

the

international atomic energy agency **abdus salam** international centre for theoretical physics

4 manniversary 2004

SMR.1580 - 3

CONFERENCE ON FUNDAMENTAL SYMMETRIES AND FUNDAMENTAL CONSTANTS

15 - 18 September 2004

FUNDAMENTAL CONSTANTS AT HIGH ENERGY (Time Variation of QCD Scale)

Harald Fritzsch LMU, Munich

at High Energy

(Time Variation of QCD scale)

Harald Fritzsch LMU Minich

Role of Fundamental Constants

What Are Fundamental Constants?

Cosmic Accidents? Determined by Dynamics? Changing in Time? Given by Self-Consistency? Calculable?

Quantum Field Theory

 $\alpha \Longrightarrow$ function of scale (energy)

Quantum-fluctuations of fields $(e^+e^-\text{pairs})$

 e^+e^- : dipoles with size m_e^{-1}

 \rightarrow partial screening of bare charge of electron at distances $> m_e^{-1}$.

$$\alpha = (137, \ldots)^{-1} \to \alpha_{\text{eff}} \left(m_e^2 \right)$$

 $\alpha_{\rm eff}\left(q^2\right) = \frac{\alpha}{1 - \frac{\alpha}{3\pi} \ln\left(\frac{-q^2}{Am_e^2}\right)}$

$$A = \exp(5/3) (-q^2 > 0) \, .$$

Renormalization–Group:

$$\frac{d}{d\ln(q/M)} \bar{e}(q; e_r) = \beta(\bar{e})$$
$$\bar{e}(M; e_r) = e_r$$
$$QED: \beta(e) = \frac{e^3}{12\pi^2} + 0(e^5)$$
High Energy:
$$\mu^+\mu^-, \tau^+\tau^-, \bar{q}q, W^+W^-$$
$$e^3$$

 $\begin{array}{l} \rightarrow \beta(e) = n_{\rm eff} \cdot \frac{e^{-1}}{12\pi^2} + \dots \\ \mathcal{LEP}: \\ \alpha(200 GeV) \cong (127)^{-1} (\sim 10\% \ \text{larger}) \,. \\ \alpha(M_{\star}) \cong (127.8)^{-1} \end{array}$

Β

Vorcuum

Polocrizoitism

-> Sommerfeld 19/8' **Originally it was assumed:** $1/\alpha = 137$ (integer!) **Philosophy and numerology: Eddington:** 137 > 136 = Nr of charged objects $\alpha^{-1} = \frac{16^2 - 16}{2} + 16 = 136$ Pauli (1958): Nr 137..... Lederman: 137 Eola Road, JL Feynman: 137

Heisenberg ($\sim 30...$): $\alpha = 2^{-4} 3^{-3} \pi$ = 1/137.6...

Wyler (1971) 1ppm $\alpha = \frac{9}{8\pi^4} \left(\frac{\pi^5}{2^4 5!}\right)^{1/4}$ The Durk Corner of HEP~

Fermion Masses: Arbitrary

 $m_e = 0.511 MeV = 0.0000021 \cdot 246 GeV = 2.000 \cdot 10^{-30} lb$

me: 0.20 ppb accuracy (squantum optics)

Relations among constants?

e.g. How mixing

 $\theta_{u} \cong \sqrt{\frac{m_{u}}{m_{e}}}$ B. = Vm,

S≈ 90°

 $\theta = \frac{m_s}{m_b} \cdot \frac{m_i}{m_f}$

18 Pm. 14 Pm.

Cosmic time dependence of fundomental constants H. Fritzsch Munich -> CERN- Courier March 03 Eur. Journals, Phys. Joday Keck telescope (Australia, England, U.S) (Webb, Wolfe. "many multiplet method" fine-structure of Fe, Ni, Mg, Sn, A ~150 quagars (-> 11 bu years in time) (-0.54 ± 0.12) $\frac{\Delta \pm}{8} = (-0.72 \pm 0.18) \cdot 10^{-5}$ a= 1/137,03699933 (to day) early a= 1/137,037 - - A: 036) d ≈ 1.2.10 -15 por year Linear app .:

Ð

Sample	Method	N _{abs}	Redshift	$\Delta \alpha / \alpha$
Fell/MgII	MM	28	0.5 < z < 1.8	-0.70 ± 0.23
NiII/CrII/ZnII	MM	21	1.8 < z < 3.5	-0.76 ± 0.28
SiIV	AD	21	2.0 < z < 3.0	-0.5 ± 1.3
21cm/mm	radio	2	0.25,0.68	-0.10 ± 0.17

TABLE I: Summary of results for 4 independent samples. Values of $\Delta \alpha / \alpha$ are weighted means in units of 10^{-5} . MM and AD indicate "many-multiplet" and "alkali-doublet". N_{abs} is the number of absorption systems in each sample.

Fractional look-back time

FIG. 1: $\Delta \alpha / \alpha$ vs. fractional look-back time to the Big Bang. The conversion between redshift and look-back time assumes $H_0 = 68 \text{ km/s/Mpc}$, $(\Omega_M, \Omega_\Lambda) = (0.3, 0.7)$, so that the age of the universe is 13.9 Gyr. 72 quasar absorption systems contribute to this binned-data plot. The hollow squares correspond to two HI 21cm and molecular absorption systems [16]. Those points assume no change in g_p , so should be interpreted with caution. The 7 solid circles are binned results for 49 quasar absorption systems. The lower redshift points (below $z \approx 1.6$) are based on (MgII/FeII) and the higher redshift points on (ZnII, CrII, NiII, AlIII, AlII, SiII) [13]. 28 of these 49 systems correspond to the sample used in [4]. The hollow triangle represents the average over 21 quasar SiIV absorption doublets using the alkali doublet method [14]. 13.9 Gyr

The Oklo Phenomenon

1.8 billion years back

River Oklo

Gabžn, W-Africa

Natural reactor

High concentration of U

Natural enrichment of U235 (3% about 2bn yrs. ago, 0.7% today)

Low concentration of n absorbers

Critical size

Moderator (25% C, 75% Water)

Not commissioned by DOE ~ NRC

but operated for ~ 100 Mio years.

Strong n-absorbers found only in small quantities \rightarrow reactor activity

Sm¹⁴⁹ Eu¹⁵¹, GD¹⁵⁵, Gd¹⁵²

Shlyakhter

 \rightarrow Damour, Dyson (96)

Neutron capture

 $\mathrm{Sm}^{149} + \mu \rightarrow \mathrm{Sm}^{150} + \gamma$

thermal x-section

D.D.: 57 kb $\leq \hat{\sigma}_{149} \leq 93$ kb

Large x-section: resonance just above threshold

ſ

E = 0.0973 eV

Resonance position:

affects strongly x-section

time shift?

 $\Delta = E_r(Oklo) - E_r \text{ (now)}$

 $-0.12 \text{ eV} < \Delta < 0.09 \text{ eV}$

 $H = H^{nucl} + H^{elm}$ \downarrow $e^{2} \sum_{a,b} r_{ab}^{-1}$ (Coulomb)

$$\rightarrow \alpha \cdot \frac{dE_r}{d\alpha} < -(1,09 \pm 0.09) \text{ MeV}$$

Bethe-Weizsächer:

-1.14 MeV

$$-0.9 \bullet 10^{-7} < \frac{\alpha(Oklo) - \alpha(now)}{\alpha} < 1.2 \bullet 10^{-7}$$

<u>Oklo</u>

Natural reactor in Gabon (Afrika) Investigated since ~ 1970 by Franch physicists. (Activa: ~ 26n years ago) Samorium: decoy depends strongly on nuclear resonance Resonance position connot have charged much Dyson - Domour: & < 10 -16 (10 -17) (if no other pms. change) -> Problem with astrophysics Change of A: afforts could curred, if signs of \$, A different. -> Oklo construint questionalh

Change of A: Mn-Mp affected Mn-Mp = (mj-mu) const. - a · A· const. (~ 2 Mar) Mn-Mp > (-> nucleosynthesis) $U' \rightarrow SU(2) \times U(0)$ $e^{2} = \frac{g g'}{\sqrt{g^{2} + g^{12}}}$ 9' Which g' in offected ? (Both?) GF affacted (+ nucles synthesis) $SU(3)' \times SU(2) \times U(1) \subset SO(10)$ (2) -> g affected -> gs affected (Λ_{c}) $\rightarrow M_{p}$ Systematic analysis needed!

$$J_{n} \quad y_{nneral:} \qquad (allows t_{i} \quad F_{i}) \\ Leany neckers, leques, blows:' \\ Mir... \\ \frac{1}{\alpha} \quad \frac{\alpha}{\alpha} = \frac{8}{3} \quad \frac{1}{d_{s}} \quad \frac{\alpha}{\alpha_{s}} - \frac{1}{2\pi} \quad (b_{2}^{s} + \frac{3}{3}b_{i}^{s} - \frac{8}{3}b_{s}^{s}) \quad \frac{\Lambda_{cat}}{\Lambda_{cat}} \\ \dot{\Lambda}_{cat} = 0 \\ \frac{1}{\alpha} \quad \frac{\alpha}{\alpha} = \frac{8}{3} \quad \frac{1}{\alpha_{s}} \quad \frac{\alpha}{\alpha_{s}} \\ \frac{\Lambda}{\Lambda} \approx \pm 38, 8 \quad \frac{\alpha}{\alpha} \\ \xrightarrow{\Lambda} \quad Magnetic Moments of Nuclei: \\ \frac{\mu_{p}}{\mu_{p}} = \frac{\mu_{N}}{\mu_{N}} \approx -38, 8 \quad \frac{\alpha}{\alpha} \quad \sim -39 \cdot 10^{-14} / y_{eur} \\ \alpha_{un} \quad inversent, \quad charge of \Lambda_{un}: \\ \frac{\Lambda}{\Lambda} \approx -31 \quad \frac{\alpha}{\alpha} \\ (sign \ charge !)$$

Vergleich

Compension

Cs-clock

Unterschied ca. 3 Cäsiumschwingungen 3 Cs - oscilletions / Say pro Tag Experimente am MPQ Garching und IST Boulder, USA

Quantum Optics (4 (MPQ ~ Haensch, Walther) Suppose: à 1 x = -1.2.10-15 $\hat{\Lambda} / \Lambda = 2.4 \cdot 10^{-14}$ (20) Cesium clock: 1s =: 6192631770 cyclus of microwave light ~ hf- transition of Cessum -133 the me at -> Cesium clock \$ H-clock (no dap. of A) (~ 3 cesium cyclas / day) Casium as H 1. Step: Effect ~ 30, if \$ \$ \$ 10 -14 yr-1 Jodium (trapped) ~ AG (trapped) 2. Step: > sensition to A = 10 yr-1 ·(~ 3yrs) e.g.: À /A = (2.13±0.01).10-14 (1.13

Experiment of MPQ (Munich)

Measure absolute optical fraguerry velotive to cesium atomic clock (-> F. ... , Noens 486 mm dye loser in the hydrogen spectrometer Reference: cesium fountain clock (Pharau) LPTE Paris

1999: Hydrogen 15-25 prequency accurate to 1.4.10-14

Since February US: oetave spanning comb synthesisar to measure 15-25 transition relative to PHARAO (brought to Munich ayain; 15-25 - transition: 2466 061413187127(18) Ha (~10-14 arc.!)

24 (50) Ha drift in 43 months -0.9 (2.9) -> 2.8 (S.T). 10 -15 por year (porl.) Change of a: ~ 10-15/yr -> expect: 2.10 -14 for hyperfine transitions (unlikely) Further tests are going on. (-> Boulston) Partial concellation of effect? (voivy dun + Ann!) At level ... x 10 - 15 effects should be seen! Or: Astrophysics wrong? New exp.: no effect ! 10

 $\frac{8}{3} \frac{1}{\alpha_s} \frac{\alpha_s}{\alpha_s} = \frac{1}{\alpha} \frac{\alpha}{\alpha} + \frac{1}{2\pi} (\dots) \frac{\Lambda_{Gut}}{\Lambda_{Gut}}$

partial concellation (s.s. th)

 $\frac{\Lambda}{\Lambda} \sim 5 \cdot \dot{\vec{a}}$

~ 5.10-15 / yr in Hünsch exp. (?) indications for effect or 1 ~ 4. 10-15/4r

Summery ~ Conclusions 2 18 constants in S.M. Possible relations among them. Some fund constants rather complicated (e.g. nucleon moss) Grand unif: relates a, a, a, a, Time dependence of a -> · · · · · · · · · · Oklo constraint: questionable A ~ + 35 · K > change in cesium clocks Exp.: Prequency change \$ 3.10-15 Expected: ~ 2.10-14 (problem) Concellation ? No charge of a today?