abdus salam

international centre for theoretical physics

CONFERENCE ON FUNDAMENTAL SYMMETRIES AND FUNDAMENTAL CONSTANTS

15-18 September 2004

SYNCHROTRON RADIATION IN LORENTZ-VIOLATING EFFECTIVE ELECTRODYNAMICS

L. Urrutia
UNAM, Mexico

RADIATION IN LORENTZ

VIOLATING ELECTRODYNAMICS

Rafael Montemayor
Instituto Balseiro and CAB
U. Nacional de Cuyo and CNEA, Argentina

Luis F. Urrutia

Instituto de Ciencias Nucleares
UNAM, México

MOTVATION

- Recent interest in quantum gravity as a source of tiny modifications to dynamics in flat space. In particular, modified dispersion relations would arise [Amelino-Camelia et. al., Nature 393,(1998)763]

$$
\begin{aligned}
& \omega^{2}(k)=k^{2} \pm \xi \frac{k^{3}}{M}: \text { photons } \\
& E^{2}(p)=p^{2}+m^{2}+\eta_{R, L} \frac{p^{3}}{M}: \text { fermions }
\end{aligned}
$$

[Gambini, Pullin (1999); Alfaro, Morales, Urrutia (2000);
Thiemann, Salhmann, Winkler (2001); Ellis et. al. (2000); Myers, Pospelov (2003),....],

- Very stringent bounds upon the parameters ξ, η, Θ
- Atomic Physics: $\left|\Theta_{2}+\Theta_{4} / 2\right|<10^{-9}$, [Sudarsky, Urrutia, Vucetich (2002)]
- Polarization measurements from astrophysical sources: $\xi<10^{-4}$, [Gleiser, Kozameh (2001)]; $\xi<10^{-16} / d_{0.5}$, [Jacobson, Liberati, Mattingly, Stecker (2003)]?
- Synchrotron radiation (SR) from CRAB nebulae: either one of $\eta_{R, L}>-7 \times 10^{-8}$, [Jacobson, Liberati, Mattingly (2003)]. Based on reasonable extrapolation of standard SR to LIV case.
- Measure of linear polarization $\Pi=80 \pm 20 \%$ in GRB021206
\Longrightarrow SR models for emission [Coburn, Boghs (2003)]. Also SR models for BL Lac objects: Markarian 421,501 with electrons [Konopelko et. al. (2003)] or with protons [Aharonian (2000); Mucke, Protheroe (2000)]
- Possibility that SR, for other astrophysical objects, would impose constraints upon the photon LIV parameter ξ.

MYERS AND POSPELOV EFFECTIVE THEORIES

(Phys. Rev. Lett. 90(2004)211601)

- Actions

$$
\begin{gathered}
S_{\text {scalar }}=\int d^{4} x\left[\partial_{\mu} \varphi^{*} \partial^{\mu} \varphi-\mu^{2} \varphi^{*} \varphi+i \frac{\eta}{M} \varphi^{*}\left(V^{\nu} \partial_{\nu}\right)^{3} \varphi\right] \\
S_{p h o t o n}=\int d^{4} x\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-4 \pi J^{\mu} A_{\mu}\right. \\
\\
\left.+\frac{\xi}{M}\left(V^{\alpha} F_{\alpha \delta}\right)\left(V^{\nu} \partial_{\nu}\right)\left(V_{\beta} \tilde{F}^{\beta \delta}\right)\right]
\end{gathered}
$$

- Work in coordinate system where $V^{\mu}=(1, \overrightarrow{0})$.
- Maxwell's equations:

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =4 \pi \rho \\
-\frac{\partial \mathbf{E}}{\partial t}+\nabla \times \mathbf{B}+\frac{\xi}{M} \frac{\partial}{\partial t}\left(-\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}\right) & =4 \pi \mathbf{J}
\end{aligned}
$$

- Particle in constant magnetic field ($\mathbf{v} \perp \mathbf{B}$)

$$
\begin{aligned}
\ddot{\mathbf{r}} & =\frac{q}{E}\left(1-\frac{3}{2} \frac{\eta}{M} E+\frac{9}{4} E^{2}\left(\frac{\eta}{M}\right)^{2}\right)(\mathbf{v} \times \mathbf{B}) \\
\omega_{0} & =\frac{|q| B}{E}\left(1-\frac{3}{2} \frac{\eta}{M} E+\frac{9}{4} E^{2}\left(\frac{\eta}{M}\right)^{2}\right), \quad R=\frac{\beta}{\omega_{0}} \\
1 & -\beta^{2}=\frac{\mu^{2}}{E^{2}}\left[1+2 \frac{\kappa E^{3}}{\mu^{2}}-\frac{15}{4} \frac{\kappa^{2} E^{4}}{\mu^{2}}+O\left(\kappa^{3}\right)\right]
\end{aligned}
$$

MP ELEOTRODYNAMICS

- Energy-momentum tensor

$$
\begin{aligned}
T_{0}^{0} & =\frac{1}{4 \pi}\left(\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right)-\frac{\xi}{M} \mathbf{E} \cdot \frac{\partial \mathbf{B}}{\partial t}\right), \\
\mathbf{S} & =\frac{1}{4 \pi}\left(\mathbf{E} \times \mathbf{B}-\frac{\xi}{M} \mathbf{E} \times \frac{\partial \mathbf{E}}{\partial t}\right) .
\end{aligned}
$$

- Work with usual potentials in the standard radiation gauge
- Equation for \vec{A}

$$
\left(-\omega^{2}+k^{2}-2 i \frac{\xi}{M} \omega^{2} \mathbf{k} \times\right) \mathbf{A}(\mathbf{k}, \omega)=4 \pi \mathbf{J}_{T}(\mathbf{k}, \omega) .
$$

- Can be diagonalized in the circular polarizacion basis (birrefringence)

$$
\left(-\omega^{2}+k^{2} \pm 2 \frac{\xi}{M} \omega^{2} k\right) \mathbf{A}^{ \pm}=4 \pi \mathbf{J}_{T}^{ \pm} .
$$

- Each mode propagates with velocity $(c=1)$

$$
v_{\lambda}=\frac{1}{n(\lambda z)}, \quad \lambda= \pm, \quad z=\frac{\xi}{M} \omega, \quad n(\lambda z)=\sqrt{1+z^{2}}+\lambda z
$$

- We call $\tilde{\xi}=\xi / M$ in the sequel

GREEN FUNOTIONS AND FIELDS

- The Green function is defined

$$
\left[\left(-\omega^{2}+k^{2}\right) \delta_{i k}-2 i \tilde{\xi} \omega^{2} \epsilon_{i j k} k_{j}\right] G_{k l}(\mathbf{k}, \omega)=\delta_{i l}
$$

where

$$
\begin{aligned}
G_{k l}(\mathbf{k}, \omega) & =\frac{1}{U}\left(\left(k^{2}-\omega^{2}\right) \delta_{k l}-\frac{4 \tilde{\xi}^{2} \omega^{4}}{\left(k^{2}-\omega^{2}\right)} k_{k} k_{l}-2 i \tilde{\xi} \omega^{2} \epsilon_{k l m} k_{m}\right) \\
U & =\left(\omega^{2}(1-2 k \tilde{\xi})-k^{2}\right)\left(\omega^{2}(1+2 k \tilde{\xi})-k^{2}\right)
\end{aligned}
$$

- The causal Green function is obtained by $\omega \rightarrow \omega+i \epsilon$
- The potential in the radiation approximation is

$$
\begin{gathered}
\mathbf{A}(\omega, \hat{\mathbf{n}})=\frac{1}{r} \frac{1}{\sqrt{1+z^{2}}} \sum_{\lambda= \pm} n(\lambda z) e^{i n(\lambda z) \omega r} \mathbf{J}^{\lambda}\left(\omega, \mathbf{k}_{\lambda}\right) \\
\mathbf{k}_{\lambda}=\omega n(\lambda z) \hat{\mathbf{n}} .
\end{gathered}
$$

- The corresponding electric and magnetic fields are

$$
\begin{gathered}
\mathbf{E}(\omega, \hat{\mathbf{n}})=\frac{1}{r} \frac{i \omega}{\sqrt{1+z^{2}}} \sum_{\lambda= \pm} n(\lambda z) e^{i n(\lambda z) \omega r} \mathbf{J}^{\lambda}\left(\omega, \mathbf{k}_{\lambda}\right) \\
\mathbf{B}(\omega, \hat{\mathbf{n}})=\sqrt{1+z^{2}}(\hat{\mathbf{n}} \times \mathbf{E}(\omega, \hat{\mathbf{n}}))-i z \mathbf{E}(\omega, \hat{\mathbf{n}})
\end{gathered}
$$

- Simplification of the Poynting vector

$$
\mathbf{S}=\frac{1}{4 \pi}\left(\mathbf{E} \times \mathbf{B}-\frac{\xi}{M} \mathbf{E} \times \frac{\partial \mathbf{E}}{\partial t}\right)
$$

with the relation

$$
\hat{\mathbf{n}} \times \mathbf{E}(\omega, \mathbf{r})=\frac{1}{\sqrt{1+z^{2}}}[\mathbf{B}(\omega, \mathbf{r})+i z \mathbf{E}(\omega, \mathbf{r})], \quad z=\frac{\xi}{M} \omega
$$

In Fourier space $\partial / \partial t=-i \omega$, and

$$
\begin{aligned}
\mathbf{S} & =\frac{1}{4 \pi}\left(\mathbf{E}(-\omega) \times \mathbf{B}(\omega)-\frac{\xi}{M} \mathbf{E}(-\omega) \times(-i \omega) \mathbf{E}(\omega)\right) \\
\mathbf{S} & =\frac{1}{4 \pi} \mathbf{E}(-\omega) \times[\mathbf{B}(\omega)+i z \mathbf{E}(\omega)] \\
\mathbf{S} & =\frac{1}{4 \pi} \sqrt{1+z^{2}} \mathbf{E}(-\omega) \times(\hat{\mathbf{n}} \times \mathbf{E}(\omega)) \\
\mathbf{S} & =\frac{1}{4 \pi} \sqrt{1+z^{2}}(\mathbf{E}(-\omega) \cdot \mathbf{E}(\omega)) \hat{\mathbf{n}}, \quad \mathbf{E}(-\omega)=(\mathbf{E}(\omega))^{*}
\end{aligned}
$$

- Recalling that

$$
\sqrt{1+z^{2}}=\frac{n(z)+n(-z)}{2}
$$

we can rewrite

$$
\mathbf{S}=\frac{1}{4 \pi}\left(\frac{n(z)+n(-z)}{2}\right)(\mathbf{E}(-\omega) \cdot \mathbf{E}(\omega)) \hat{\mathbf{n}},
$$

- In a standard medium we have

$$
\mathbf{S}=\frac{1}{4 \pi} n(\mathbf{E}(-\omega) \cdot \mathbf{E}(\omega)) \hat{\mathbf{n}}
$$

SYNOTROTRON RADIATION

- General power spectrum

$$
\begin{aligned}
& \frac{d^{2} P(T)}{d \omega d \Omega}=\frac{1}{4 \pi^{2}} \frac{\omega^{2}}{\sqrt{1+z^{2}}} \int_{-\infty}^{\infty} d \tau e^{-i \omega \tau} \sum_{\lambda= \pm} \\
& \times\left[n^{2}(\lambda z) J_{i}^{*}\left(T+\tau / 2, \mathbf{k}_{\lambda}\right) P_{i k}^{\lambda} J_{k}\left(T-\tau / 2, \mathbf{k}_{\lambda}\right)\right] \\
& P_{i k}^{\lambda}=\frac{1}{2}\left(\delta_{i k}-\hat{k}_{i} \hat{k}_{k}+\lambda i \epsilon_{i j k} \hat{k}_{j}\right)
\end{aligned}
$$

- Circular orbit
$J_{k}(t, \mathbf{k})=q \mathbf{v}(t) e^{-i \mathbf{k} \cdot \mathbf{r}(t)}, \quad \mathbf{v}(t)=\left(-\beta \sin \omega_{0} t, \beta \cos \omega_{0} t, 0\right)$
- Averaged angular distribution of the $m^{\text {th }}$ harmonic

$$
\begin{gathered}
\left\langle\frac{d^{2} P(T)}{d \omega d \Omega}\right\rangle_{T}=\sum_{\lambda= \pm} \sum_{m=0}^{\infty} \delta\left(\omega-m \omega_{0}\right) \frac{d P_{m, \lambda}}{d \Omega}, \\
\frac{d P_{m, \lambda}}{d \Omega}=\frac{\omega^{2} q^{2}}{4 \pi} \frac{1}{\sqrt{1+z_{m}^{2}}}\left[\lambda \beta n\left(\lambda z_{m}\right) J_{m}^{\prime}\left(W_{\lambda m}\right)+\cot \theta J_{m}\left(W_{\lambda m}\right)\right]^{2} \\
W_{\lambda m}=m n\left(\lambda z_{m}\right) \beta \sin \theta, \quad z_{m}=\tilde{\xi} m \omega_{0}
\end{gathered}
$$

- Integrated power in the $m^{\text {th }}$ harmonic

$$
\begin{aligned}
P_{m, \lambda}= & \frac{q^{2} m \omega_{0}^{2}}{2 \sqrt{1+z_{m}^{2}}} \beta n\left(\lambda z_{m}\right)\left[2 J_{2 m}^{\prime}\left(2 m \beta n\left(\lambda z_{m}\right)\right)\right. \\
& \left.-\left[\frac{1}{\left[\beta n\left(\lambda z_{m}\right)\right]^{2}}-1\right] \int_{0}^{2 m \beta n\left(\lambda z_{m}\right)} d x J_{2 m}(x)\right] .
\end{aligned}
$$

HIGH m EXPANSIONS

- We are in the regime $1-[\beta n]^{2}>0$
- Integrated power in the $m^{\text {th }}$ harmonic

$$
\begin{aligned}
P_{\lambda m}= & \frac{q^{2} m \omega_{0}}{\sqrt{3} \pi R} \frac{1}{1+n^{2}\left(\lambda z_{m}\right)}\left\{\int_{m / \tilde{m}_{c}}^{\infty} d x\left(\frac{3}{2 \tilde{m}_{c}}\right)^{2 / 3} K_{5 / 3}(x)\right. \\
& \left.-2\left(\frac{3}{2 \tilde{m}_{c}}\right)^{4 / 3} K_{2 / 3}\left(\frac{m}{\tilde{m}_{c}}\right)\right\} .
\end{aligned}
$$

- The cut-off frequency

$$
\tilde{m}_{c}=\frac{3}{2}\left(1-\left[\beta n\left(\lambda z_{m}\right)\right]^{2}\right)^{-3 / 2}
$$

because for $m>\tilde{m}_{c}$

$$
P_{\lambda m} \approx e^{-m / \tilde{m}_{c}}
$$

- Integrated total power in the $m^{\text {th }}$ harmonic to second order in $\tilde{\xi}$

$$
\begin{gathered}
P_{m}=\frac{q^{2} m \omega_{0}}{\sqrt{3} \pi R \gamma^{2}}\left\{\frac{m_{c}}{m} \kappa\left(\frac{m}{m_{c}}\right)-\frac{2}{\gamma^{2}} K_{2 / 3}\left(\frac{m}{m_{c}}\right)\right. \\
\left.+2 \tilde{\xi}^{2}\left(m \omega_{0} \beta\right)^{2}\left[\left(\frac{m}{\gamma}\right)^{2}-\frac{1}{2}\right] K_{2 / 3}\left(\frac{m}{m_{c}}\right)\right\}, \\
m_{c}=\frac{3}{2} \gamma^{3} .
\end{gathered}
$$

て三に日Eん

Fic．3．Graph of the bremsstahlung function；

$$
N(z)=z \int_{z}^{\infty} d x K_{0 / 3}(x) . \quad \Rightarrow \Rightarrow \frac{\operatorname{mn}}{n \sin }
$$

AVERAGED DEGREE OF CIRCUIAR POLARIZATION

- Let us assume that the relativistic electrons have an energy distribution of the type

$$
N(E) d E=C E^{-p} d E, \quad 2<p<3
$$

- Let us define the circular degree of polarization as

$$
\Pi{ }^{-}=\frac{\left\langle P_{+}(\omega)-P_{-}(\omega)\right\rangle}{\left\langle P_{+}(\omega)+P_{-}(\omega)\right\rangle}
$$

where $P_{ \pm}(\omega)$ is the total power distribution per unit frequency and polarization $\lambda= \pm 1$, so that

$$
P_{\lambda}(\omega)=\frac{P_{m \lambda}}{\omega_{0}}
$$

- The result is $(p \neq 1)$

$$
\begin{gathered}
\Pi_{\bigodot}=2 \tilde{\xi} \omega\left(\frac{m}{\gamma}\right)\left(\frac{p+1}{p-1}\right) \frac{\Pi(p)}{1-\frac{3}{2}\left(\frac{\gamma \omega_{0}}{\omega}\right)(p+1) \Pi(p)} \\
\Pi(p)=\frac{\Gamma\left(\frac{1}{4} p+\frac{13}{12}\right) \Gamma\left(\frac{1}{4} p+\frac{5}{12}\right)}{\Gamma\left(\frac{1}{4} p+\frac{19}{12}\right) \Gamma\left(\frac{1}{4} p-\frac{1}{12}\right)}
\end{gathered}
$$

- This is the analogous expression for the average of the degree of linear polarization

$$
\Pi_{L I N}=\frac{p+1}{p+7 / 3}
$$

LOOKING AT THE DOMINANT AMPLIFYING

FAOTOR

- We start from

$$
\begin{aligned}
P_{\lambda}(\omega)= & \frac{q^{2} \omega}{2 \beta(E)} \frac{2}{1+n^{2}} \frac{1}{\sqrt{3} \pi}\left[\left(\frac{3}{2} \frac{1}{\tilde{m}_{c}}\right)^{2 / 3} \frac{\tilde{m}_{c}}{m} \kappa\left(m / \tilde{m}_{c}\right)\right. \\
& \left.-2\left(\frac{3}{2 \tilde{m}_{c}}\right)^{4 / 3} K_{2 / 3}\left(\frac{m}{\tilde{m}_{c}}\right)\right]
\end{aligned}
$$

- Most of the radiation comes from $m \approx \tilde{m}_{c} \ggg 1$ where $K_{2 / 3}(1)=0.49, \kappa(1) \simeq 0.65$. The dominant term is

$$
\begin{gathered}
P_{\lambda}(\omega)=D\left[\left(\frac{1}{\tilde{m}_{c}}\right)^{2 / 3} \frac{\tilde{m}_{c}}{m} \kappa\left(m / \tilde{m}_{c}\right)\right] \\
\tilde{m}_{c}=\frac{3}{2}\left(1-n(z)^{2} \beta^{2}\right)^{-3 / 2}, \quad z=\lambda \tilde{\xi} \omega \quad m=\frac{\omega}{\omega_{0}}, \quad \omega_{0}=\frac{q B}{E}
\end{gathered}
$$

- We are interested in

$$
P_{\lambda}(\omega)=\left[P_{\lambda}(\omega)\right]_{z=0}+\lambda \tilde{\xi} \omega\left(\frac{d P_{\lambda}(\omega)}{d z}\right)_{z=0}+\ldots \ldots
$$

to calculate

$$
\Pi \text { } \bigodot=\tilde{\xi} \omega \frac{\left\langle\left(\frac{d P_{\lambda}(\omega)}{d z}\right)_{z=0, \kappa=0}\right\rangle}{\left\langle\left[P_{\lambda}(\omega)\right]_{z=0 . \kappa=0}\right\rangle}+O\left(\xi^{2}, \xi \kappa, \ldots \ldots\right)
$$

- It is convenient to change the derivative to

$$
\frac{d}{d z}=\frac{2 n^{2}}{1+n^{2}} \frac{\beta}{n} \frac{d}{d \beta}=
$$

because now we can directly take $n=1$
to obtain

$$
\begin{gathered}
\left(\frac{d P_{\lambda}(\omega)}{d z}\right)_{n=1, \kappa=0}=D \frac{d}{d \beta}\left[\left(\frac{1}{m_{c}}\right)^{2 / 3} \frac{m_{c}}{m} \kappa\left(m / m_{c}\right)\right] \\
m_{c}=\frac{3}{2}\left(1-\beta^{2}\right)^{-3 / 2}=\frac{3}{2} \gamma^{3}, \quad E=\mu \gamma
\end{gathered}
$$

- Now we go to the variable x

$$
\begin{gathered}
x=\frac{m}{m_{c}}=\left(\frac{2}{3} \frac{\omega \mu}{q B}\right) \frac{\mu^{2}}{E^{2}}, \quad \frac{E}{\mu}=\gamma=A x^{-1 / 2}, A^{2}=\frac{2}{3} \frac{\mu \omega}{q B}=\frac{2}{3} \frac{m}{\gamma} \\
m_{c}=\frac{3}{2} A^{3} x^{-3 / 2}, \quad \frac{d}{d \beta}=\beta \gamma^{3} \frac{d}{d \gamma}=-2 A^{2} \frac{d}{d x} .
\end{gathered}
$$

- Then

$$
\begin{gathered}
\left(\frac{d P_{\lambda}(\omega)}{d z}\right)_{n=1, \kappa=0}=-\left(\frac{3}{2} A^{3}\right)^{-2 / 3} D 2 A^{2} \frac{d \kappa(x)}{d x} \\
{\left[P_{\lambda}(\omega)\right]_{n=1, \kappa=0}=\left(\frac{3}{2} A^{3}\right)^{-2 / 3} D \kappa(x)}
\end{gathered}
$$

- Finally we get

$$
\begin{aligned}
& { }^{\Pi} \odot=-\frac{4}{3} \widetilde{\boldsymbol{\xi}} \omega\left(\frac{m}{\gamma}\right) F(p), \\
& F(p)=\frac{\int_{0}^{\infty} x^{(p-3) / 2} \frac{d \kappa(x)}{d x} d x}{\int_{0}^{\infty} x^{(p-3) / 2} \kappa(x) d x}
\end{aligned}
$$

where the energy average is translated into

$$
\langle G(x)\rangle=\frac{C}{2}(\mu A)^{-p+1} \int_{0}^{\infty} x^{(p-3) / 2} G(x) d x
$$

THE FAR-EIELD APPROXIMATION

- The phase in the Green function is
$n(\lambda z) \omega\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \simeq \omega r\left(1-\frac{\mathbf{n} \cdot \mathbf{r}^{\prime}}{r}+\lambda \tilde{\xi} \omega-\lambda \tilde{\xi} \omega \frac{\mathbf{n} \cdot \mathbf{r}^{\prime}}{r}+\frac{1}{2} \frac{r^{\prime 2}}{r^{2}}\right)$
- If

$$
|\tilde{\xi} \omega| \frac{r^{\prime}}{r}>\left(\frac{r^{\prime}}{r}\right)^{2}
$$

we can neglect only the term quadratic in r^{\prime} and both ξ-dependent terms remains in the phase:

$$
n(\lambda z) \omega\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \simeq n(\lambda z) \omega\left(r-\hat{\mathbf{n}} \cdot \mathbf{r}^{\prime}\right)
$$

- Other possibility is that

$$
\left(\frac{r^{\prime}}{r}\right)^{2}<|\xi \omega|<\frac{r^{\prime}}{r}
$$

which leads to

$$
n(\lambda z) \omega\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \simeq n(\lambda z) \omega r-\hat{\mathbf{n}} \cdot \mathbf{r}^{\prime}
$$

- Finally, if

$$
|\tilde{\xi} \omega|<\left(\frac{r^{\prime}}{r}\right)^{2}
$$

all the dependence on ξ is negligible in the phase, which reduces to

$$
n(\lambda z) \omega\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \simeq \omega r-\hat{\mathbf{n}} \cdot \mathbf{r}^{\prime}
$$

DATA OE SOME RELAVANT OBJECIS

OBJECT	$r(l . y)$	γ	$B($ Gauss $)$	$\omega_{o b s}(\mathrm{GeV})$	$\omega_{0}(\mathrm{GeV})$	m	$\mathrm{m} / \mathrm{\gamma}$
CRAB	10^{4}	10^{9}	10^{-3}	10^{-1}	10^{-30}	10^{29}	10^{20}
$\left(\right.$ MARKARIAN $_{e}$	10^{8}	10^{11}	10^{2}	10^{4}	10^{-26}	10^{30}	10^{19}

$$
\begin{array}{ccccc}
\text { OBJECT } & \frac{r^{\prime}}{r} & \xi \omega & \xi \omega \frac{r^{\prime}}{r} & \left(\frac{r^{\prime}}{r}\right)^{2} \\
\text { CRAB } & 10^{-6} & \S 10^{-20} & \S 10^{-26} & 10^{-12} \\
(M A R K A R I A N)_{e} & 10^{-14} & \S 10^{-15} & \S 10^{-29} & 10^{-28}
\end{array}
$$

SUMmARy ano outrook

- exact and complete DESCRIPでION DF $S R$ iN MI MOOEL

$$
\begin{gathered}
(S \text { chevinstan }=1.1926) \\
\delta \theta \sim m^{-1 / 3} \sim m_{c}^{-1 / 3} \sim\left(1-[\beta(\xi) m(z)]^{2}\right)^{1 / 2}
\end{gathered}
$$

- in full far-fíeco APproxtMATION WE FIND AMPLIFyING F4ctons

$$
(\tilde{\xi} \omega)\left(\frac{m}{r}\right) \sim\left(\tilde{\xi} \omega\left(\frac{m \omega}{r^{2}}\right) \sim(\tilde{\xi} \omega) \gamma^{r^{2}}\right.
$$

(simican nosocts in wan-com. Sk: castomina, Iomio, zappact : paod Eq, (raver) coecos

- CRAB vEBUCAE
$m(z)=1$ in phase $\quad=$ nadiatron Fiesal
COMA CTIIDNS A PPEAR ONCY viA $\beta($ C

$$
\sin \sim \gamma^{-1}(\ldots) ; \omega_{c}=\frac{e B}{E} \gamma^{3}(B)
$$

- REPEAT AONALY8\%S Fon -THEN AsTho PHYsican SOUNCES:
(*) Av土nam chnevean pob.
(*) comatcitons to mivuqte LnNAGAR POl.

- Gambini-puecia e.d. is NON-COCA in AM - Cosnclond with Mp To finsy onsen ial
- sR is 三cuis =?. Ac. E. UnoEn in UE NTIGATVON.

