united nations educational, scientific and cultural organization the **abdus salam** international centre for theoretical physics ¹⁹⁶⁴ ²⁰⁰⁴

SMR.1580 - 12

CONFERENCE ON FUNDAMENTAL SYMMETRIES AND FUNDAMENTAL CONSTANTS

15 - 18 September 2004

ATOMIC CLOCK TESTS OF LORENTZ AND CPT SYMMETRY

R. Walsworth Harvard, USA

Atomic clock tests of Lorentz and CPT symmetry

Ronald Walsworth Harvard-Smithsonian Center for Astrophysics

In this talk...

- An atomic physics experimentalist's view of the rationale for Lorentz and CPT symmetry tests
- What are the observable phenomena and experimental challenges?
- An incomplete survey of Lorentz/CPT tests to date: some have (naïve) Planck-scale sensitivity
- A look at my group's maser (atomic clock) experiments best limits so far for neutron and proton
- Coming attractions, challenges, and provocative comments...

Motivation and context

- Fundamental extended objects, cosmological dynamics
 –> low-energy violation of Lorentz (and hence CPT) symmetry
- Atomic clock comparisons are particularly sensitive to (small) Lorentz and CPT violations sensitivity for spin couplings ~ 10⁻³¹ GeV 2 orders of magnitude improvement in next few years
- Standard Model Extension of Kostelecky et al. is the comprehensive formalism to interpret experiments

Implications of Lorentz-violation for "low energy" physics

Spins, mesons, photons, etc. can couple (perhaps differently) to background fields

-> orientation and boost dependent

- Zeeman splittings
- meson decays
- speed of light
- birefringence of vacuum etc.

Experimental challenges

• Small effects !!

-> need a narrow bandwidth observable, high-sensitivity detection (good S/N)

- Slowly-modulated signal (if using Earth's rotation)
 —> excellent long-term stability of apparatus
- Discrimination from confounding systematic effects good co-magnetometer (spins have magnetic moments) day/night thermal cycle (if using Earth's rotation) noise associated with a rotating platform variations in matter/antimatter loadings (meson sector) unknown astrophysical effects (photon sector)

<u>What makes a good spin Lorentz symmetry test?</u>

~ 1 mHz

~ 10⁻²⁶ GeV

permany an what why have

- *Clean:* simple spin structure (e.g., ³He, H)
- Sensitive to absolute energy changes: Narrow bandwidth resonance Large signal-to-noise ratio Stable over sidereal modulation period
- Suppress magnetic field effects:
 E.g., co-magnetometer that does not eliminate
 Lorentz-violation sensitivity
- Minimize systematics: Differential measurements, environmental control, etc.

Hydrogen and noble gas masers meet criteria

Current limits

Lorentz symmetry tests (CPT odd <u>and</u> even effects)

CPT tests

		<u>System</u>		
<u>Isotropy</u>	Boosts	·	<u>Isotropy</u>	Boosts
10 ⁻²⁴ GeV (Penning trap)		e -	10 ⁻²⁵ GeV (e ⁺ /e ⁻ in Penning trap)	
10 ⁻²⁹ GeV (torsion pendulum)				
10 -23 GeV (muonium, μ+e-)		μ $10^{-22} GeV$ (μ^+/μ^- at CERN)		
10 -24 GeV??			10 -23 GeV??	
(BNL storage ring)			(BNL storage ring)	
10 -27 GeV (hydrogen maser)		р		
10 ⁻³¹ GeV (noble gas	10 -27 GeV maser)	n		

.

Lorentz symmetry tests (CPT odd <u>and</u> even effects)			CPT tests		
<u>Isotropy</u>	<u>Boosts</u>	<u>System</u>	<u>Isotropy</u>	<u>Boosts</u>	
		D meson	10 ⁻¹³ GeV (F	10 -13 GeV TOCUS)	
		K meson	10 -21 GeV (KTeV)	,	
		B meson	10 ⁻¹⁶ GeV (BaBAR)		
10 ⁻¹⁵ (cryoger	10 -11 nic optical	speed of light	10 -42	GeV limit from	
cavities) 10 ⁻³² (spectral polarimetry of cosmological sources)		birefringence of vacuum	cosm strong m	ological data; arguments => ust be zero	

Search for Lorentz-violating coupling of spins to background fields

Rotations: sidereal <u>day</u> modulation of atomic Zeeman splittings?

Boosts: sidereal <u>year</u> modulation of atomic Zeeman splittings?

Assumptions

- Simple, additive effect of coupling to valence nucleon and electron spins
- Couplings do not scale with magnetic moments
- Large domain size for Lorentz-violating fields
- Conventional magnetic shields do not screen Lorentz-violating fields
- Interpret results in terms of Standard Model Extension of Kostelecky et al.

Hydrogen maser

Hydrogen masers are one of the most stable oscillators for periods of seconds to weeks:

 $\Delta f/f \sim 10^{-15}$

CfA hydrogen masers are used throughout the world for spacecraft tracking, radio astronomy, atomic physics, etc.

Test of Lorentz symmetry with H maser

Zeeman frequency measured with a <u>double-resonance technique</u> (Andresen effect)

- Very weak Zeeman excitation pulls maser frequency observably with negligible change in state populations
- Zeeman frequency resolution
 ~ 1 mHz in single sweep of resonance
- Maser and Zeeman frequency measurements alternated continuously over many days

Experiment schematic

Example hydrogen Zeeman frequency data

Fit model includes:

- piecewise linear function to account for frequency drift (slope varied for each day)
- sinusoid with sidereal period

10 mHz faux sidereal modulation observable by eye

Fitting gave better than 1 mHz sensitivity to sidereal modulation with small data set from first generation experiment

1-2 orders of magnitude improvement possible with engineering upgrades & more data taking Data analysis for 2000 H maser experiment

- Three runs: 19 useful days over 5 months
 - 1-sigma limit: $|\Delta v_{\text{Zeeman}}| = 0.49 \pm 0.34 \text{ mHz}$
- Clean bound on Lorentz-violating isotropy effects:

$$\left| \tilde{b}_{XY}^{e^{-}} + \tilde{b}_{XY}^{p} \right| \le (3 \pm 2) \times 10^{-27} \ GeV$$

$$\tilde{b}_J^w = b_J^w - m_w d_{J0}^w - \frac{1}{2} \varepsilon_{JKL} H_{KL}^w$$

D. Phillips et al., PRD **63**, 111101 (2001) M. Humphrey et al., PRA **62**, 63405 (2000) M. Humphrey et al., PRA **68**, 63807 (2003)

Next-generation H maser experiment (ongoing)

Optimized/dedicated H maser for Lorentz symmetry test:

- Improved magnetometry
- Rebuilt internal heater and other systems to reduce meander of internally-generated magnetic fields
- Operation in lab with improved environmental control
- Much greater data taking

Dual noble gas maser

Spin-polarized noble gas NMR

The nuclear spin 1/2 noble gases, ³He & ¹²⁹Xe, can be given large spin polarization (~ 50%) via spin-exchange optical pumping

=> inert, magnetized gases, detectable with NMR

=> biomedical imaging, probing porous media

Conventional proton MRI of chest

MRI of inhaled laser-polarized 3He gas

Dual Noble Gas Maser

~100 nanohertz frequency sensitivity on timescale of hours Best test to date of Lorentz and CPT symmetry of the neutron

Testing Lorentz symmetry with noble gas masers

- Lorentz violation couples similarly to ³He and ¹²⁹Xe (valence neutron)
- ³He/¹²⁹Xe magnetic moment ratio ~ 3

 τ (sec)

Data analysis for 2000 isotropy symmetry test

- Fit free-running ³He maser phase data for each sidereal day to model including Larmor precession and sinusoid with sidereal periodicity.
- Runs performed for three cells in both east and west orientations.
- Bound isotropy-violation from weighted means of sidereal modulation coefficients.

Data analysis for 2000 isotropy symmetry test

- Fit free-running ³He maser phase data for each sidereal day to model including Larmor precession and sinusoid with sidereal periodicity.
- Runs performed for three cells in both east and west orientations.
- Bound isotropy-violation from weighted means of sidereal modulation coefficients.

Results for sidereal modulation coefficient δv_X with cell SE3/east

Result of 2000 isotropy symmetry test

• Eight runs: 90 useful days over 13 months

1-sigma limit: $|\Delta v_{3He Zeeman}| = 53 \pm 45 \text{ nHz}$

 Bound on Lorentz-violating orientation effects assuming only valence neutron is important in ³He & ¹²⁹Xe:

$$\left|\tilde{b}_{X,Y}^{n}\right| \le (6\pm5) \times 10^{-32} \ GeV$$

$$\tilde{b}_J^w = b_J^w - m_w d_{J0}^w - \frac{1}{2} \varepsilon_{JKL} H_{KL}^w$$

D. Bear et al., PRL 85, 5038 (2000)

Best bounds on isotropy-violation (coupling to spins)

Experiment	electron	proton	neutron
¹⁹⁹ Hg and ¹³³ Cs precession frequencies (Hunter, Lamoreaux et al.)	10 -27 GeV	10 -27 GeV	10 - ³⁰ GeV
spin-polarized torsion pendulum (Adelberger, Heckel et al.)	10 ⁻²⁹ GeV		
H maser double resonance (Harvard-Smithsonian)	10 -27 GeV	10 - 27 GeV (clean test)	
¹²⁹ Xe/ ³ He maser (Harvard-Smithsonian)			10 -31 GeV

Naive Planck-scale sensitivity ~ 10^{-19} GeV for neutron & proton

New ¹²⁹Xe/³He maser result: <u>sensitive test of *boost*-symmetry for the neutron</u>

• In the lab frame, the net effect of Lorentz-violation includes both rotations $(b_{\chi,y})$ and boosts (b_T) :

$$b_{2} = b_{T}\beta_{L} - (b_{X} + b_{T}\beta_{\oplus} \sin \Omega_{\oplus}T) \sin \omega_{\oplus}T_{\oplus} + (b_{Y} - b_{T}\beta_{\oplus} \cos \Omega_{\oplus}T) \cos \omega_{\oplus}T_{\oplus}$$
sidereal year
frequency
$$v_{\text{orbit}}/c \sim 10^{-4}$$
sidereal day
frequency

• We analyzed ¹²⁹Xe/³He maser data with 3 free parameters b_{X} , b_{Y} , b_{T}

<u>Next-generation noble gas maser experiment (ongoing)</u>

- Optimize cell geometry & gas pressures
- Improve temperature control
- Improve mechanical and thermo-mechanical stability
- Narrow-spectrum optical-pumping laser
 - improved co-magnetometry
 & reduced medium-term frequency noise

Thermal properties of materials

Material	Density (Kg/l)	Specific Heat (J/Kg-K)	Thermal Conductivity (W/m-K)	Coefficient of Thermal Expansion (K ⁻¹)	Continuous Service in Air (Max °C)
Ultem® 1000 PEI, Polyetherimid, unfilled, extruded	1.28	-	0.12	0.56 10 ⁻⁴	171
Nylatron ® GS Nylon, MoS2 filled, extruded	1.16	-	0.24	0.72 10 ⁻⁴	104
Boron Nitride (Grade AX05)	1.9	809	78/130	0.3-1 10 ⁻⁶	850
Aluminum	2.68	897	240	-	-

Double temperature lock tested with Al block

Target isotropy-violation sensitivity of new experiments

Experiment	electron	proton	neutron
¹⁹⁹ Hg and ¹³³ Cs spectroscopy on rotating table (Amherst)	10 ⁻²⁹ GeV	10 -29 GeV	10 - ³² GeV
<i>Optimized spin-polarized torsion pendulum (U. Washington)</i>	10 - ³¹ GeV		
K/ ³ He spectroscopy (Princeton)	10 - ³⁰ GeV		10 -33 GeV
Optimized H maser double resonance (Harvard-Smithsonian)	10 - 29 GeV	10 ⁻²⁹ GeV (clean test)	
Upgraded noble gas masers (Harvard-Smithsonian)			10 -33 GeV

How much better can one do?

Experimental challenges

- Narrow bandwidth, high S/N spin resonance
- Good co-magnetometry
- Excellent long-term stability and immunity from environment

Current limitations

- Thermal noise
 (2-5 orders of magnitude worse than shot noise)
- Properties of materials (thermal expansion and conductivity, magnetic permeability, etc.)
- Slowness of Earth's rotation

<u>Modest proposals</u>

 Develop facilities to aid Lorentz symmetry experiments:

e.g., a low-noise rotating platform for (modest-sized) experiments

 Community commitment to support 2+ experiments (of roughly comparable sensitivity) in each sector —> a systematic attack on problem

How?

Immodest questions

- What is the relative magnitude of Lorentz-violating effects between different sectors?
- Relative magnitude *within* a sector?
 <u>"Enhancement factors</u>" to aid experimentalists?