THE CPT THEOREM AND LORENTZ COVARIANCE

O.W. Greenberg
U. Maryland, USA

The CPT Theorem and Lorentz Covariance

Conference on Fundamental Symmetries and Fundamental Constants

ICTP, September 2004
O.W. Greenberg

What should you get from this talk?

- A new formulation in which locality follows from Lorentz covariance
- The general theorems about CPT and spinstatistics follow from Lorentz covariance and spectrum
- Why CPT is fundamental and how to calculate it directly on an arbitrary field

Outline

1. Choice of Lorentz covariance condition
(a) On fields or vevs of products (Wightman)
(b) On T-products
2. (b) CPT and spin-statistics theorems follow;

CPT violation implies Lorentz violation
3. Why CPT is fundamental,
but C, P, T, CP, PT, etc. are not
CPT is the only, newmetry that follows from
Loment covariance of T products.

Wightman axioms

O. Relativistic transformation of states
I. Domain and continuity of the fields
II. Transformation law of the fields
III. Local commutativity (microscopic causality)

Transformation law of the fields

$$
\begin{gathered}
U(a, A) \phi^{(p)}(x) U^{\dagger}(a, A)=S^{(p)}(A)^{-1} \phi^{(p)}(\Lambda x+a) \\
U(a, A)|0\rangle=|0\rangle \\
=\left[\prod_{1}^{n} S^{\left(p_{i}\right)}(A)^{-1}\right]\langle 0| \phi^{\left(p_{1}\right)}\left(\Lambda x_{1}+a\right) \cdots \phi^{\left(p_{n}\right)}\left(\Lambda x_{n}+a\right)|0\rangle \\
=\left[\prod_{1}^{n} S^{\left(p_{i}\right)}(A)^{-1}\right]\langle 0| T\left(\phi^{\left(p_{1}\right)}\left(\Lambda x_{1}+a\right) \cdots \phi^{\left(p_{n}\right)}\left(\Lambda x_{n}+a\right)\right)|0\rangle
\end{gathered}
$$

Proof that covariance of Tproducts implies locality of fields

$$
\begin{gathered}
N_{L}+N_{R}+2 \text { points } \\
\tau\left(x_{-N_{L}}, \cdots, x_{-1}, x_{-0}, x_{0}, x_{1}, \cdots, x_{N_{R}}\right)= \\
\langle 0| T\left(\phi\left(x_{-N_{L}}\right) \cdots \phi\left(x_{-1}\right) \phi\left(x_{-0}\right) \phi\left(x_{0}\right) \phi\left(x_{1}\right) \cdots \phi\left(x_{N_{R}}\right)\right)|0\rangle \\
\xi_{-N_{L}}=x_{-N_{L}}-x_{-N_{L}+1}, \cdots, \xi_{-1}=x_{-1}-x_{-0} \\
\xi=x_{-0}-x_{0}, \xi_{1}=x_{0}-x_{1}, \cdots, \xi_{N_{R}}=x_{N_{R}-1}-x_{N_{R}} \\
\sum_{l=-1}^{-N_{L}} \lambda_{l} \xi_{l}+\lambda \xi+\sum_{r=1}^{N_{R}} \lambda_{r} \xi_{r} \sim 0, \forall \lambda_{l} \geq 0, \forall \lambda_{r} \geq 0, \lambda \geq 0 \\
\text { and } \quad \sum_{l=1}^{N_{L}-1} \lambda_{l}+\lambda+\sum_{r=1}^{N_{R}-1} \lambda_{r}>0
\end{gathered}
$$

Proof that covariance of Tproducts implies locality of fields

(continued)

We can choose the points so that a small boost will reverse the time order of x_{-0} and x_{0}

$$
\begin{gathered}
\mathcal{W}\left(x_{-N_{L}}, \cdots, x_{-1}, x_{-0}, x_{0}, x_{1}, \cdots, x_{N_{R}}\right) \\
=\langle 0| \phi\left(x_{-N_{L}}\right) \cdots \phi\left(x_{-1}\right) \phi\left(x_{-0}\right) \phi\left(x_{0}\right) \phi\left(x_{1}\right) \cdots \phi\left(x_{N_{R}}\right)|0\rangle \\
\zeta_{-N_{L}}=\xi_{-N_{L}}+i \eta_{-N_{L}}, \cdots, \zeta_{-1}=\xi_{-1}+i \eta_{-1} ; \\
\zeta_{1}=\xi_{1}+i \eta_{1}, \cdots, \zeta_{N_{R}}=\xi_{N_{R}}+i \eta_{N_{R}} . \\
\langle 0| \phi\left(x_{-N_{L}}\right) \cdots \phi\left(x_{-1}\right)\left[\phi\left(x_{-0}\right), \phi\left(x_{0}\right)\right]_{\mp} \phi\left(x_{1}\right) n \cdots \phi\left(x_{N_{R}}\right)|0\rangle=0
\end{gathered}
$$

> Can take boundary values to get $\langle 0| T\left(\phi\left(x_{-N_{L}}\right) \cdots \phi\left(x_{-1}\right) \phi\left(x_{-0}\right) \phi\left(x_{0}\right) \phi\left(x_{1}\right) \cdots \phi\left(x_{N_{R}}\right)\right)|0\rangle=$ $\langle 0| T\left(\phi\left(x_{-N_{L}}\right) \cdots \phi\left(x_{-1}\right) \phi\left(x_{0}\right) \phi\left(x_{-0}\right) \phi\left(x_{1}\right) \cdots \phi\left(x_{N_{R}}\right)\right)|0\rangle ;$

Choose the $N_{L}+N_{R}+2$ points as follows,

$$
\begin{aligned}
x_{-l} & =(-l a, 0,-3 l a, 0), 1 \leq l \leq N_{L} \\
x_{r} & =(r a, 0,3 r a, 0), 1 \leq r \leq N_{R} \\
x_{-0} & =(0,0,0,-a), x_{0}=(0,0,0, a)
\end{aligned}
$$

Lorentz covariance of T-products implies the CPT theorem

With the Wightman axioms, weak local commutativity of fields was a necessary additional assumption needed for the CPT theorem. With Lorentz covariance of Tproducts, weak local commutativity follows without further assumptions.

Corollary: Covariant-looking nonlocal actions need not

 give covariant theories$$
A_{I}=\int d^{4} x d^{4} y d^{4} z f(x-y, y-z) \phi_{1}(x) \phi_{2}(y) \phi_{3}(z)
$$

The fields must be local in order for the T-products to be covariant.

Physical conditions for CPT

- Lorentz covariance
- Spectrum

Technical tools for CPT

- Vacuum matrix elements for fields
- Extension of covariance of vacuum matrix elements under the real Lorentz group to covariance under the complex Lorentz group.
- Analytic continuation of vacuum matrix elements of fields

Four disconnected components of the real Lorentz group

$$
\begin{aligned}
& \Lambda_{+}^{\uparrow}, \operatorname{det} \Lambda=1, \Lambda_{0}^{0} \geq 1 ; \Lambda=(1,1,1,1) \\
& \Lambda_{+}^{\downarrow}, \operatorname{det} \Lambda=1, \Lambda_{0}^{0} \leq-1 ; \Lambda=(-1,-1,-1,-1) \\
& \Lambda_{-}^{\uparrow}, \operatorname{det} \Lambda=-1, \Lambda_{0}^{0} \geq 1 ; \Lambda=(1,-1,-1,-1) \\
& \Lambda_{-}^{\downarrow}, \operatorname{det} \Lambda=-1, \Lambda_{0}^{0} \leq-1 ; \Lambda=(-1,1,1,1)
\end{aligned}
$$

The complex Lorentz group

$\mathrm{L}(\mathrm{C})$ the group of complex 4 x 4 matrices that preserve the metric

$$
g=\Lambda^{T} g \Lambda
$$

Complex Lorentz group, 2

Still have $\operatorname{det} \wedge=1$
however now the sign of \wedge° 。can be changed continuously, so $L_{+}^{\downarrow} \quad$ is connected to the identity.

Covering groups

$\operatorname{SL}(2, \mathrm{C})$ is the covering group of $\mathrm{SO}(1,3)$
$\operatorname{SL}(2, C) \times \operatorname{SL}(2, C)$ is the covering group of $L_{t}(C)$.

Representations of SL(2,C)

- Fundamental representations

$$
u_{\alpha}^{\prime}=A_{\alpha \beta} u_{\beta} ; \quad \dot{v}_{2}^{\prime}=A_{2 \dot{\beta}}^{*} \dot{v}_{\dot{\beta}}, \quad A \in S L(2, c)
$$

- General representation

- Irreducible if S is symmetric in α^{\prime} sand in $\dot{\beta}^{\prime} s$.

$$
\epsilon_{\alpha \beta} \text { and } \epsilon_{\dot{\alpha} \dot{\beta}} \quad \text { are invariant. }
$$

Alternative description

Each index corresponds to spin $1 / 2$, so these spinors have spin $\mathrm{k} / 2$ and $1 / 2$ under $\mathrm{SU}(2) \times \mathrm{SU}(2)$ formed from $\mathrm{J}+\mathrm{iK}$, where J are the rotation generators and K are the boost generators.

A in $\operatorname{SL}(2, C)$ induces \wedge in L_{+}^{\uparrow}

$\mathrm{X}_{\alpha}^{\dot{\beta}}=\mathrm{X}^{\mu}\left(\sigma_{\mu}\right),_{\alpha}^{\dot{\beta}} \quad \sigma_{0}=\mathbb{1}, \sigma_{1,2,3} \quad=$ Pauli matrices
X is $2 x 2$ hermitian matrix, $\operatorname{det} X=X_{\mu}^{\prime \prime} x_{\mu}=X^{2}$
$X=A X A \Leftrightarrow X^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$
A and $-\mathrm{A} \Leftrightarrow$ same \wedge
SL(2,C) covers L_{+}^{\uparrow} twice

Going continuously from the identity to $\mathrm{x} \rightarrow-\mathrm{x}$.
 $$
\mathrm{X}=\mathrm{AXB} .
$$

Choose $\mathrm{A}=1, \mathrm{~B}=-1$ or $\mathrm{A}=-1, \mathrm{~B}=1$ to get $\mathrm{x} \rightarrow-\mathrm{x}$.
For the first case, take $A=1$,

$$
\mathbf{B}=\left(\begin{array}{cc}
e^{i \frac{i n}{2}} & 0 \\
0 & e^{-i \frac{i}{2}}
\end{array}\right) \quad \phi=2 \pi \Rightarrow B=-1
$$

For l dottee indices, get $(-1)^{l}$.

Explicit complex Lorentz transformations to get $\mathrm{x} \rightarrow-\mathrm{x}$.

$$
\left(\begin{array}{l}
x^{\prime 0} \\
x^{3} \\
x^{\prime 1} \\
x^{\prime 2}
\end{array}\right)=\left(\begin{array}{cccc}
\cos \frac{\phi}{2} & i \sin \frac{\phi}{2} & 0 & 0 \\
i \sin \frac{\phi}{2} & \cos \frac{\phi}{2} & 0 & 0 \\
0 & 0 & \cos \frac{\phi}{2} & -\sin \frac{\phi}{2} \\
0 & 0 & \sin \frac{\phi}{2} & \cos \frac{\phi}{2}
\end{array}\right)\left(\begin{array}{l}
x^{0} \\
x^{3} \\
x^{1} \\
x^{2}
\end{array}\right)
$$

Condition on vacuum matrix elements

$$
\begin{aligned}
W^{\left(n j p_{1} \cdots p_{n}\right)}\left(x_{1}, \cdots, x_{n}\right) & \equiv\langle 0| \phi^{(p)\left(x_{1}\right) \cdots \phi^{\left(p_{n}\right)}\left(x_{n}\right)|0\rangle} \\
& =\left[\prod_{1}^{n} s^{\left(p_{i}\right)}(A)^{-1}\right] W^{\left(n ; p_{1} \cdots p_{n}\right)}\left(\Lambda x_{1}+a, \cdots \Lambda x_{n}+a\right)
\end{aligned}
$$

Difference vectors $\sum_{j}=x_{j}-x_{j+1}$
$W^{\left(n_{1} b_{1} \ldots p_{n}\right)}$

$$
\begin{aligned}
& \left(x_{1}-x_{2}, \cdots, x_{n-1}-x_{n}\right) \equiv\langle 0| \phi^{\left(b_{1}\right)}\left(x_{1}\right) \cdots \phi^{\left(p_{n}\right)}\left(x_{n}\right)|0\rangle \\
= & {\left[\prod_{1}^{n} S^{\left(y_{i}\right)}(A)^{-1}\right] W^{\left(n_{j} p_{1} \cdots p_{n+1}\right)}\left(\xi_{1}, \cdots, \xi_{n-1}\right) }
\end{aligned}
$$

Support in momentum space
scalar case

$$
W^{(n)}\left(x_{1}-x_{2}, \cdots, x_{n-1}-x_{n}\right)=\int d^{4} q_{1}, \ldots d^{4} q_{n-1} \exp \left(-i \sum_{1}^{n-1} q_{i}-\left(x_{i}-x_{i+1}\right) \tilde{W}_{\left(q_{1}, \cdots, q_{n-1}\right)}^{(n)}\right.
$$

q_{i} are physical momenta

$$
q_{i} \in \bar{V}_{+}
$$

Analytic functions in a tube
From Fourier transforms to Laplace transforms

$$
\begin{aligned}
e^{-i q_{j} \xi_{j}} & \rightarrow e^{-i q_{j}\left(\xi_{j}+i \eta_{j}\right)}, \text { decreasing if } \eta_{j} \in V_{-} \\
\rho_{j} & =\xi_{j}+i \eta_{j}
\end{aligned}
$$

Get an analytic function of $4(n-1)$ complex vanialios,

$$
W^{(n)}\left(y_{1}, \ldots, \varphi_{n-1}\right)
$$

Analytic in tube ${V_{n-1}}_{n,}$ Em $y_{j} \in V_{-}$.

The BHW theorem
V. Bargmann, D.W. Hall, A.S. Wightman

If $W^{(n ; p)}\left(1 \Omega_{1}, \cdots \wedge \Xi_{n-1}\right)=\left[\prod_{1}^{n} S^{\left(p_{i}\right)}(-1)\right] W^{\left(n_{i} \beta_{1}\right.}\left(\rho_{1}, \ldots, \zeta_{n-1}\right)$
for $A \in S L(2, C)$, then $W^{(n ; P)}$ can be analytically continued to T_{n-1}^{-1}, the "extended tube."

$$
T_{n-1}^{\prime}=U\left\{\wedge T_{n-1}\right\}, \Lambda \in L_{+}(c) .
$$

Two crucial results from the BHW theorem

- T_{n-1}^{\prime} has real points of analyticity.
- 9_{n-1}^{\prime} is invariant under $\mathrm{L}(\mathrm{C})$
which includes -1 , i.e., spacetime inversion.

$$
\begin{aligned}
& W^{(n ; p)}\left(\Upsilon_{1}, \ldots \rho_{n-1}\right)=(-1)^{L} W^{(n ; p)}\left(-\rho_{1}, \ldots-\rho_{n-1}\right), L=\sum l_{1} \\
& \text { in } \Psi_{n-1}^{\prime} . \\
& S^{(k, l)}(1,-1)=(-1)^{1} \mathbb{1}
\end{aligned}
$$

- This $S^{(k, k)}$ is unitary, not antiunitary.

Real points in the extended tube
Dost's result: real points ρ_{j} in T_{n-1}^{\prime} :

$$
\begin{aligned}
& \sum_{1}^{n-1} d_{i} p_{i} \sim 0, d_{2} \geq 0, \quad \sum_{1}^{n-1} d_{i}>0 . \\
& \left(S_{0} \text { all } \rho_{i} \sim 0_{0}\right)
\end{aligned}
$$

Just's result for $W^{(2)}$
scalar care

$$
W^{(2)}(\Lambda \Omega)=W^{(2)}(\aleph)
$$

Find y^{2} that come from $\wedge \mathcal{Y}, \mathcal{J}=\dot{z}+i \underline{y}$ $\eta \in U_{-} \quad \jmath^{2}=z^{2}-\eta^{2}+2 i \xi \cdot \eta$. Real points have $\vec{\xi} \cdot \eta=0$ $\eta \in V_{-}$. So $\xi \sim 0$, which ague with Jos\%

Spacetime inversion at Joist points

$$
\begin{aligned}
& \left.<0\left|\phi^{\left(k_{1}, l_{1}\right)}\left(x_{1}\right) \cdots \phi^{\left(k_{n}, l_{n}\right)}\left(x_{n}\right)\right| 0\right\rangle \\
& \left.\quad=(-1)^{L}<01 \phi^{\left(x_{1}, l_{1}\right)}\left(-x_{1}\right) \cdots \phi^{\left(x_{n}, l_{n}\right)}\left(-x_{n}\right) 10\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& x_{j}-x_{j+1}=j_{j}, \quad j_{j}=F_{j}+1 \eta_{j} \\
& -x_{j}-\left(-x_{j+1}\right) \cdots-y_{j},-j_{j}=-y_{j}-y_{j}
\end{aligned}
$$

Incompatibility of analytic continuations

If $\operatorname{IM} f_{j} \in V_{-}$, then $I m-V_{j} \in V_{+}$.

Invert the order of the fields

Consider $\left\langle 01 \phi^{\left(p_{n}\right)}\left(-x_{n}\right) \cdots \phi^{(n+1)\left(-x_{1}\right)|0\rangle}\right.$

$$
\approx W^{(n ; i P)}\left(\varphi_{n-1}, \cdots, c_{1}\right) \text {. }
$$

This $W^{\left(m_{1}+A\right)}$ is also analytic in T_{h-1}^{\prime}.

Now we can analytically continue the relation.

Count the transpositions of the Fermi fields

- To invert the order of F Fermi fields, need $\mathrm{I}=(\mathrm{F}-1)+(\mathrm{F}-2)+\cdots+1=1 / 2 \mathrm{~F}(\mathrm{~F}-1)$
transpositions.
Get phase $\left.(-1)^{\frac{F(F-1)}{2}}=(--1)^{(F-1)}\right)^{\frac{F}{2}}=(-1)^{\frac{F}{2}}=i$,
since F must be even.

The relations valid at all spacetime points

$$
\begin{aligned}
& \left.\langle 0| \phi^{\left(k_{1},\left(x_{1}\right)\right.}\right) \ldots \phi^{\left(k_{n}, l_{n}\right)}\left(x_{n}\right)|0\rangle= \\
& i^{F}(-1)^{L}\left\langle 01 \phi^{\left(k_{n},\left(n_{1}\right)\right.}\left(-x_{n}\right) \ldots \phi^{\left(k_{1}, l l_{1}\right.}\left(-x_{1}\right) \mid 0\right\rangle
\end{aligned}
$$

Restoring the order of the fields
Hermit ticity $(\Psi, \equiv)=(\Xi, \Psi)^{*}$

$$
\begin{aligned}
& \langle 0| \phi^{\left(x_{n}, l_{1}\right)}\left(x_{1}\right) \cdots \phi^{\left(k_{n}, l_{n}\right)}\left(x_{n}\right)|0\rangle=
\end{aligned}
$$

CPT for an arbitrary field
(H) $\phi^{\left(h_{1} l\right)}(x) H^{+}=\left(-y^{1} i_{i} \phi^{(n-1) t}(-x)\right.$.

CPT for simple cases

Dincee field: (θ) $\phi^{(1,0)}(x)(\Theta)^{t}=i \phi^{(1,0)^{+}}(-x)$
(4) $\left.\phi^{(0,1)}(x) H\right)^{t}=-\phi^{(0,1) t}(-x)$

$$
\psi_{\text {Druac }}=\phi^{(1,0)}+\phi^{(0,1)}
$$

Salar, isecedoscalar freldt ϕ lior
antisymmetric $T^{\mu \nu}=\phi^{(2,0)}+\phi^{(0,2)}$
traceless symmetric teman $S^{\mu v}=\phi^{(2,2)}$
all qet pheese 1.

Properties of (CPT) ${ }^{2}$

$$
\begin{aligned}
& \text { (H) } \left.\phi^{\left(k_{1}, l\right)}(x) \Theta\right)^{+}=(-1)^{l} \text { if } \phi^{(k, l))^{+}}(\ldots x) \\
& \left.\Leftrightarrow \phi^{\left(k, l^{+}\right.}(x)(x)\right)^{+}=(-1)^{l}(-1)^{+} \phi^{(k,-1)}(x-1) \\
& \left.(-1)^{2} \phi^{(k,-1)}(x) \Theta\right)^{+2}=\Theta(-1)^{+} \text {if } \phi^{(h, e)}(-x)(6)^{+}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{f} \phi^{(n,-1)}(x) \\
& \text { So }\left[(-)^{2}, B\right]_{-}=0 \\
& {\left[\Leftrightarrow \omega^{2}, F\right]_{+}=0 \text {. }}
\end{aligned}
$$

CPT transform of the S-matrix

$$
\begin{gathered}
S_{\alpha, \beta} \equiv\langle\alpha \mid \beta\rangle_{\text {out }}={ }_{\text {out }}\langle\hat{\beta} \mid \hat{d}\rangle_{\text {in }}=S_{\hat{\beta}, \hat{\alpha}} \\
|\hat{\alpha}\rangle=(H)_{|\alpha\rangle, \quad|\hat{\beta}\rangle=(\mu)|\beta\rangle}
\end{gathered}
$$

$|\hat{\alpha}\rangle$ has particle F antiparticle,
$\sigma \quad \rightarrow-\sigma$
helicity \rightarrow-helicity
$p \mu \rightarrow p^{\mu}$
(n) $S(H)^{+}=S^{-1}$, on
$(H) S=S^{-1}(H)$

Summary, slide 1

- Formulating Lorentz covariance on Tproducts instead of unordered products leads to local commutativity.
- With this formulation, the CPT and spinstatistics theorems follow from covariance and spectrum.

Summary, slide 2

In the complex Lorentz group,
is connected to the identity.
The BHW theorem allows analytic continuation to the complex Lorentz group.
The larger domain of analyticity includes real points of analyticity, Jost points.

Summary, slide 3

The analytic continuations of the original matrix element and the spacetime inverted matrix element have different domains of analyticity, so we can't take limits to equate the boundary values.
We can equate the boundary values if we invert the order of the fields. We need the spin-statistics connection to do this.

Summary, slide 4

Hermiticity of the matrix elements allows us to restore the original order of the fields and requires complex conjugation of the matrix elements, which makes CPT antiunitary, as we expect.
The final result is

Relation of CPT and Lorentz Covariance

- For Lorentz covariance, need n ! relations
- For CPT, need only one relation. $P=$ inversion
$\langle 0| \phi\left(x_{p 1}\right) \cdots \phi\left(x_{p_{n}}\right)|0\rangle=\langle 0| \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)|0\rangle$ at Jost points.
- Lorentz covariance implies CPT, but not conversely.

Lor. 100.

