : a bifunctor:

(-,-) : D(A)°xD+(A)
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RHom cont'd

Similarly : If A has enough projectives then we

obtain a bifunctor

JR//JR/Hom^(-, - ) : D-{A)°xD(A) -+ D(A)

If A has both enough injectives and projectives

then

i?/i?//Hom_4(—, —) and i? j j i?j Horrid (—, —)

coincide when restricted to D~(A)° x D+(A).

Notation

(-, - ) = i?/i?//Hom^(-, - )

whenever defined.

Formula : For A, B G A we have

RHom variation

If A is a Grothendieck category then i^(*4) has

enough homotopically injective (=right closed)

objects.

Hence We may define RHom_4(—, —) as a

bifunctor.

D(A)° x D(A) -* D(A)

without any restriction.
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Tensor product of complexes

AeC(R°),B eC(R).

(A®RB)n = ®iA

Differential :

d(a <8> b) = da <8> b + a

Fact : As for RHom, we can derive — (S)R — in

both arguments to obtain a bifunctor.

- ®R - : D(R°) x D(R) -»• D(Ab)

Formula : For A a right and B a left i?-module

we have

L

t-structures: motivation

A abelian category.

Define

^ = {Ae D(A) | H\A) = 0 if i > n}

= {AE D(A) I Hl(A) = 0 if i < n}

We have

Idea : Make this abstract for general triangu-

lated categories in order to recognize abelian

subcategories.
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t-structures: definition

V triangulated category.

Definition A t-structure on V is a pair of full ad-

ditive subcategories V-°, T>-° closed under iso-

morphism such that (putting V-n = V-°[-n],

Romv(X,Y) =0

• For every X G T> there is a distiguished

triangle

t-structures: the derived category

The axioms hold for

V = D(A)

with

Key points

• If A G

Hon

. I f B G

Hon

in proof

D^n{A)

D^n{A)

one

B)

one

D\ft J

has

has

A)(A,r<nB)

A)(r>nA,B)

• For X in C(»4) the natural map

X/T<0X -

is a quasi-isomorphism, so there is a distinguished

triangle
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t-structures: the heart

V triangulated category with t-structure.

Definition The intersection

£ , < o n : p > o

is called the heart of the t-structure.

Main theorem The heart is an abelian category.

The proof uses truncation functors for arbitrary

t-structures (see below).

t-structure: truncation functors

V triangulated category with t-structure.

One proves For X G V the triangle

A^ X ->• B ^

with A G T>-°, B G V-1 is unique up to unique

isomorphism.

One puts

r<0X
 d=lf A

r>lX
 d^f B

and in general

r<nX =
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t-structures: perverse cohomology

V triangulated category with t-structure and

heart A.

Definition The perverse cohomology of A e V

is defined as

pHn(A)=pH°(A[n})

Note: H°(A) lies in A

Theorem If we have a distinguished triangle then
PH°(—) applied to the corresponding helix yields

a long exact sequence.
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New t-structures from old: tilting

V triangulated category with t-structure and heart A.

Definition A torsion theory in an abelian category B is

a pair of additive full subcategories (T, J-) such that

• For all T € T, F 6 T: HomB(T, F) = 0.

• For all B E B there is a (necessarily unique) exact

sequence
O ^ T -> B -> F ->0

with T <ET,F Ef.

Theorem Let ( T , JF) be a torsion theory in A. Define

'V^° = {D G V^1 | PH\D) G T }

' P ^ ° = {D e V^° | p f f ° ( i } ) G ^ }

Then ( 'P - 0 , ' D-° ) defines a new t-structure on V.

Terminology : The new t-structure is called a tilted

t-structure.

Mental picture : Walking around in V by tilting

produces new abelian categories from old.
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Example of tilting

A the abelian category of finitely generated

abelian groups.

V = D(A) with its canonical t-structure.

Define a torsion theory on A by

T = {torsion groups}

T = {torsion free groups}

Then the heart of the tilted t-structure is repre-

sented by complexes of length 2

0 ->• Ao ^ Ax ->• 0

such that ker d G T, coker d € T .

One may show : The heart of the tilted t-structure

is equivalent to A°.

Hereditary t-structures

T> t-structure with heart A.

Assume the following conditions on the t-structure.

• (Non-degeneracy) If pHn(D) = 0 for all n then

D = 0.

• (Boundedness) For every D, at most a finite

number of PH(D) are non-zero.

• (Heredltarity) For every A, B 6 A we have

Romv(A, B[n\) =0forn > 2

Note: Yi.o-mT>{A, B[n]) = 0 torn < 0.

Theorem Under the above conditions for every D 6 V

we have

D ^ ®%W[D)[-i]

Note : The theorem applies if T> = Db(A) where A

is a hereditary abelian category, i.e. an abelian category

such that Ex t^ ( - , - ) / 0 for i / 0,1.
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Sketch of proof

We pretend that perverse homology behaves

exactly like homology of complexes. This is true!

For D G T> define l(D) as the number of non-

zero homology objects. We will perform induction

on l(D). The key point is that if pHn(D) is

the lowest cohomology group then there is a

distinguished triangle

pHn(D)[-n] -+ D - r>n+1D -+

andl(r>n+1D) =
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Proof: cont'd

Stepi

Let D G V-2 and A G A. We claim that

Horn© (D, A) = 0

Appy to Horn© {—, A) to

where n > 2. The vanishing of H o m ^ ( - , —) for

n > 2 implies that

is epi. We finish by induction.

Step 2

Let D G T> be arbitrary. It follows from Step 1 that in

the triangle (*) the map

is zero. Thus the triangle is is split.

We obtain

D^pHn(D)[-n]®T>n+1D

We finish by induction.
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