united nations educational, scientific and cultural organization

international atomic energy agency the **abdus salam**

international centre for theoretical physics

40 anniversary 2004

SMR.1580 - 10

CONFERENCE ON FUNDAMENTAL SYMMETRIES AND FUNDAMENTAL CONSTANTS

15 - 18 September 2004

DOES DOUBLE BETA DECAY RATE DEPEND ON TIME?

A. Barabash ITEP, Moscow, Russia

DOES DOUBLE-BETA DECAY RATE DEPEND ON TIME?

A.S.Barabash

Institute of Theoretical and Experimental Physics, B.Cheremushkinskaya 25, 117259 Moscow, Russia

PLAN

I. INTRODUCTION

II. 2 β -DECAY AND TIME VARIATION OF G_F

III. COMPARISON OF "PRESENT" and "PAST" 2β-DECAY RATES FOR ¹³⁰Te ⁸²Se AND ⁹⁶Zr

IV. FUTURE EXPERIMENTS

V. CONCLUSION

I. INTRODUCTION

The time variation of fundamental constants been an active subject to research since the introduction of the Large Number Hypothesis (LNH) by **P.A.M. Dirac** in 1937.

Present motivations:

1) Theory which attempt to unify gravity and other fundamental forces:

- Kaluza-Klein theories;
- superstring theories;

- massless dilaton models

cosmological solutions in which the low-energy fundamental constant vary with time

2) Time variation of **G** and **c** (speed of light) as a solution to cosmological puzzles (Phys.Rev. D59(1999)043515; 043516;)

3) Possible experimental evidence:

a) J.K. Webb et al. $^{1999-2003} \Rightarrow$

It was found that α was smaller at earlier epochs \Rightarrow

 $\Delta \alpha / \alpha = (-0.54 \pm 0.12) \cdot 10^{-5}$ for 0.2 < z < 3.7

(But this is in conflict with two recent results:

 $\Delta \alpha / \alpha = (-0.06 \pm 0.06) \cdot 10^{-5}$ for 0.4 < z < 2.3 (S.Srianand et al., 2004)

 $\Delta \alpha / \alpha = (0.01 \pm 0.17) \cdot 10^{-5}$ for z = 1.15 (R. Quast et al., 2004))

b) Oklo Natural Reactor (2 billion years ago):

 $\Delta \alpha / \alpha = (0.88 \pm 0.07) \cdot 10^{-7}$ (Y. Fujii, 2000-2003) $\Delta \alpha / \alpha = (0.44^{+15}) \cdot 10^{-7}$ (S.K. Lamoreaux, J.R. Torgerson 2004)

[Best previous limits:

 $\Delta \alpha / \alpha < 1.2 \cdot 10^{-7}$ (T.Damour and F. Dyson, 1996)

 $\Delta \alpha / \alpha < 1.10^{-8}$ (Y. Fujii, 2000)]

c) 2β-decay (A. Barabash, 1997-2003)

Decay rate depends on time? (in ¹³⁰Te and ⁸²Se) \Rightarrow

 $\Delta G_F/G_F \approx -(0.05-0.3)$ (or $\Delta \eta/\eta \approx (0.02-0.15)$)

PRESENT LIMITS ON WEAK INTERACTION CONSTANT TIME VARIATION

The Oklo bound - $|\Delta G_F|/G_F < 0.02 \quad (\Delta G_F = G_F^{Oclo} - G_F^{now})$ Big Bang nucleosynthesis - $|\Delta G_F|/G_F < 0.06$ 40 K decay rate - $|G_F/G_F| < 0.1$

<u>Remark</u>: all these limits were obtained with **NON-NATURAL** assumption that other fundamental constants are stable.

II. 2β -DECAY AND TIME VARIATION OF G_F .

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2v$

 $2\beta(2\nu)$ -decay process presents the special interest in the framework of fundamental constants time variation problem.

 $\beta \text{-decay} - \qquad \qquad T_{1/2}{}^{\beta} \sim G_F{}^{-2}$ $2\beta \text{-decay} - \qquad \qquad T_{1/2}{}^{2\beta} \sim G_F{}^{-4} \ (2\beta \text{-decay is second} \\ \text{order process of weak} \\ \text{interactions})$

This is why 2β -decay can give additional (and may be <u>unique!</u>) information about time variation of G_F .

(Age of minerals, age of Earth $\Rightarrow \beta$ and α decays!!!)

III. COMPARISON OF "PRESENT" and "PAST" 2β-DECAY RATES FOR ¹³⁰Te ⁸²Se AND ⁹⁶Zr

<u>1. ⁸²Se.</u>

$^{82}Se \rightarrow {}^{82}Kr + 2e^- + 2\nu$

"Present" - $T_{1/2} = (0.9 \pm 0.1) \cdot 10^{20} \text{ y}$ (world average value)

"Past" value Kirsten'83)	$\mathbf{T}_{1/2} = (1.3 \pm 0.05) \cdot 10^{20} \mathbf{y}$ (T.
(geochemical	(average value for 17 measurements; age of samples are from $8 \cdot 10^7$ to $4.5 \cdot 10^9$ v)
experiments)	(1) samples are noin 0.10 to 4.5.10 y

{ geochemical measurement:

Old mineral (containing Se) \Rightarrow extraction of Kr \Rightarrow checking of isotope composition \Rightarrow excess of ${}^{82}\text{Kr} \Rightarrow T_{1/2}(2\beta)$ }

 $T_{1/2} = (0.8 \pm 0.15) \cdot 10^{20} \text{ y}$

(average value for samples with age $t < 0.1 \cdot 10^9 \text{ y}$

 $T_{1/2} = (1.32 \pm 0.06) \cdot 10^{20} \text{ y}$

(average value for samples with age $0.17 \cdot 10^9 < t < 0.33 \cdot 10^9$ y)

 $T_{1/2} = (1.28 \pm 0.07) \cdot 10^{20} \text{ y}$

(average value for samples with age $1 \cdot 10^9 < t < 2 \cdot 10^9$ y)

<u>Conclusion</u>: Rate of decay now is ~ 50% - 60% higher than in the past ($\geq 3\sigma$ effect!).

<u>2. ¹³⁰Te.</u> $^{130}Te \rightarrow ^{130}Xe + 2e^{-} + 2v$

There are geochemical experiments only:

"Young" samples ($t \approx 2.8 \cdot 10^7 - 10^8 \text{ y}$) - $T_{1/2}^{2v} \cong 0.8 \cdot 10^{21} \text{ y}$

"Old" samples ($t \ge 10^9 y$) - $T_{1/2}^{2v} \approx 2.7 \cdot 10^{21} y$

(Statistically more than 10σ effect; T. Bernatowicz et al., Phys.Rev. C47 (1993) 806 $T_{1/2}^{2\nu} = (2.7 \pm 0.1) \cdot 10^{21} \text{ y})$

Average values:

$$\begin{split} \mathbf{T}_{1/2} &= (\mathbf{0.81} \pm \mathbf{0.05}) \cdot \mathbf{10}^{21} \ \mathbf{y} & (\text{average value for samples with} \\ & \text{age } t < 10^8 \ \text{y}) \end{split}$$
 $\mathbf{T}_{1/2} &= (\mathbf{1.71} \pm \mathbf{0.04}) \cdot \mathbf{10}^{21} \ \mathbf{y} & (\text{average value for samples with} \\ & \text{age } 1 \cdot 10^9 < t < 2.5 \cdot 10^9 \ \text{y}) \end{split}$

Prediction from direct experiment with ⁸²Se:

 $T_{1/2}$ (⁸²Se) = (0.9 ± 0.1) · 10²⁰ y

and using ratio $T_{1/2}$ (¹³⁰Te)/ $T_{1/2}$ (⁸²Se) = 9.9 ± 0.6 from geochemical measurements with minerals contain both Te and Se "present" value of half-life is \Rightarrow

 $T_{1/2}$ (¹³⁰Te) = (0.9 ± 0.15)·10²¹ y

Very soon this value will be checked by direct **NEMO-3** and **CUORICHINO** experiments (some indication was obtained in Mibeta experiment - $T_{1/2}$ (¹³⁰Te) = [0.61± 0.14 +0.24</sup>-0.35]·10²¹ y)

<u>Conclusion:</u> Rate of decay now is ~ 50% - 90% higher than in the past (> 3σ effect!).

3.
96
Zr. 96 Zr $\rightarrow {}^{96}$ Mo + 2e⁻ + 2v

"Present" value - $T_{1/2} = (2.1 \pm 0.3) \cdot 10^{19} \text{ y}$

(**NEMO2** + **NEMO3** result)

"Past" value - $T_{1/2} = (3.9 \pm 0.9) \cdot 10^{19} \text{ y}$ (geochemical experiment, $t_{min} = 1.7 \cdot 10^9 \text{ y}$; A. Kawashima et al., Phys.Rev. C47 (1993) R2452)

Conclusion: "present value is ~ 1.5-2 times smaller than in the "past"

(~ 2σ effect).

But recently (M. Wieser and J. De Laeter Phys.Rev. C64 (2001) 024308) new geochemical result ($t_{min} = 1.8 \cdot 10^9$ y) was published:

 $T_{1/2} = (0.9 \pm 0.3) \cdot 10^{19} \text{ y} (???)$

No any conclusion can be done now for ⁹⁶Zr

¹³⁰Te and ⁸²Se \Rightarrow Rate of 2 β -decay now is ~ 50% - 90% higher than in the past (> 3 σ effect!).

If the effect connected with time variation of G_F then $\Delta G_F/G_F \approx -0.1-0.2$ and tacking into account possible errors $\Delta G_F/G_F \approx -(0.05-0.3)$.

 $G_{\rm F} = 1/\sqrt{2} \cdot \eta^2 \qquad (m_e \sim \eta)$

were η is the vacuum expectation value of Higgs field.

It means that if G_F is increasing with time η is decreasing

{ ~ (5 - 30)% of $G_F \implies$ ~ (2-15)% of η }

If it is truth, it will have very serious consequences for physics and astrophysics. But, exactly because of this, one has to confirm (or refute) the fact of these discrepancies.

HOW TO DO THIS?

IV. FUTURE EXPERIMENTS

- 1. To do new precision measurements of "present" values for $2\beta(2\nu)$ half- lives in ⁸²Se, ⁹⁶Zr and ¹³⁰Te (with accuracy on the level ~ 5-10%). **NEMO, CUORICINO**
- To do precision measurements of "past" values (geochemical experiments) for 2β(2ν) half-lives in ⁸²Se,
 ⁹⁶Zr and ¹³⁰Te (with accuracy on the level ~ 3%-10%);
 to do the measurements with different are samples (from
 - to do the measurements with different age samples (from 10^7 to $4.5 \cdot 10^9$ y).
- 3. To investigate possibility to do new geochemical experiments with <u>100Mo</u>, ¹¹⁶Cd, ¹²⁴Sn, ¹¹⁰Pd and ⁷⁶Ge.
- 100 Mo: 1) maximum 2β-decay rate;
 2) high concentration in natural Mo (9.6%);
 3) ¹⁰⁰Ru (not gas!) as final nucleus.

Accuracy of "present" half-life value of 100 Mo is ~ 7% and it can be improved up to ~ 2-3% by NEMO-3.

V. CONCLUSION

- 1. There are discrepancies:
 - a) between results of direct and geochemical 2β -decay experiments in ⁸²Se;
 - b) between results with "young" and "old" minerals for ⁸²Se;
 - c) between results with «young» and «old» minerals for ¹³⁰Te.
- 2. All these discrepancies could be explained by time variation of G_F ?!
- **3.** I propose to check these discrepancies by new direct and geochemical experiments.

Washington University (St. Louis, Missouri), 2002

Start to work with ¹³⁰Te again. Main goal is:

To solve the " tellurium-130 problem".

There are two different results for half-life from geochemical experiments:

~ $(2.5-2.7)\cdot 10^{21}$ y and ~ $0.8\cdot 10^{21}$ y

Usually for old minerals (> 10^9 y) we have the first result and for young minerals (~ 10^8 y) we have the second value.

Two explanations have been suggested from research groups advocating either "low" or "high" values for the ¹³⁰Te half-life:

 low age proponents proposed that , since tellurides are "soft" low-temperature minerals, they may not retain Xe well, therefore the shorter half-life might provide the correct value;
 High age proponents suggested that during telluride formation they inherited and trapped some mono-isotopic ¹³⁰Xe from ores of a previous generation, explaining the "low" measured ¹³⁰Te half-life.

Preliminary conclusion:

"We have found that neither Xe loss or Xe inheritance are responsible for observed diversity of measured ¹³⁰Te halflife. <u>There is an intriguing qualitative trend</u>: the older the tellurium mineral, the higher the measured half-life seems to be."