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1 Introduction

The theory of ghost condensation [1] is the universal low-energy effective theory coming from spontaneous
time diffeomorphism breaking. While the theory can be derived by considering the stabilization of a scalar
field with wrong-sign kinetic terms, the low energy effective Lagrangian is appropriate for any theory
that is rotationally invariant but exhibits spontaneous Lorentz symmetry breaking. In particular, ghost
condensation describes the Higgs phase of gravity, whether or not a ghost field actually triggered the
spontaneous symmetry breaking. This is the exact analog of the Higgs mechanism in gauge theories;
the language of tachyon condensation is a convenient way to conceptualize spontaneous gauge symmetry
breaking, but the actual universal low-energy description involves the Goldstone bosons associated with
the broken symmetry directions.

Most work on ghost condensation has focused on gravitational phenomena. The Goldstone boson
associated with broken time diffeomorphisms — hereafter dubbed the ghostone boson — mixes with gravity
in an interesting way, leading to modifications of Newton’s law at large distances and late times. However,
the modifications to the gravitational potential are strongly suppressed when the sources are moving with
some velocity with respect the preferred rest frame of the ghostone [3, 4]. Recent, it has been realized
that even for moderately sized gravitational sources such as the earth, the classical equation of motion for
the ghostone boson is quickly dominated by non-linear terms, so a complete understanding of the infrared
modifications to gravity will have to account for these non-linear effects [ref?]. Also, the ghostone boson
has been incorporated into a candidate theory for inflation that exhibits different experimental signatures
from the standard slow-roll scenario [2].

But the ghostone boson is not just interesting for its cosmological consequences. Because ghost
condensation can describe Lorentz-violations in a completely consistent framework, it is ideally suited to
understand possible Lorentz- and CPT-violations in the Standard Model. Most of the previous work in this
area has focused on cataloging all Lorentz-violating spurious coupling constants [ref?], leaving the origin
of these spurions as an open question. Experiments in a wide variety of physical systems have placed
considerable bounds on these couplings [ref?]. Now using the language of ghost condensation, we will see
that every spurion actually comes paired with a coupling to the ghostone boson. This will lead to novel
Lorentz-violating dynamics, opening up new avenues to explore possible violations of the fundamental
symmetries of the Standard Model.

In this paper, we will focus on the coupling between the ghostone boson and fermion axial currents
(known as spin densities in the non-relativistic limit). Though these couplings can be forbidden by a discrete
symmetry, they are the leading couplings to the Standard Model and therefore the most dangerous (and
interesting) phenomenologically. The analysis in this paper will naturally carry over to similar couplings
that are guaranteed to show up at least at the level of graviton loops.

We will explore two dynamical effects that both capitalize on the fact the ghostone boson has an
unusual Lorentz-violating ω ∼ k2/M dispersion relation. The first effect is the analog of Cherenkov
radiation, where spin sources radiate away kinetic energy until they are at rest relative to the ghostone rest
frame. The second effect is a long-range 1/r spin-dependent potential that exhibits an interesting velocity
dependence. It is worth emphasizing that these novel dynamical effects are indeed phenomenological viable,
and while constraints on Lorentz-violating spurions place bounds on the couplings to the ghostone boson,
there are still regions of parameter space that are not excluded and which may be accessible in future
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experiments.

Also, it is amusing to note that the theory of ghost condensation is really the effective field theory of
the ether, in the sense that it is a consistent way to identify a preferred cosmological rest frame. Unlike
the luminous ether, which was a inelegant solution to a nonexistent problem, the ghostone boson has the
physical interpretation of characterizing the extent of local Lorentz violations at low energies. Though we
will resist the temptation to call the ghostone boson an “etheron”, we will use the terms “ether rest frame”
and “ether wind” as mnemonics.

We start with a review of the Goldstone boson language of spontaneous time diffeomorphism breaking
and show how to generate all allowed couplings to the ghostone boson. We briefly comment on possible
modifications to this story coming from non-linear effects on the gravitational side of the theory as well
as bounds from astrophysics. We then focus on the coupling to fermion axial currents, and elaborate on
ghostone Cherenkov radiation and the new spin-dependent force. In the last section, we summarize existing
constraints on the parameters of the theory and comment on future work.

2 Preliminaries

2.1 Review of Spontaneous Time Diffeomorphism Breaking

In the original language of ghost condensation, the theory is described by a scalar picking up a time-
dependent vacuum expectation value 〈φ〉 = M2t. The excitation around this vacuum is the ghostone
boson π, and in the limit that gravity decouples from the ghostone boson sector, the kinetic terms for π
are

L =
1
2
π̇2 − 1

2M
(∇2π)2, (1)

where dots indicate time derivatives, gradients refer to spatial gradients, and M is the scale of spontaneous
time diffeomorphism breaking. We immediately see the Lorentz-violating ω ∼ k2/M dispersion relation
for the ghostone boson. As shown in [1], the reason there is not the standard (∇π)2 spacial kinetic piece
is that it is forbidden by residual spacial diffeomorphisms.

It is straightforward to couple matter to the ghostone boson. The scalar φ has a shift symmetry
φ → φ + c, so all allowed interactions between the ghostone boson and Standard Model fields can be
generated by writing down all Lorentz-invariant combinations involving ∂µφ and then expanding about the
φ vev. For example, from the term Ψ̄γµγ5Ψ∂µφ/F , we generate the interaction which will play a major
role in our analysis:

Lint =
1
F

(
M2Ψ̄γ0γ5Ψ + Ψ̄γµγ5Ψ∂µπ

)
. (2)

While this construction is convenient, it masks a key point. The above interaction is certainly Lorentz-
and CPT-violating, but it is not clear why the first term (which modifies the dispersion relation for the
fermion) is paired with a seemingly Lorentz-invariant coupling to the ghostone boson.

The reason is again residual spacial diffeomorphisms, and this is easiest to see in the language of
Goldstone bosons. If we expand the metric about flat space, gµν = ηµν + hµν , then to leading order the
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space-time diffeomorphism generated by xµ → xµ + ξµ(x) is

hµν → hµν − ∂µξν − ∂νξµ + . . . , (3)

where there are additional terms at O(ξ2) and O(hξ). To this order, a vector field Jµ transforms under
the diffeomorphism as

Jµ → Jµ − (∂µξν)Jν − ξν∂νJµ. (4)

If we now consider the leading order couplings between Jµ and hµν that break ξ0 but preserve ξi and SO(3)
rotations, we find

Lint = α

(
J0 + h0iJi − 1

2
hiiJ0

)
+ α′h00J0, (5)

where α and α′ are arbitrary constants and a sum over i is implied. Note that the terms in parenthesis
are forced to have a shared coupling constant because of the ξi diffeomorphisms.

To see what equation (5) looks like in terms of Goldstone bosons, we can simply perform the broken
ξ0 diffeomorphism and promote ξ0 to the ghostone field π. Because the kinetic term for π is healthy in the
limit that gravity decouples, we can safely consider the interactions when MPl → ∞ (equivalently, when
hµν = 0). After going to canonical normalization for the ghostone boson (π → π/M2) we are left with the
interaction

Lint =
1

F s−2

(
M2J0 − 	J · 	∇π

)
+

1
F ′s−2

(J0π̇) , (6)

where F and F ′ are independent mass scales and s is the mass dimension of Jµ. Note that in equation (2),
we have only recovered the interaction with the choice F = F ′. In the original ghost language, we can see
that F and F ′ are indeed independent by expanding interactions of the form

Jµ∂µφ

(
∂νφ∂νφ

M4

)n
→
(
M2J0 − 	J · 	∇π

)
+ (2n+ 1)J0π̇. (7)

We can repeat the above procedure to find the couplings of a scalar χ or a symmetric tensor Tµν to
the ghostone boson. Under the full diffeomorphisms

χ → χ− ξµ∂µχ,

Tµν → Tµν − ∂µξ
ρTρν − ∂νξ

ρTµρ − ξρ∂ρTµν . (8)

This leads to linear interactions with π of the form

Lint = α1χπ̇ + α2T
µ
µ π̇ + α3T00π̇ + α4

(
M2T00 − 2	T · 	∇π

)
, (9)

where 	T = T0i. In the original ghost language, these couplings can be generated by writing down all
Lorentz invariant couplings to ∂µφ, being careful to write down terms similar to equation (7). For more
general tensor structures, it is far more efficient to work in the φ language, and as shown in [1], the two
languages give identical low energy Lagrangians. In general, for any Standard Model operator Oµ···, we
expect to see a term M2O0··· that explicitly breaks Lorentz- (and sometimes CPT-) invariance joined with
a coupling between ∇π and Oi··· that will lead to Lorentz-violating dynamics.
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2.2 Effect of Gravitational Sources

In our analysis, we have assumed that we can always choose our coordinates such that the broken time-
like diffeomorphism is in the coordinate time direction. Certainly at linearized level, the background
〈φ〉 = M2t is valid in any locally flat region, but the linearized approximation breaks down even around
modest gravitational sources such as the earth. A more detailed analysis of the non-linearities will be carried
out elsewhere [ref?], but we can quickly see why we expect non-linearities by the following argument.

A freely-falling observer will see the classical φ field grow as M2τ , where τ is the proper time in the
observer’s frame. If all observers began in the same inertial frame at zero velocity, then their worldlines
would never cross and they would all agree on the value of φ at any time slice. However, in the presence
of a gravitational source, the worldlines of the observers would begin to cross, and except for the most
symmetric situations, two crossed observers will have different values of their proper times, leading to
caustics in the classical φ field. The amount of time it takes these caustics to form is on the order of the
gravitational infall time, which for the earth is around 20 minutes. These caustics are regions with very
large ∇π, and if the caustics are not smoothed out by non-linear effects, then when ∇π ∼M2 the effective
theory description breaks down because irrelevant operators dominate over relevant ones.

Even if the caustics are smoothed out, then from non-linear effects we have no reason to expect that
〈φ〉 = M2t in a cosmological rest frame is a good background for the π field in a local frame. In particular,
we expect that the right background is 〈φ〉 = M2t+ε(	x), where ε(	x) accounts for spacial inhomogeneities in
the φ field. However, it is easy to show that as long as the φ background is smooth over some macroscopic
length scale — such as the size of a laboratory or even possibly the size of a solar system — then the
spacial inhomogeneities in φ can be compensated by a local Galilean coordinate transformation, effectively
redefining what is meant by the direction and magnitude of the ether wind. Therefore, in the remainder
of the paper, when we talk about the velocity with respect to the ether rest frame, we are really referring
to the local rest frame of π and not the cosmological rest frame of π. Of course, we also assume that we
are far away from any possible caustics in order for the linear description to still hold.

2.3 Astrophysical Axion Constraints

The alert reader will notice that the second coupling in equation (2) looks a lot like the typical coupling
of a pseudoscalar field. Weakly coupled pseudoscalar fields arise in models such as axions [ref?], and it is
well known that there are considerable constraints on the size of these couplings coming from astrophysical
bounds [ref?]. The mean free path of a weakly couped particle is very long, so production of that particle
can be the dominate mode of energy loss for an astrophysical object even if the rate of production is small,
because energy can be lost from the entire volume of the object and not just from the surface. For example,
if we näıvely translate the bound on axion couplings to electrons from studies of the energy loss of low-mass
red-giants [ref?], we find that F > 109 GeV.

However, we have to be careful about two things. First, the effective theory for π breaks down at
an energy scale M , therefore we can only trust bounds coming from astrophysical objects whose typical
temperature T is less than M . The bound quoted in [1] was M < 10 MeV, but as we will emphasize in
Section 2.4, we will consider much smaller M parameters. In any case, for M smaller than around 1 keV
there are no relevant astrophysical bounds. Second, because the ghostone boson has a non-relativistic
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dispersion relation, we need to understand the phase space of the π field in order to understand astrophysical
cross sections. In general, cross sections are enhanced by a factor M/T , but there are some subtleties that
will be explored elsewhere [ref?]. Until we have a better understanding of the phenomenologically viable
range for M and of the cross sections for processes involving ghostone bosons, we will postpone the
discussion of astrophysical constraints.

2.4 The M Scale

In this paper, we will usually assume that M is between 1 eV and 10−3 eV. Note that with such low M
values, the IR modification of gravity due to mixing with the ghostone boson is heavily suppressed [1]. We
have two different motivations for this M range. First, we might imagine that M is somehow a relevant
cosmological scale. If M ∼ 10−3 eV, then ghost condensation could explain the observed acceleration of the
universe even if the cosmological constant were zero. Alternatively, M ∼ 1 eV is around the temperature
of matter domination in our universe, perhaps indicating that the ghost condensate is a dark matter
candidate.

Second, small values of M will lead to big effects when the ghostone boson is coupled directly to
Standard Model fermions. If we are moving with a velocity v relative to the ether rest frame, then we will
see that 1/Mv sets the scale for Lorentz-violating dynamics. If the ether rest frame is the same as the rest
frame of the cosmic microwave background then v ∼ 10−3, setting a macroscopic length scale somewhere
between a tenth of a millimeter and tens of centimeters! Of course, there is no reason why M could not
be much larger than these scales, but in the spirit of unabashed optimism, we will assume that the scale
M is both cosmologically relevant and well-suited to experiments.

2.5 Couplings to the Standard Model

Even if the ghostone boson does not coupling to the Standard Model at tree level, we are guaranteed that
couplings will be generated through graviton loops. In particular, if Oµν is a symmetric dimension four
Standard Model operator, then there is no symmetry forbidding the coupling

Lint ∼ 1
M4

Pl

Oµν∂µφ∂νφ→ M4

M4
Pl

O00 − 2
M2

M4
Pl

O0i∇iπ + · · · . (10)

One interesting candidate for Oµν is the stress-energy tensor Tµν . This generates a coupling between
matter and the ghostone boson beyond the minimal gravitational coupling. Indeed we recognize T 0i as the
momentum density, so in addition to the velocity-dependent modification to Newton’s law due to mixing
between gravity and the ghostone boson, there is apparently a secondary (and very small) momentum-
dependent modification.

The companion term (M/MPl)4T00 is also quite interesting. For a Dirac fermion (assuming gauge
couplings are set to zero), the symmetric stress-energy tensor is

Tµν =
i

2
Ψ̄(γµ∂ν + γν∂µ)Ψ − ηµνΨ̄(iγρ∂ρ −m)Ψ (11)
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The effect of adding the operator (M/MPl)4T00 to the Lagrangian is to modify the dispersion relation for
the fermion to

ω2 =
(

1 − c
M4

M4
Pl

)
(k2 +m2), (12)

where c is an order one coefficient (possibly negative). This has the effect of changing the maximum
attainable velocity for the fermion, and the known bound from the absence of vacuum Cherenkov radiation
for protons [ref?] is

M4

M4
Pl

< 10−23. (13)

This places a trivial bound M < 1013 GeV.

Clearly, any Lorentz- or CPT-violations mediated to the Standard Model by gravition loops will be
very small, so it is worth considering the effect of direct couplings to the ghostone boson. These couplings
were considered in [1], but we will review them here as well. In the non-relativistic limit, couplings to
scalar operators are not interesting because they involve the time derivative of π, which is assumed to
be much smaller than ∇π. The leading coupling to the Standard Model comes from any dimension three
vector operator Jµ:

Lint =
1
F
Jµ∂µφ→ 1

F
(M2J0 + Jµ∂µπ). (14)

(For simplicity, we are ignoring the lesson of Section 2.1 and assuming that F = F ′. In the non-relativistic
limit, this will not make any difference.) Note that this coupling could be forbidden by a φ→ −φ symmetry.
In the Goldstone boson language, this is equivalent to imposing time reversal invariance in addition to
SO(3) invariance. Still, this is the leading coupling that could mediate Lorentz- and CPT-violations to
the Standard Model, and we really have no a priori reason for excluding it.

If we do break time reversal invariance, however, then the kinetic terms for π from equation (1) are
slightly modified. In this paper, we will ignore this modification because it does not change the fact that
the on-shell condition for the ghostone still implies that ω ∼ k2, so at least at a qualitative level, the
Lorentz-violating dynamics will be unchanged.

The most general vector operator we can create from Standard Model fermions is

Jµ =
∑
ψ

cψψ̄σ̄
µψ, (15)

where we have assumed that fermions with the same quantum numbers have been diagonalized to the
“ghostone boson interaction” basis. The couplings in equation (14) can actually be removed via a field
redefinition

ψ → eicψφ/Fψ, (16)

but if there are Dirac mass terms or other interactions in the action that break this U(1) symmetry, then
some part of the interaction will remain. For concreteness, consider two fermion fields ψ and ψc that are
joined by a Dirac mass term mDψψ

c. This mass term preserves the vector U(1) symmetry but breaks the
axial U(1) symmetry, therefore the coupling to the fermion vector current can be removed but the coupling
to the fermion axial current remain.

In particular, we are left with (in Dirac notation)

Lint ∼ 1
F

Ψ̄γµγ5Ψ∂µφ→ µΨ̄γ0γ5Ψ +
1
F

Ψ̄γµγ5Ψ∂µπ, µ =
M2

F
. (17)
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The first term violates Lorentz- and CPT-invariance and gives rise to different dispersion relations for left-
and right-helicity particles and antiparticles [ref?],

ω2 = (|k| ± µ)2 +m2
D, (18)

where the plus sign is for left-helicity particles and antiparticles, and the minus sign is for right-helicity
particles and antiparticles. Also, if the earth is moving with respect to the ether rest frame, then after a
Lorentz boost, the first term looks like the interaction

µΨ̄	γγ5Ψ · 	vearth. (19)

In the non-relativistic limit, the current Ψ̄	γγ5Ψ is identified with the spin density 	s, giving us a direct
coupling between the velocity of the earth and fermion spin

µ	s · 	vearth. (20)

Experimental limits on such couplings have placed considerable bounds on µ. If we assume that the rest
frame of the ghostone is the same as the rest frame of the cosmic microwave background, then |	vearth| ∼
10−3. The bound on couplings to electrons is µ < 10−25 GeV [ref?] and to nucleons µ < 10−24 GeV [ref?].
Because µ = M2/F , we can use these bounds to place limits on the parameters of our theory. For example,
if we thought that the coupling between the ghostone and the electron were set at the Planck scale, then
naturalness suggests F ∼ 1019 GeV giving the bound M < 1 MeV. Note that F could be much higher
than the Planck scale if the coupling to the ghostone came from integrating out many particles above the
scale M .

The second interaction in equation (17) leads to the interesting Lorentz-violating dynamics and will
be the focus of the remainder of the paper. In the non-relativistic limit

Lint =
1
F
	s · 	∇π. (21)

This coupling is familiar from axions, because it is a generic coupling between fermions and Goldstone
bosons. What makes this different from the standard story for Goldstone bosons is that the ghostone has
a Lorentz-violating ω ∼ k2/M dispersion relation. The exchange of a normal Goldstone boson between
spin sources leads to a 1/r3 spin-dependent potential, but as we will see in Section 4, the exchange of a
ghostone boson leads leads to a 1/r potential! Even more amazing, there is a new dynamical process that
is usually absent in the context of Goldstone bosons but is familiar from electromagnetism. This process
is ether Cherenkov radiation.

3 Ether Cherenkov Radation

In classical electrodynamics, Cherenkov radiation occurs when a charged particle moves through a medium
at velocities higher than the speed of light in that medium. It can be thought of as the optical analog
of a sonic boom. By energy conservation, the charged particle must lose energy in order to generate the
photonic shockwave, and once the particle’s velocity is less than the medium’s light speed, the Cherenkov
radiation ceases.
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Figure 1: A cartoon of ether Cherenkov radiation. The spin 	S is traveling at velocity 	v relative to the
ether rest frame. Gray lines are meant to be suggestive of ghostone shockwaves.

In the case of the ghostone boson, its dispersion relation is ω ∼ k2/M , so the velocity for ghostone
boson excitations is

v ∼ ω

k
=

k

M
. (22)

For a particle traveling at some fixed velocity, there is always a k such that the speed of the ghostone is
less than the speed of the particle. As shown in Figure 1, we expect that a particle in motion relative to
the ether rest frame — and which couples to the ghostone boson — will radiate away energy until it is at
rest with respect to the ether wind.

With usual Cherenkov radiation, we can use photon detectors to study the photonic shockwave and
use that information to understand the motion of the charged particles. Unfortunately, we do not (yet)
have ghostone boson detectors, so the most likely experimental signature of ether Cherenkov radiation
would be slight, unexplained kinetic energy loss for particles with spin. More precisely, depending on the
velocity of the observed particle and the velocity of the laboratory frame with respect to the ether rest
frame, we would see kinetic energy losses or gains.

We can use a trick to calculate dE/dt for the particle in motion, namely the amount of power needed
to maintain the particle’s kinetic energy despite the ether drag. The equation of motion for the ghostone
boson in the presence of a spin source is

π̈ +
1
M2

∇4π = − 1
F
	∇ · 	s. (23)

Multiplying both sides by π̇, integrating over all space, and rewriting:

d

dt

(∫
d3r

1
2
π̇2 +

1
2M2

(∇2π)2
)

=
1
F

∫
d3r 	s · 	∇π̇. (24)

We recognize the term in parenthesis as the “particle physics” energy of the ghostone boson field. Any
energy that goes into the π field is energy that we would need to pump into the moving spin to maintain its
velocity relative to the ether. Therefore, the rate of energy loss by the moving spin due to ether Cherenkov
radiation is

dEspin

dt
= − 1

F

∫
d3r 	s · 	∇π̇. (25)
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We will first calculate this energy dissipation for a spin-density corresponding to a point-like spin
moving with velocity 	v relative to the ether:

	s = 	S δ(3)(	r − 	vt), 	̃s = (2π)	S δ(w − 	k · 	v). (26)

Using Greens functions, the classical solution to equation (23) in momentum space is

π̃(ω,	k) =
1
F

−i	k · 	̃s
(ω + iε)2 − k4/M2

, (27)

where the iε insures that we are using the retarded Greens function. Plugging this into the energy dissi-
pation formula in equation (25),

dEspin

dt
=
iM2

F 2

∫
k2dk dΩk

(2π)3
k3

k2

(	S · k̂)2(k̂ · 	v)
(Mk̂ · 	v + iε/k)2 − k2

. (28)

At first, it looks like this expression might be zero because it is odd in k, but notice there are poles at
k = ±Mk̂ · 	v + iε. (We choose our integration ranges such that k̂ · 	v is always positive.) In fact, we
see exactly what the poles mean; when the velocity of the source is such that the ghostone boson can
“go on-shell” then there is Cherenkov radiation, and this is the always the case for a non-zero v. Our
pole prescription guarantees that the moving particle is radiating π energy away to infinity as opposed to
receiving π radiation from infinity.

dEspin

dt
= −M

4

F 2

|v|
96π

(
|S|2|v|2 + 3(	S · 	v)2

)
. (29)

We see that the rate of energy loss is roughly proportional to v3 and depends on the orientation of the spin
with respect to the ether wind. We can use this result to estimate the expected kinetic energy loss for the
most abundant spin point source: an electron. Note that we already have a bound on M2/F of 10−25 GeV
and the spin of an electron is 1/2, so if we assume that |v| ∼ 10−3,

dEelectron

dt
< 10−37 GeV s−1. (30)

This is an incredibly small energy change over a very long period of time, so it is unlikely that we will ever
have the experimental precision to track the energy loss of a single electron.

In order to see a measurable effect from ether Cherenkov radiation, we need to have a large value of
S. However, it is not enough to simply have a source with a large magnetic moment, as orbital angular
momentum generically couples more weakly to π than spin. In particular, the magnetic moment of the
earth is not due to spin alignment, so it is not an effective π radiator. Neutron stars are large astrophysical
spin sources; a neutron star with the same mass as the sun has a net spin S ∼ 1056 inside a radius R ∼ 1 km.
Closer to home, a 1 ton Alnico magnet has a net spin S ∼ 1028 inside a radius R ∼ .5 m. Because the spin
of these types of objects is spread out over a finite region, we expect the ether drag to be suppressed by
some factor of the radius of the source.

For simplicity, consider a rectangle function source:

	s =
	S

4
3πR

3

{
1 |	r − 	vt| < R
0 |	r − 	vt| > R

. (31)
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Figure 2: The suppression of ether Cherenkov radiation due to finite sources from equation (32), γ = MRv.
The light curve is C(γ) and the bold curve is D(γ). Note that they reproduce the result from equation
(29) when γ → 0.

(We have also considered a Gaussian distribution and the results are nearly identical up to logarithmic
factors.) Following the exact same logic as above:

dErectangle spin

dt
= −M

4

F 2

|v|
96π

(
C(γ)|S|2|v|2 +D(γ)(	S · 	v)2

)
. (32)

where γ = MRv. Plots of C(γ) and D(γ) for small γ appear in Figure 2. For large γ, the functions behave
as

C(γ) ∼ 54 log γ
γ4

, D(γ) ∼ −54 log γ
γ4

. (33)

If we assume that M ∼ 10−3 eV, then the neutron star has γ ∼ 5000 and the 1 ton Alnico magnet has
γ ∼ 5. Using the bound M2/F ∼ 10−25 GeV, we see that the neutron star would lose all of its kinetic
energy relative to the ether rest frame (E = 1

2mv
2) in just 10−10 seconds, and the Alnico magnet would

lose all of its kinetic energy in about a week.

This means that for this value of M , M2/F cannot saturate the experimental bound. As we will see
in Section 5, the effective theory breaks down around large sources unless F is small enough. If we keep M
fixed, then for the neutron star M2/F cannot exceed 10−59 GeV, and for the Alnico magnet M2/F cannot
exceed 10−38 GeV. In both cases, the time to see any measurable decrease in kinetic energy is longer than
the age of the universe. As we will see, by increasing M it is possible to have much higher values of M2/F ,
but at the cost of increasing the γ suppression factors. At the end of the day, it seems highly unlikely that
we could observe the effects of ether Cherenkov radiation.

4 Long-Range Spin-Dependent Potential

The most well known long-range spin-dependent potential is the 1/r3 potential transmitted by magnetic
fields. As shown in [5], there is also a 1/r3 potential coming from pseudoscalar bosons such as axions.
Consider a massless spin-0 field ϕ that has a normal ω ∼ k dispersion relation and a coupling to the fermion
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axial current, 	s · 	∇ϕ/F . In the Born approximation, the potential between two point spins is the Fourier
transform of the propagator times the couplings with ω → 0.

Vϕ(r) =
1
F 2

∫
d3k

(2π)3
(−i	k · 	S1)(−i	k · 	S2)

k2
ei
�k·�r =

−1
F 2

(	S1 · 	∇)(	S2 · 	∇)
∫

d3k

(2π)3
1
k2
ei
�k·�r (34)

The Fourier transform of 1/k2 is well-known.

Vϕ(r) =
−1
F 2

(	S1 · 	∇)(	S2 · 	∇)
1

4πr
=

1
4πF 2

(	S1 · 	S2) − 3(	S1 · r̂)(	S2 · r̂)
r3

(35)

The form of this potential is identical to the potential between magnetic dipoles in electromagnetism, so
it would be very difficult to resolve the pseudoscalar effect from the magnetic effect.

In the case of the ghostone boson, we have an ω ∼ k2/M dispersion relation, so if our sources are in
the ether rest frame, the spin-spin potential goes as

Vπ(r) =
−1
F 2

(	S1 · 	∇)(	S2 · 	∇)
∫

d3k

(2π)3
M2

k4
ei
�k·�r =

M2

F 2
(	S1 · 	∇)(	S2 · 	∇)

r

8π
. (36)

Expanding the derivatives:

Vπ(r) =
M2

8πF 2

(	S1 · 	S2) − (	S1 · r̂)(	S2 · r̂)
r

. (37)

The novel dispersion relation for the ghostone has produced a long-range 1/r potential between spins!
Assuming that M/F is not too small, we should be able to design experiments to measure this force.

Before we get too excited, there are a few things we need to check. In any real experiment we will
be dealing with finite sources traveling with some velocity with respect to ether wind, and just like the
example of Cherenkov radiation, we expect to see some γ = MRv suppression factors. But even putting
that aside, we need to understand what the Born approximation really means in this context. By taking
ω → 0, we are assuming that ω � k2/M . In position space, this means that our approximation is only
valid on time scales

t�Mr2. (38)

For a normal ω ∼ k dispersion relation, we have to only wait a time t = r for our system to behave “non-
relativistically”. For the ghostone mediated forces, however, the time to reach steady state is increased by
a factor of Mr. For an M of 1 eV, this factor is r/(10−5 cm) which, given the speed of light, is negligible
for any reasonably sized experiment. However, because we also want to understand ghostone dynamics for
much larger values of M , we want to study how the spin-spin force evolves over time.

Consider a spin source at the origin that turns on at t = 0:

	s = 	S1 δ
(3)(	r) θ(t). (39)

(We have also looked at a spin source that smoothly turns on, and the following results are robust against
possible transient effects.) Assuming a test spin 	S2 sitting at 	r, the expression for Vπ(r, t) is

Vπ(r, t) =
−1
F 2

(	S1 · 	∇)(	S2 · 	∇)
∫
d3r0 dt0 δ

(3)(	r0) θ(t0)
∫
d3k dw

(2π)4
1

(w + iε)2 − k4/M2
ei
�k·(�r−�r0)e−iw(t−t0)

=
−1
F 2

(	S1 · 	∇)(	S2 · 	∇)
∫

d3k

(2π)3
M2

k4

(
1 − cos(tk2/M)

)
ei
�k·�r, (40)
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Figure 3: The time evolution of the long-range spin-dependent potential from equation (41), x = t/Mr2.
The bold curve is K(x) and the light curve is L(x). Note that these functions reproduce the result from
equation (37) in the large x limit.

where again we have used a pole prescription corresponding to the retarded potential. For large t, the
oscillatory part of the integral vanishes, and we recover the result from equation (36). When t = 0, the
potential is zero, as we would expect because information about 	S1 has not yet reached 	S2. If we had a
normal ω ∼ k dispersion relation, then the potential would turn on suddenly when t = r. Here, however,
there is no Lorentz invariance, so we have no reason to expect a vanishing potential outside the light-cone.
More precisely, the effective theory breaks down for k > M , and because we are not imposing a momentum
cutoff, we are inadvertently propagating modes that travel faster than light.

The time-dependent potential is

Vπ(r, t) =
M2

8πF 2

(
K(x)

	S1 · 	S2 − (	S1 · r̂)(	S2 · r̂)
r

+ L(x)
(	S1 · r̂)(	S2 · r̂)

r

)
, (41)

where x = t/Mr2. Plots of K(x) and L(x) functions appear in Figure 3. We see that the potential does
not come to its full value until t ∼ Mr2. For t small compared to Mr2, the potential oscillates between
being attractive and repulsive. The envelope for the oscillations are

|K(x)| ∼ 2.3x2, |L(x)| ∼ 4.5x6. (42)

Because the potential behaves so erratically for small x values, a realistic experiment will probably have
to wait until x� 1 to see a coherent effect. In the long time limit

K(x) ∼ 1 − .27
x2
, L(x) ∼ − .27

x2
. (43)

Now we consider the effect of finite sources moving with some velocity with respect to the ether rest
frame. In particular, experiments on the earth with magnets fixed to the surface of the earth would be
described by sources moving together with a slowly varying velocity v. We might expect that if the source
and test spin are traveling fast with respect to the ether, then the π waves would not be able to “keep up”,
and the spin-spin potential would be suppressed. What we will actually find is far more interesting.
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Figure 4: A cartoon of the vectors involved in the long-range spin-dependent potential. Gray lines are
meant to be suggestive of peaks and troughs in the potential. 	S1 is the source spin moving with velocity
	v. 	S2 is a co-moving test spin a distance r away.

The finite source is

	s =
	S1

4
3πR

3

{
1 |	r − 	vt| < R
0 |	r − 	vt| > R

. (44)

Following Figure 4, we want to look at the co-moving potential, namely the potential between 	S1 and some
test spin 	S2 that is moving at the same velocity as 	S1. The potential at a co-moving distance r is

V (r) =
M2

F 2
(	S1 · 	∇)(	S2 · 	∇)

∫
d3k

(2π)3
ei
�k·�r

(M	k · 	v + iε)2 − k4

3(sin kR− kR cos kR)
(kR)3

(45)

As expected, when v = 0 and R = 0, we recover the zero-velocity result from equation (36). Evaluating
derivatives:

V (r) =
M2

8πF 2

(
A(α, γ, θv)

	S1 · 	S2 − (	S1 · r̂)(	S2 · r̂)
r

+B(α, γ, θv)
(	S1 · r̂)(	S2 · r̂)

r

)
, (46)

where α = Mrv, γ = MRv, and cos θv = r̂ · v̂. The actual functional forms of A and B are not particularly
enlightening, so we will evaluate them in certain limits to get an idea of their behavior.

We will start with the case θv = 0. When γ = 0, there is a nice analytic form for A and B.

A(α, 0, 0) =
{

2 sinα/α α > 0
0 α < 0

, B(α, 0, 0) =
{

2(cosα− sinα/α) α > 0
0 α < 0

. (47)

We see that at finite velocity the potential oscillates between being attractive and repulsive as r varies!
Note that there is a potential only in front of the spin source. While this is a bit counter-intuitive —
näıvely, we might expect a spin source to leave a potential in its wake — the result is consistent because
the source is traveling at subluminal velocities whereas the potential is generated by π waves that can
propagate as fast as the speed of light. Still, it is a bit bizarre that potential is identically zero behind the
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Figure 5: The effect of finite sources on the long-range spin-dependent potential from equation (46),
α = Mrv and γ = MRv. The bold curves are A(α, γ, θv = 0) and the light curves are B(α, γ, θv = 0) for
γ = 0, 1, 2, and 3. Dashed lines indicate the size of the source.

source, but this result is softened when we introduce finite sized sources. Also, note that the component
of the potential that survives at zero velocity (the A piece) damps out for large α whereas the component
of the potential that is absent at zero velocity (the B piece) has an oscillatory amplitude that does not
vanish for large α. The factor of two in equation (47) tells us that the zero velocity potential (α → 0) is
recovered by taking the average of the potential at negative α and positive α.

In Figure 5 we see the effect of introducing finite sources, namely to “average” over the oscillations
in equation (47). For sufficiently small γ, the shape of the potential is not significantly modified but the
amplitude is somewhat suppressed. If we consider M ∼ 10−3 eV, then 1/Mv is on the order of tens of
centimeters, and we can certainly imagine constructing a spin source such that γ is O(1). For large γ, the
potential is generically suppressed by 1/γ2, though for α negative and near γ, the suppression is only by
1/γ3/2. In general, it is difficult to make hard predications at large γ because the shape of the potential is
sensitively dependent on the spin distribution in the finite source.

If we assume that γ = 0, then the most spectacular prediction of ghostone mediated spin potentials
is the angular dependence. In Figure 6, we see the value of the A and B components of the potential as a
function of α and θv. In a realistic situation, both the A and B components would vanish for sufficiently
large α because as we saw in Figure 3, it takes a time t ∼ Mr2 for the potential to reach steady state.
Presumably, by mapping out the potential for various orientations of the spins it would be possible to
determine the direction of the ether wind and the value of Mv.
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Figure 6: The angular dependence of the long-range spin dependent potential from equation (46), α = Mrv
and cos θv = r̂ · v̂. The top function is A(α, γ = 0, θv) and the bottom function is B(α, γ = 0, θv). Blue
indicates positive potential, red indicates negative potential, and white indicates zero potential. The
parabolic shape of the potential peaks and troughs are a direct consequence of the ω ∼ k2/M dispersion
relation for the ghostone boson. It is also intuitively obvious that the “ether wind” is blowing to the left.
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Unlike ether Cherenkov radiation where the only experimental signal was slight kinetic energy varia-
tion, we can see the ghostone boson in the case of the long-range spin-dependent potential by mapping out
the potential as a function of θv. Even if our spin source and test spin were fixed to the surface of the earth,
the value of θv would still vary over the course of a day! As we will see in Section 5, the magnitude of the
spin-dependent potential is generically much weaker than gravity, but because the angular dependence is
so different from gravity or even magnetism, it should be possible to extract the ghostone boson component
of any 1/r potential, because as is evident from Figure 6, the ghostone boson potential defines a preferred
axis in space.

5 Limits on the Effective Theory

As a final check that our analysis makes sense, we need to verify that adding large sources does not push
the ghostone boson out of the range of validity for the effective theory. In particular, when

∇π ∼M2, (48)

then our theory loses predictability because irrelevant operators make large, unknown contributions to the
action. This is not the only concern, however. Even if the theory has predictability, large sources might
push us out of the linear regime. The least irrelevant interaction for the ghostone boson in the static
limit (π̇ = 0) is (∇π)4/M4, and if this term is larger than the source term 	s · 	∇π/F , then self-interactions
dominate over sources. In particular, |	s| ∼ S/R3 so non-linear effects become important when

(∇π)3

M4
∼ S

FR3
. (49)

In this case, while the effective theory may still be well-behaved, our linearized analysis is no longer valid
because we have ignored non-linear terms in the equation of motion for the ghostone boson.

We can easily calculate the maximum magnitude of ∇π for the source in equation (44). Note that ∇π
in a comoving frame is the same as ∇π is the ether rest frame, because in the non-relativistic limit the
two frames are connected by a Galilean transformation which does not affect spacial derivatives. For large
finite sources, the maximum value of ∇π happens to occur directly behind the spin source:

|∇π| ∼ SM2

FR

1
γ3/2

, (50)

where again γ = MRv and R is the radius of the source. If γ ∼ O(1), then we can just drop the γ
suppression factor. The bounds on the size of the source are

Sno predictability ∼ FRγ3/2, Snon−linear ∼ F

M
γ9/4. (51)

Note that just because there may exist a spin source that violates these bounds, it does not mean that
we can use this information to place constraints on M and F . In our entire analysis, we are assuming that
full diffeomorphism invariance is restored in the UV, so the irrelevant interactions of the ghostone boson
must somehow encode the fact that Lorentz symmetry is actually a good symmetry of the complete theory.
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Therefore, though we cannot trust the theory of ghostone bosons around large sources, the fact that large
sources exist does not mean that the ghostone description is not valid around smaller sources.

We are now ready to see the phenomenologically viable and experimentally testable regions of our
parameter space. The strength of the long-range spin-dependent potential goes as (M/F )2, so it is conve-
nient to place bounds in terms of M/F and M . In order to realize the spectacular predictions from Figure
6, we want a source for which γ is O(1). In other words we want to choose R ∼ 1/Mv. If we take an
Alnico magnet as the canonical spin source, then

S ∼ R3

(
1023 spins

cm3

)
∼
(

10−6 GeV
Mv

)3

. (52)

Note that as Mv increases, the total spin must decrease in order for γ to remain O(1). Plugging this into
equation (51) assuming v ∼ 10−3, we find the following constraints on M/F and M .

M

F
<

(
M

10−4 GeV

)3

(to be predictive),
M

F
<

(
M

10−3 GeV

)3

(to be linear). (53)

Combining this information with the experimental bound M2/F ∼ 10−25 GeV, Figure 7 shows the exper-
imental testable region for a γ ∼ O(1) Alnico spin source.

The bounds for a neutron star with the same mass of the sun traveling at v ∼ 10−3 with respect to
the ether rest frame are

M

F
<

(
M

105 GeV

)5/2

(to be predictive),
M

F
<

(
M

109 GeV

)9/4

(to be linear). (54)

A plot of these bounds appear in Figure 8.
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Figure 7: Bounds on the effective theory of ghostone bosons assuming an Alnico test spin of radius
R ∼ 1/Mv. The dashed line represents “gravitational strength,” namely the value M/F = (1 GeV/MPl)
corresponding the case where the ghostone mediated force is the same strength as gravity assuming one
aligned spin per nucleon.
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Figure 8: Bounds on the effective theory of ghostone bosons assuming a neutron star wtih S ∼ 1056 and
R ∼ 1 km. The dashed line represents “gravitational strength” as in Figure 7.


