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Abstract. There are many gravitational
applications of effective approach to
quantum field theory. We consider
cosmological constant problem,
inflation driven by vacuum quantum effects
and imposing constraints on a
non-metric gravity in effective framework.



The effective approach implies low-energy
phenomena being independent on
(sometimes unknown) fundamental physics.

One example is low-energy QCD, where the
Chiral Perturbation Theory helps to achieve
results fitting both lattice simulations and ex-
periment, in a situation when usual
perturbative methods are not applicable.

Sometimes, in the effective approach, one
can reduce the requirements to a theory,
e.g. extract relevant low-energy information
even from the non-renormalizable theories.

Important aspects of effective approach
are renormalization group and decoupling.

At classical level decoupling means that a
heavy field doesn’t propagate at low energies

1

k2 +M2
≈ 1

M2
+ O

(
k2

M4

)
, k2 �M2 .

Decoupling theorem explains
similar phenomenon at quantum level.
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QED example (flat space):

The 1-loop vacuum polarization is

−e
2 θµν

2π2

∫ 1

0
dx x(1 − x) ln

m2
e + p2x(1 − x)

4πµ2
,

where θµν = (pµpν − p2gµν), µ is the parame-
ter of dimensional regularization.

βMS is e
2µ

d
dµ acting on the formfactor of θµν

βMS
e =

e3

12π2
.

βe in the physical mass-dependent scheme:
subtract at p2 = M2 and take e

2M
d
dM .

The UV limit (M � me): βe = βMS
e .

The IR limit (M � me):

βe =
e3

60π2
· M

2

m2
e

+ O
(
M4

m4

)
.

Appelquist & Carazzone, (1975)

Compared to βUVe = βMS
e , in the IR there

is a suppression (decoupling) ∼ p2/m2
e .
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Our first interest is investigating decoupling
law for quantum matter on curved background.

Why this is interesting and important?

Sh., Solà, España-Bonet, Ruiz-Lapuente,
Ph.Let.B574(2003), also NPhB(PS,2004)71;
Babic,Guberina,Horvat,Stefancic, PRD65(2002).

Assume the AC-like quadratic decoupling holds
for a cosmological constant. Associate the
scale µ ≡ H (Hubble parameter).

Remember that high-energy βΛ ∼ m4,
m being mass of a quantum matter field.

Then the AC suppressed, low-energy

βΛ =
∑
i

ci
H2

m2
i

×m4
i =

σ

(4π)2
M2H2 ,

where M is unknown mass parameter and
σ = ±1 depending on whether fermions or
bosons dominate at the highest energies.

M2 = M2
P =⇒ |βΛ| ∼ 10−47GeV 4 ,

close to the SN & CMB data on DE.
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Cosmological model with running CC.

Sh., Solà, España-Bonet, Ruiz-Lapuente,
Phys.Let. B574 (2003); JCAP 02 (2004)

For simplicity k = 0 case.

Along with RG, there is Friedmann equation

H2 ≡
(
ȧ

a

)2
=

8πG

3
(ρ+ Λ) ,

ρ = ρR + ρM , and the conservation law

dΛ

dt
+

dρ

dt
+ 3H (ρ+ p) = 0 .

∀ p = αρ the solution is analytical.
In terms of the red-shift z = a0/a− 1

ρ(z; ν) = ρ0 (1 + z)r (1)

and

Λ(z; ν) = Λ0 +
ν

1 − ν
[ ρ(z; ν) − ρ0 ] , (2)

where ρ0, Λ0 are present day values, and

ν =
σM2

12πM2
P

and r = 3(1−ν) (α+1) .

At ν → 0 we recover the standard result for
Λ = const.
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Test: nucleosynthesis epoch ρrad � ρmat.

ρrad(T ) =
π2 g∗
30

T4
(
T0

T

)4ν

T0 
 2.75K is present CMB temperature.

Clearly, ν gets restricted, because for ν ≥ 1
the ρrad(T ) would be constant.
In order not to be ruled out by the
nucleosynthesis:

|ΛR / ρR | 
 | ν / (1 − ν) | 
 |ν| � 1 .

A nontrivial range is, e.g., 0 < |ν| ≤ 0.1.
Both signs of ν are allowed.

The “canonical” choice M2 = M2
P gives

|ν| = 1

12π

 2.6 × 10−2 .

The nucleosynthesis constraint is consistent
with the effective approach.

Zero CC in the remote future ∼ ν ≈ 0.7

Marginal value for the nucleosynthesis!
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Whether the permitted values ν � 1 may
lead to observable consequences?

The remarkable answer is: yes.

Consider “recent” Universe 0 < z ≤ 2.

We can evaluate cosmological parameters which
can be improved by the future observations,
e.g. the SNAP project.

Example: Relative deviation

δΛ(z; ν) =
Λ(z; ν) − Λ0

Λ0

The ∃ SN data correspond to z = z0.
In O(ν) approximation

δΛ(z; ν) =
νΩ0

M

Ω0
Λ

[
(1 + z)3 − (1 + z0)

3
]
.

Taking z0 
 0.5 with Ω0
M = 0.3 and Ω0

Λ =
0.7, and ν = ν0, we find

δΛ(z = 1.5; ν0) ≈ 14% ,

that would be a measurable effect.
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Observations:

1) ν is unique arbitrary parameter of this
model.
Cubic z-dependence should manifest itself in
the future SNAP experiments,
where the range z ≤ 2 will be tested.

2) The AC quadratic decoupling for the CC
is compatible with covariance.

Behind the RG there is a well-defined object
called Effective Action

eiΓ[gµν] =
∫

DΦ eiS[Φ , gµν]

Γ[gµν] is complicated non-local functional.
But due to covariance it is even in ∂λgµν.

Cosmology: O(H) quantum corrections
(e.g. from QCD) are completely ruled out.
Minimal possible quantum effect on CC is

M2H2 =⇒
only Planck scale physics can be relevant!
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First works on Decoupling in Gravity
Ed.Gorbar,I.Sh. JHEP 02,06(2003); 02(2004).

Consider massive scalar field:

Ss =
1

2

∫
d4x g1/2

{
(∇ϕ)2 +m2ϕ2 + ξRϕ2

}
.

Euclidean Effective Action is

Γ[gµν] = −1

2
Tr ln

(
−∇2 +m2 + ξR

)
.

Weak point: No covariant version of
a mass-dependent renormalization scheme.

We can perform calculations only for the
linearized gravity on the flat background

gµν = ηµν + hµν .

Corrections to the graviton propagator:
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The polarization operator must be compared
to the tensor structure of the Lagrangians

LHE = − 1

16πG
(R+ 2Λ) and

LHD = a1C
2 + a2E + a3�R+ a4R

2 .

For the formfactors we find, e.g.

kΛ =
3m4

8 (4π)2
, kR =

m2

2 (4π)2
ξ̃ ,

k1(a) =
8A

15 a4
+

2

45 a2
+

1

150
,

where ξ̃ = ξ − 1/6,

A = 1 +
1

a
ln
∣∣∣∣2 − a

2 + a

∣∣∣∣ , a2 =
4�

4m2 − �
.

Result confirmed using covariant O(R2)
heat kernel solution
Avramidi, Sov.J.Nucl.Phys.49 (1989);
Barvinsky, Vilkovisky, Nucl.Ph.B282 (1990),

(properly generalized for a massive case).

Similar expressions were obtained for massive
fermions and vectors. (JHEP 06-2003).
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How do we define RG in curved space?

Remember we are dealing with the theory of
hµν in flat space.

Then RG scaling is the momentum scaling

p2 → e2tp2.

In the mass-dependent scheme

βλ = −2p2
∂λ

∂p2
,

where we identify p2 = −�. For Weyl term:

β1 = − 1

(4π)2

(
1

18a2
− 1

180
− a2 − 4

6a4
A

)
.

Then

βUV1 = − 1

(4π)2
1

120
+O

(
m2

p2

)
= βMS

1 +O
(
m2

p2

)
,

βIR1 = − 1

1680 (4π)2
· p

2

m2
+ O

(
p4

m4

)
,

Appelquist & Carazzone Th. for gravity!
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An expansion gµν = ηµν + hµν works well for
higher derivative terms, but not for Λ and G.

Why did we obtain βΛ = β1/G ≡ 0 ?

Running ∼ f(�) = ln(�/µ2) formfactor.

−e
2

4
FµνF

µν +
e4

3(4π)2
Fµν ln

(
− �

µ2

)
Fµν .

Similarly in gravity it is possible to insert

Cµναβ f(�)Cµναβ or Rf(�)R .

But, no insertion is possible for Λ and 1/G,
since �Λ = 0 and �R is a total derivative.

Is it true that βΛ and β1/G equal zero?

Definitely not! The unknown “correct” βΛ
and β1/G should tend to the corresponding

βMS-functions in the UV limit.

Perhaps calculations on a flat background
are not appropriate for the RG equations
for Λ and 1/G.
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Consider the vacuum sector of a theory with
the Spontaneous Symmetry Breaking (SSB).

In the matter fields sector SSB theory pro-
vides an exception from the AC theorem.

The theory of charged scalar ϕ coupled to
the Abelian gauge vector Aµ :

S =
∫
d4x

√
g
{
|(∂µ + ieAµ)ϕ|2 + µ2

0ϕ
∗ϕ

−λ(ϕ∗ϕ)2 + ξ Rϕ∗ϕ− 1/4FµνF
µν
}
.

At the classical level the VEV for ϕ is v:

−�v+ µ2
0v+ ξRv − 2λv3 = 0.

For ξ = 0 the vacuum solution is constant

v20 = µ2
0/2λ .

For ξ �= 0 the derivatives can not be ignored.

For the general case of a non-constant scalar
curvature the solution can be presented in
the form of the power series in curvature (or
equivalently in ξ )

v(x) = v0 + v1(x) + v2(x) + ... .
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For the first order term v1(x)

−�v1 + µ2v1 + ξR v0 − 6λv20 v1 = 0 ,

and the solution is

v1 =
ξv0

� + 4λv20
R .

In a similar way, we find

v2 =
ξ2 v0

� + 4λv20
R

1

� + 4λv20
R

− 6λ ξ2 v30
� + 4λv20

(
1

� + 4λv20
R

)2

, etc.

One can continue the expansion of v to any
order. The induced vacuum action is

Sind =
∫
d4x

√
g{ (∇v)2 + (µ2

0 + ξR) v2 − λv4}
or in details Sind =

=
∫
d4x

√
g

{
λv40 + ξRv20 +R

ξ2v20
� + 4λv20

R+ ...

}
.

The first terms are induced CC and Einstein-
Hilbert action. One has to some them with
the corresponding vacuum terms.
Other (∞ many) terms are quasi-local in IR.
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Quantum effects in the SSB theory.

Detailed analysis: the SSB theory

is renormalizable,

but to achieve this one has to include
non-local terms (typical for induced action)
into the classical action of vacuum.

At quantum level we meet renormalization of
these non-local terms.

Renormalization group and decoupling in a
mass-dependent scheme are perfectly seen
for all higher derivative structures
(including non-local),

but not for cosmological, Einstein-Hilbert terms
and their non-local generalizations.
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For coefficient of the induced
∫
R2 - term

βUV3 = − 1

180(4π)2
+ O

(
m2

p2

)
,

IR limit shows AC-like decoupling

βIR3 = − 1

1260 (4π)2
p2

m2
+ O

(
p4

m4

)
.

Broken SUSY: β3 changes sign between
UV and IR, because sparticles decouple.

0.5 1 1.5 2

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Key fact for the anomaly-induced inflation
(modified Starobinsky model), providing
interface between stable inflation at UV and
the FRW-like regime at IR.
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Consider Conformal and Free (or AF) Fields.
N0 scalars, N1/2 fermions, N1 vectors

Notice: Vacuum quantum effects come from
virtual particles. N0,1/2,1 have no relation
to the real matter in the Universe.

Classical vacuum action of conformal theory

Svac =
∫
d4x

√−g
{
l1C

2 + l2E + l3�R
}
.

C = Cµναβ is Weyl tensor,

E = R2
µναβ−4R2

µν+R2 is Gauss-Bonnet term.
Svac does not affect cosmological solution.

Quantum correction: Conformal Anomaly

T =< Tµµ >= − (wC2 + bE + c�R) ,

w, b, c are β-functions for l1, l2, l3⎛
⎜⎝ w

− b
c

⎞
⎟⎠ =

1

360(4π)2

⎛
⎜⎜⎝

3N0 + 18N1/2 + 36N1

N0 + 11N1/2 + 62N1

2N0 + 12N1/2 − 36N1

⎞
⎟⎟⎠

Remark: b < 0 and alternating sign for c.

Recent investigation of �R-type ambiguity:
Asorey, Gorbar & Sh. Clas.Q.Gr. 21 (2003).
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Anomaly-Induced Effective Action (EA)

− 2√−g gµν
δΓ̄ind
δgµν

= T .

(Reigert, Fradkin & Tseytlin, 84)

The EA is exact solution for FRW metric

Γ̄ind = Sc[ḡµν]+
∫
d4x

√
ḡ {wσC̄2+bσ(Ē−2

3
�̄R̄)

+2bσ∆̄σ } − 3c− 2b

36

∫
d4x

√
g R2,

where gµν = a2(x)ḡµν, a2(x) = e2σ(x),
Sc[gµν] an arbitrary conformal functional,
∆ = �2 + 2Rµν∇µ∇ν − 2

3R� + 1
3 (∇µR)∇µ.

Local covariant solution via auxiliary fields
(A.Jacksenaev & I.Sh., Phys.Lett.B, 1994)

Γind = Sc − 3c− 2b

36

∫
x
R2 +

1

2

∫
x
{ϕ∆ϕ− ψ∆ψ

+ϕ

[√−b(E − 2

3
�R) − w√−bC

2
]
+

w√−bψC
2} .

The most useful form of the vacuum EA for
the conformal matter fields.
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Cosmological Model based on the action

Stotal = − M2
P

16π

∫
d4x

√−g (R+ 2Λ)

+Smatter + Svac + Γ̄ind .

Equation of motion for a(t), dt = a (η) dη

¨̈a

a
+

3ȧ ˙̈a

a2
+
ä2

a2
−
(
5 +

4b

c

)
äȧ2

a3
−2k

(
1 +

2b

c

)
ä

a3

−M
2
P

8πc

(
ä

a
+
ä2

a2
+

k

a2
− 2Λ

3

)
= 0 ,

k = 0,±1.

Particular solutions (Starobinsky, PhLB-1980)

a(t) = a0

⎛
⎜⎝ exp[Ht] , k = 0

cosh[Ht] , k = 1
sinh[Ht] , k = −1

⎞
⎟⎠ ,

where Hubble parameter H = ȧ/a is

H =
MP√−32πb

⎛
⎝1 ±

√√√√1 +
64πb

3

Λ

M2
P

⎞
⎠1/2

.
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For 0 < Λ �M2
P there are two solutions:

H ≈
√

Λ/3 ; (IR)

H ≈
√
− M2

P

16πb
− Λ

3
≈ MP√−16πb

. (UV )

Perturbations of the conformal factor

σ(t) → σ(t) + y(t).

The criterion for a stable (UV ) inflation

c > 0 ⇐⇒ N1 <
1

3
N1/2 +

1

18
N0 ,

in agreement with Starobinsky (1980).

The original Starobinsky model
is based on the unstable case
and involves heavy fine-tunings.

Our purpose is to avoid fine-tunings at all.
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Suppose at UV (H � MF ) there is SUSY,
e.g. MSSM with a particle content

N1 = 12 , N1/2 = 32 , N0 = 104 .

This provides stable inflation, because c > 0

N1 <
1

3
N1/2 +

1

18
N0 .

Similar for any realistic SUSY model.
Inflation is independent on initial data.

Fine!

But why should inflation end?

Already for MSM (N1,1/2,0 = 12,24,4)
inflation is unstable, c < 0.

Natural interpretation
I.Sh. Int.J.Mod.Ph. 11D (2002)

All sparticles are heavy ⇒ decouple, when
H becomes smaller than their masses.

According to calculations (JHEP,2003)
the transition c > 0 =⇒ c < 0 is smooth,
giving a hope for a graceful exit.
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Simple test of the model. Late Universe,
k = 0, H0 =

√
Λ/3. Only photon is active

N0 = 0 , N1/2 = 0 , N1 = 1 .

Graviton typical energy is H0 ≈ 10−42GeV ,
=⇒ all massive particles (even neutrino)
mν ≥ 10−12GeV decouple from gravity.

c < 0 =⇒ today inflation is unstable.

Stability for the small H = H0 case:

H → H0 + const · eλt =⇒

λ3 + 7H0λ
2 +

[
(3c− b)4H0

2

c
−M2

P

8πc

]
λ

− 32πbH0
3 +M2

PH0

2πc
= 0 .

The solutions for λ are

λ1 = −4H0 , λ2/3 = −3

2
H0 ± MP√

8π|c|
i .

Λ > 0 protects our world from quantum
corrections!
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Anomaly-induced inflation slows down
if taking masses of quantum fields into
account.

Sh., Sola, Phys.Lett. 530B(2002);
Pelinson,Sh.,Takakura, Nucl.Ph.648B(2003).

2200 2400 2600 2800 3000

9200

9400

9600

9800

10000

log [a(t)] ≈ H0 t −
H2

0

4
f̃ t2 , H0 ∝MP

The total amount of e-folds may be as large
as 1032, but only 65 last ones, where

H ∝ M∗
(SUSY breaking scale) are relevant.
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In the last 65 e-folds the production of
gravitational waves is restricted

H(t) � 10−5MP.

Furthermore, once created, in this model
gravitational waves do not amplify.

Fabris,Pelinson,Sh.,Nucl.Phys. 597B(2001);
Pelinson,Sh.,Takakura, Nucl.Phys. 648B (2003);
Fabris,Pelinson,Sh,Takakura,NPB(PS)127(2004).

All in all, modified Starobinsky model is a
promising candidate to describe inflation in
a natural way.

However, small information is available
about intermediate stage of inflation.

In order to obtain this information one needs
further development of QFT in curved space-
time. This represents a strong motivation for
the future work.
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Retrictions on Space-Time Geometry
from Quantum Field Theory

Consider how one can impose the restrictions
on a Space-Time Geometry using effective
approach to Quantum Field Theory.

A.Belyaev & I.Sh., Phys.Lett.425B (1998)
B.-Peixoto,Helayel-Neto,Sh.,JHEP02(2000).
I.Sh., Phys.Rep. 357(2002).

It is quite popular to consider gravity
described by metric and torsion.

Γ̃αβγ − Γ̃αγβ = Tαβγ , ∇̃µgαβ = 0 .

One can see that existence of torsion Tαβγ
as independent propagating field meets
serious obstacles.

It is useful dividing torsion into irreducible
components

Tαβµ =
1

3

(
Tβgαµ − Tµgαβ

)
− 1

6
εαβµν S

ν + qαβµ
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Interaction to Dirac fermion

L = iψ̄γµ(∂µ + iη1γ
5Sµ + iη2Tµ)ψ+mψ̄ψ .

η1, η2 are nonminimal parameters. Minimal
case: η1 = 1/8, η2 = 0.

For simplicity consider gµν = Tµ = 0. Meet
just a fermion coupled to an axial vector Sµ

S = i
∫
d4x ψ̄ γµ

(
∂µ + iη1γ

5 Sµ − im
)
ψ .

Known CPT & Lorentz violating term!

The question is: whether we can construct a
quantum theory for ψ, Sµ which would be:
1) Unitary;
2) Renormalizable as effective field theory.

First step. Quantizing ψ we meet two types
of divergences:

Sµν S
µν and m2Sµ S

µ ,

where Sµν = ∂µSν − ∂νSµ.

Unitarity forbids simultaneous S⊥
µ and S

‖
µ.

The unique possibility for dynamical torsion

Stor =
∫
d4x

{
−1

4
S2
µν +M2S2

µ

}
.

26



Second step.
Is the effective quantum theory of fermion
coupled to dynamical torsion consistent?

Involved calculation yields

Γ(1)
div = − µn−4

ε

∫
dnx

{
... +

8 η4m2

M4
(ψ̄ψ)2

}
.

Then at the two-loop level we meet a
longitudinal (∂µSµ)2-type divergence.

This means there is a conflict between
unitarity and renormalizability
in the low-energy corner of the theory.

One possible solution is taking

η4m2

M4
� 1 . (∗)

This means that either M � m for all fermions,
or that η is extremely small.

In both cases there is no chance to observe
propagating torsion.

E.g. the lower bound for M from LEP is
M/η ≤ 3TeV , that does not fit with (*).
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Conclusions

1. The effective approach to quantum field
theory in curved space-time may tell us a lot
about gravitational physics, especially in cos-
mology.

2. The most interesting problem is the eval-
uation of vacuum effective action for massive
quantum fields.

Working in this direction one may prove or
disprove possibility of z-dependent cosmolog-
ical constant.

Also it is important for the anomaly-induced
inflation.

3. Even at the present state of knowledge
we can learn something about the possible
form of quantum corrections.

4. Surprisingly, one can exclude some options
for the space-time geometry using quantum
field theory methods, especifically an effec-
tive approach.
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