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I. Formal description of seismic source 
 

The description of seismic source we will consider is based on the formalism developed 
by Backus and Mulcahy, 1976. 
 
Statement of the problem.  
Motion equation 
ρ σ&& ,u i i j j= + f i          (1.1) 
Hook’s law for isotropic medium 

ijkkijij µεελδσ 2+=         (1.2)   
Initial conditions 
& ,u u≡ ≡ <0 t 0          (1.3) 

Boundary conditions 
0|

0
=Sjij nσ          (1.4) 

Here u – displacement vector; σij – elements of symmetric 3x3 stress tensor; i,j=1,2,3 and the 

summation convention for repeated subscripts is used; ∑
= ∂

∂
=

3

1
,

j j

ij
jij x

σ
σ  ; εij – elements of 

symmetric 3x3 strain tensor and )(5.0 ,, ijjiij uu +=ε ;  ρ - density; fi – components of 
external force; nj – components of the normal to the free surface S0.  
 
Solution of the problem (1.1)-(1.4) can be given by formula 

yjij

T

i dVftGdtu ),(),,(),(
0

τττ yyxx ∫∫
Ω

−=       (1.5) 

or 

u t d H t f dVi

T

ij j y( , ) ( , , ) & ( , )x x y y= −∫ ∫τ τ
0 Ω

τ

d

      (1.6) 

Here  Gij is the Green’s function,  

H t Gij ij

t

( , , ) ( , , )x y x y= ∫ τ τ
0

,         (1.7) 

x ∈ Ω and 0 < t < T are the space region and time interval where  is not identically zero. &f
 

Sources of seismic disturbances  
 We will consider internal sources only (earthquakes). In this case any external forces 
are absent. We must then set 0≡f in equation (1.1), so that the only solution that satisfies 
the homogeneous initial (1.3) and boundary (1.4) conditions, as well as Hook’s law (1.2) will 
be .  Non-zero displacements cannot arise in the medium, unless at least one of the 
above conditions is not true. 

0≡u

Following Backus and Mulcahy, 1976, we assume seismic motion to be caused by a departure 
from ideal elasticity (from Hook’s law) within some volume of the medium Ω at some time 
interval 0 < t < T. 

Let u(x,t) be the actual displacements, σ(x,t) - correspondent stresses, if Hook’s law is 
valid, s(x,t) - actual stresses. 
Let the difference  
Γ(x,t) = σ(x,t) - s(x,t),         (1.8) 
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called the stress glut tensor or moment tensor density, is not identically zero for 0 < t < T  and 
x ∈ Ω.  
Τ  we define as source duration, and Ω - source region. Within this region and time interval 
(and only there) the tensor is not identically zero as well. ),( txΓ&

Replacing σ(x,t) by s(x,t) in equation (1.1), using definition (1.8) and the absence of 
external forces ( 0≡f ) we can rewrite the motion equation (1.1) in form 
ρ && ,u si i j= j  
or 
ρ σ&& ,u i i j j= + g i

i j j

τ

τ Σ

         (1.9) 
where 
g i = − Γ ,  .         (1.10) 

 
Equation (1.10) defines the equivalent force g.  Using formula (1.6) with fi replaced by gi , 
definition (1.10) and Gauss theorem we have for displacements 

u t d H t dVi

T

ij k jk y( , ) ( , , )& ( , ),x x y y= −∫ ∫τ τ
0 Ω

Γ ,      (1.11) 

where Hij  is differentiated with respect to yk . 
If the inelastic motions are concentrated at a surface Σ, then 

u t d H t di

T

ij k jk y( , ) ( , , )& ( , ),x x y y= −∫ ∫τ τ
0 Σ

Γ .      (1.12) 

 
Relation of stress glut (moment tensor density) with classic definition of moment tensor M : 

y

T

dVtdt∫∫
Ω

= ),(
0

yΓM &  .        (1.13) 

Normalizing moment tensor we define seismic moment M0 :  

M=M0m , where tensor m is normalized by condition , m∑
=

==
3

1,

2T 2)tr(
ji

ijmmm T is transposed 

tensor m.  
 
Stress glut moment for special types of seismic sources 
1. Discontinuity of displacement ∆u at a surface Σ  in isotropic medium (stress is continuous): 

)].,()(),()([
)(),(),(

tuntun
ntut

ijji

ijkkij

xxxx
xxx

∆+∆+

∆=Γ

µ

δλ
     (1.14) 

Here n(x) is the normal to the surface Σ, and seismic disturbances are given by formula 
(1.12). 
2. In the case of tangential (shear) dislocation we have 

0≡∆ kk nu and formula (1.14) takes form 
)].,()(),()([),( tuntunt ijjiij xxxxx ∆+∆=Γ µ     (1.15) 

3. Instant point tangential dislocation occurred in the point x=0 at time t=0: 
),()(),( 0 xx δδ tmMt ijij =Γ&        (1.16) 

where ijjiij ananm +=  , a u= u∆ ∆/| |  and  .||0 u∆= µM  
Phenomena of matrix m 
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Trm = 0. The eigenvalues of matrix m are: 1, -1 and 0. The eigenvector correspondent to 1 
defines the direction of maximum extension, and the eigenvector correspondent to -1 defines 
the direction of maximum compression. Such a source is called double couple. 

 
As it follows from formula (1.12) an instant point double couple excites a 

displacement field of the form 
klliki mtHMtu ),,(),( ,0 0xx = .        (1.17) 

We have for Fourier transforms H(x,y,ω) and G(x,y,ω) from equation (1.7): 

ω),,(
iω
1ω),,( yxGyxH = ,        (1.18) 

where i is the imaginary unit, and ω is angular frequency. 
As result the spectrum of displacements is given by formula 

ω),,(
iω
1ω),( ,0 0xx likkli GmMu = .       (1.19) 

 
Relation between the displacement field and stress glut moments 
 We assume that following product can represent the time derivative of stress glut tensor: 

mxx ),(),( tft =Γ& ,         (1.20) 
where  is non-negative function and m is a uniform normalized moment tensor.  f t( , )x
The moment  of spatial degree l and temporal degree n with respect to point q and 
instant of time τ is a tensor of order l and is given by formula 
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xq ,    (1.21) 

k1,…,kl=1,2,3. 
Replacing Hij(x,y,t-τ) in equation (1.11) by its Taylor series in powers of y and in powers of 
τ, we get: 
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Using formulae (1.18) and (1.22) we have following equation for the spectrum of 
displacements: 

0yyx0x =
−

∞

=

∞

= ∂
∂

∂
∂

⋅⋅⋅
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ij
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i Gfm
nl
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l yyy
.  (1.23) 

Here we assume that the point y=0 and the instant t=0 belong to the source region and the 
time of the source activity respectively. 
 When the spectra of displacements ui(x,ω) and Green’s function Gij(x,y,ω) have been 
low pass filtered, the terms in equation (1.23) start to decrease with l and n increasing at least 
as rapidly as (ωT)l+n  (T is the source duration, and ωT<1), and one might then restrict to 
considering finite sums only. 
 We will take into account in the following sections only the first terms in formula 
(1.23) for . 2≤+ nl
 
II. Source inversion in moment tensor approximation 
 

The first term in (1.23) corresponding to l=0, n=0, describes the spectra of displacements 
ui(x,ω) excited by an instant point source (compare with formula (1.19) taking into account 
that seismic moment is equal to zero moment of function f(x,t):  M0=f(0,0)). For a source with 
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nonzero size and duration this term approximates ui(x,ω) with high accuracy for  periods 
much longer then source duration. Performing the inversion of long period seismic waves we 
describe the earthquake by an instant point source. As it was mentioned in previous section, 
an instant point source can be given by moment tensor - a symmetric 3x3 matrix M . Seismic 

moment  is defined by equation M0 M0
1

2= tr( )TM M , where M  is transposed moment 

tensor , and .  Moment tensor of any event can be presented in the 

form  M , where matrix  is normalized by condition . 

T

M tr( )T

,
M M =

=
∑ Mij
i j

2

1

3

m= M0 m tr( )Tm m = 2
We’ll consider a double couple instant point source (a pure tangential dislocation) at a 

depth h. Such a source can be given by 5 parameters: double couple depth, its focal 
mechanism which is characterizing by three angles: strike, dip and slip or by two unit vectors 
(direction of principal tension T and direction of principal compression P) and seismic 
moment . Four of these parameters we determine by a systematic exploration of the four 
dimensional parametric space, and the 5-th parameter  - solving the problem of 
minimization of the misfit between observed and calculated surface wave amplitude spectra 
for every current combination of all other parameters. 

M0

M0

Under assumptions mentioned above the relation between the spectrum of  displacements 
 and moment tensor M  can be  expressed  by formula (1.19) rewritten below in 

slightly different form:  
ui ( , )x ω

)],,([
i
1),( ω

∂
∂

ω
=ω yxx ij

l
jli GMu

y
                               (2.1) 

i,j = 1,2,3 and the  summation  convention for repeated subscripts is used. Gij ( , , )x y ω  in 
equation (2.1) is the spectrum of Green function for the chosen model of medium and wave 
type (see Levshin, 1985; Bukchin, 1990), y - source location. We will discuss the inversion of 
surface wave spectra, so Gij ( , , )x y ω is the spectrum of surface wave Green function. We 
assume that the paths from the earthquake source to seismic stations are relatively simple and 
are well approximated by weak laterally inhomogeneous model (Woodhouse, 1974; Babich et 
al., 1976). The surface wave Green function in this approximation is determined by the near 
source and near receiver velocity structure, by the mean phase velocity of wave, and by 
geometrical spreading. We assume that waves propagate from the source to station along 
great circles. Under these assumptions the amplitude spectrum | | defined by formula 
(2.1) does not depend on the average phase velocity of the wave. In such a model the errors in 
source location do not affect the amplitude spectrum (Bukchin, 1990). The average phase 
velocities of surface waves are usually not well known. For this reason as a rule we use only 
amplitude spectra of surface waves for determining source parameters under consideration. 
We use observed surface wave phase spectra only for very long periods. Correcting the 
spectra for attenuation we use laterally homogeneous model for quality factor. At the end of 
this lecture we will consider the effects related to surface wave focusing caused by rays 
deviation from great circle, and to laterally inhomogeneity of attenuation model. 

ui ( , )x ω

 
Surface wave amplitude spectra inversion 
     If all characteristics of the medium are known, the representation (2.1) gives us a system of 
equations for parameters defined above. Let us consider now a grid in the space of these 4 
parameters. Let the models of the media be given. Using formula (2.1)  we  can  calculate  the  
amplitude spectra of surface waves at the points of  observation for every possible 
combination of values of the varying  parameters.  Comparison of calculated and observed 
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amplitude spectra give us a residual for every point of observation, every wave and every 
frequency . Let  be any observed value of the spectrum, i = 1,…,N; -   

corresponding residual of | |. We define the normalized amplitude residual by 
formula  

ε ( )i

ω u i( ) ( , )x ω ε amp
( )i

u i( ) ( , )x ω

2/1N

1

2
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1

2
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⎦
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⎠

⎞
⎜
⎝

⎛ ω|⎟
⎠

⎞
⎜
⎝

⎛ ε=,(ε ∑∑
=

)(

=

)(

i

i

i

uh
i

xPT .  (2.2) 

 
The optimal values of the parameters that minimize εamp we consider as estimates of these 
parameters. We search them by a systematic exploration of the four-dimensional parameter 
space. To characterize the degree of resolution of every of these source characteristics we 
calculate partial residual functions. Fixing the value of one of varying parameters we put in 
correspondence to it a minimal value of the residual εamp on the set of all possible values of 
the other parameters. In this way we define one residual function on scalar argument and two 
residual functions on vector argument corresponding to the scalar and two vector varying 
parameters: , and ε (h h ) ε (T T ) ε (P P ) . The value of the parameter for which the 
corresponding function of the residual attains its minimum we define as estimate of this 
parameter. At the same time these functions characterize the degree of resolution of the 
corresponding parameters. From geometrical point of view these functions describe the lower 
boundaries of projections of the 4-D surface of functional ε on the coordinate planes. A 
sketch illustrating the definition of partial residual functions is given in figure 1.  
Here one of 4 parameters is picked out as ‘parameter 1’, and one of coordinate axis 
corresponds to this parameter. Another coordinate axis we consider formally as 3-D space of 
the rest 3 parameters. Plane Σ is orthogonal to the axis ‘parameter 1’ and cross it in a point p0 
. Curve L is the intersection of the plane Σ and the surface of functional ε. As one can see 
from the figure the point ε1(p0) belong to the boundary of projection of the surface of 
functional ε, and at the same time it corresponds to a minimal value of the residual ε on the 
set of all possible values of the other 3 parameters while ‘parameter 1’ is equal to the value p0. 
So, as it is accepted in engineering we characterize our surface by its 4 projections on 
coordinate planes. 
    It is well known that the focal mechanism cannot be uniquely determined from surface 
wave amplitude spectra. There are four different focal mechanisms radiating the same surface 
wave amplitude spectra. These four equivalent solutions represent two pairs of mechanisms 
symmetric with respect to the vertical axis, and within the pair differ from each other by the 
opposite direction of slip.  
     To get a unique solution for the focal mechanism we have to use in the inversion additional 
observations. For these purpose we use very long period phase spectra of surface waves or 
polarities of P wave first arrivals. 
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Joint inversion of surface wave amplitude and phase spectra 
   Using  formula (2.1) we can calculate for chosen frequency range the phase spectra of 
surface waves at the points of observation for every possible combination of values of the 
varying  parameters. Comparison of calculated and observed phase spectra give us a residual 

for every point of observation, every wave and every frequency . We define the 
normalized phase residual by formula  
ε ph

( )i

ω

ε ( ϕ , ε
( )

p h p hh
i

i
, , ) / N

N /

T P =
⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

=
∑1 2

1

1 2

π
.      (2.3) 

 
We determine the joint residual ε by formula 
ε ε ε= − − −1 1 1( ) (p h a m p ) .        (2.4) 
To characterize the resolution of source characteristics we calculate partial residual functions 
in the same way as was described above. 
 
Joint inversion of surface wave amplitude spectra and P wave polarities 

Calculating radiation pattern of P waves for every current combination of parameters we 
compare it with observed polarities. The misfit obtained from this comparison we use to 
calculate a joint residual of surface wave amplitude spectra and polarities of P wave first 
arrivals. Let be the residual of surface wave amplitude spectra, - the residual of P 
wave first arrival polarities (the number of wrong polarities divided by the full number of 
observed polarities), then we determine the joint residual 

ε a m p ε p

ε by formula 
ε ε ε= − − −1 1 1( ) (p a m )p

− +

.       (2.5) 
For this type of inversion we calculate partial residual functions to characterize the resolution 
of parameters under determination in the same way as it was described for two first types. 

Before inversion we apply to observed polarities a smoothing procedure (see Lasserre et 
al., 2001), which we will describe here briefly. 

Let us consider a group of observed polarities (+1 for compression and -1 for dilatation) 
radiated in directions deviating from any medium one by a small angle. This group is 
presented in the inversion procedure by one polarity prescribing to this medium direction. If 
the number of one of two types of polarities from this group is significantly larger then the 
number of opposite polarities, then we prescribe this polarity to this medium direction. If no 
one of two polarity types can be considered as preferable, then all these polarities will not be 
used in the inversion. To make a decision for any group of n observed polarities we calculate 
the sum , where nm n n= −+ + is the number of compressions and  is the number 
of dilatations. We consider one of polarity types as preferable if |m| is larger then its standard 
deviation in the case when +1 and -1 appear randomly with this same probability 0.5. In this 
case n

n n n− = −

+ is a random value distributed following the binomial low. For its average we have 
, and for dispersion M n n( ) .+ = 05 D n n( ) .+ = 0 25 . Random value m is a linear function of n+ 

such that m n= n−+2 . So following equations are valid for the average, for the dispersion, 
and for the standard deviation σ of value m  
M m M n n n n( ) ( )= − = − =+2 0 ,   D m D n n( ) ( )= =+4 ,   and  σ( )m n= . 

As a result, if the inequality | m|≥ n  is valid then we prescribe +1 to the medium direction if 
, and -1 if m > 0 m < 0 . 
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Example of application 
We illustrate the technique by results of its application for a study of January 22, 2003 

Colima, Mexico, Earthquake, Mw=7.4. Using frequency-time and polarization analysis 
programs (see Lander, 1989) we analyzed fundamental Love and Rayleigh modes recorded by 
worldwide seismic networks. We selected for moment tensor and source depth inversion 
records of 14 stations. We used the signals of a good quality and normal polarization. The 
distribution of selected stations with respect to the epicenter is given in figure 2. 
Analyzing the long period part of the spectra (periods from 100 to 250 seconds) we 
determined the following focal mechanism of the source: strike 300°, dip 15°, and rake -90°. 
The seismic moment estimate is equal to 0.18·1021N·m. The four equivalent solutions 
obtained by inversion of amplitude surface wave spectra are presented in figure 3. The 
procedure of polarity smoothing is illustrated by figure 4 (the value of angle was taken equal 
to 10º). The focal mechanism obtained by joint inversion of surface wave amplitude spectra 
and first arrival polarities is shown in figure 5. In the same figure we show the polarities of 
first arrivals. As can be seen from comparison of figures 3 and 5 the last solution does not 
differ from one of four equivalent solutions obtained by inversion of amplitude surface wave 
spectra. 
The source depth is imperfectly resolved because of low sensitivity of very long surface wave 
spectra to relatively small changes of source depth. The residual function for the source depth 
is given in figure 6. Our estimate of depth is 28 km. 
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III. Second moments approximation. Characteristics of source shape and evolution in 
time. 
 
     We present here a technique based on the description of seismic source distribution in 
space and in time by integral moments (see Bukchin et al., 1994; Bukchin, 1995; Gomez, 
1997 a, b). We assume that the time derivative of stress glut tensor can be represented in 
form (1.20). Following Backus and Mulcahy, 1976 we will define the source region by the 
condition that function  is not identically zero and the source duration is the time 
during which nonelastic motion occurs at various points within the source region, i.e.,  
is different from zero. 

&Γ

f t( , )x
f t( , )x

     Spatial and temporal integral characteristics of the source can be expressed by 
corresponding moments of the function  (Backus, 1977a; Bukchin et al., 1994). These 
moments can be estimated from the seismic records using the relation between them and the 
displacements in seismic waves, which we will consider later. In general case stress glut rate 
moments of spatial degree 2 and higher are not uniquely determined by the displacement field 
(Pavlov, 1994; Das & Kostrov, 1997). But in the case when equation (1.20) is valid such 
uniqueness takes place (Backus, 1977b; Bukchin, 1995). 

f t( , )x

    Following equations define the spatio-temporal moments of function of total degree 
(both in space and time) 0, 1, and 2 with respect to point q and instant of time τ. 

f t( , )x

f dV f t d
V
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= ∫ ∫
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x f dV f t x q dti
V

i i
( , ) ( ) ( , )( )1 0
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q x= −∫ ∫
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0

τ τ= −∫ ∫
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τ τ= −∫ ∫
∞
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,      (3.1) 

f dV f t t dt

f dV f t x q ti
V

i i
( , ) ( , ) ( , )( )( )1 1
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q xτ = −∫ ∫
∞

  f dV f t x q x qij
V

i i j j
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∞

     Using these moments we will define integral characteristics of the source. Source location 
is estimated by the spatial centroid  of the field  defined as qc f t( , )x
q f 0c

( ) ( ) /= 1 0
0

, M  ,           (3.2) 
where  is the scalar seismic moment. M f0

0 0= ( , )

Similarly, the temporal centroid τ c  is estimated by the formula 
τ c

( ) ( ) /= f ,0 1
00 M  .                                    (3.3) 

The source duration is estimated by ∆ t 2 ∆ τ , where 
( τ2∆τ) = f ,( )

c( ) /0 2
0M  .                                 (3.4) 

The spatial extent of the source is described by matrix W, 
W f q= ( )

c( ) /2 0
0

, M  .                                   (3.5) 
The mean source size in the direction of unit vector r is estimated by value , defined by 
formula 

2lr

lr
2 = r WrT ,                                           (3.6) 

where is the transposed vector. From (3.5) and (3.6) we can estimate the principal axes of 
the source. There directions are given by the eigenvectors of the matrix W, and the lengths are 
defined by correspondent eigenvalues: the length of the minor semi-axis is equal to the least 
eigenvalue, and the length of the major semi-axis is equal to the greatest eigenvalue. 

r T
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     In the same way, from the coupled space time moment of order (1,1) the mean velocity v 
of the instant spatial centroid (Bukchin, 1989) is estimated as 
v w= / ( 2∆τ)  ,                                        (3.7) 
where   . w f q= ( )

c c( , ) /1 1
0

, Mτ
Now we will consider the low frequency part of the spectra of the ith component of 
displacements in Love or Rayleigh wave ui ( , )x ω . It is assumed that the frequency ω  is 
small, so that the duration of the source is small in comparison with the period of the wave, 
and the source size is small as compared with the wavelength. It is assumed that the origin of 
coordinate system is located in the point of spatial centroid q (i.e. ) and that time is 
measured from the instant of temporal centroid, so that 

c qc = 0
τ c = 0 . With this choice the first 

degree moments with respect to the spatial origin x=0 and to the temporal origin t=0 are zero, 
i.e.  and .  f 0( ) ( )1 0, = 0 f ,( ) ( )0 1 0 0=
      Under this assumptions, taking into account in formula (1.23) only the first terms for 

 we can express the relation between the spectrum of displacements  and the 
spatio-temporal moments of the function by following formula (Bukchin,1995) 

2≤+ nl ui ( , )x ω
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ij
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00 x 0

y y y
ω x 0

ω
ω ,    (3.8) 

i,j,l,m,n = 1,2,3 and the  summation  convention for repeated subscripts is used.  Gij ( , , )x y ω  
in equation (3.8) is the spectrum of Green function for the chosen model of medium and wave 
type. We assume that the paths from the earthquake source to seismic stations are well 
approximated by weak laterally inhomogeneous model. Under this assumption, as it was 
mentioned above, the amplitude spectrum | ui ( , )x ω | defined by formula (3.8) does not depend 
on the average phase velocity of the wave, and the errors in source location do not affect the 
amplitude spectrum. 
     If all characteristics of the medium, depth of the best point source and seismic moment 
tensor are known (determined, for example, using the spectral domain of longer periods) the 
representation (3.8) gives us a system of linear equations for moments of the function 

of total degree 2. But as we mentioned considering moment tensor approximation the 
average phase velocities of surface waves are usually not well known. For this reason, we use 
only amplitude spectrum of surface waves for determining these moments, in spite of non-
linear relation between them. 

f t( , )x

     Let us consider a plane source. All moments of the function of total degree 2 can be 
expressed in this case by formulas (3.2)-(3.7) in terms of 6 parameters: - estimate of 
source duration, l

f t( , )x
∆ t

max - estimate of maximal mean size of the source,  ϕl - estimate  of  the 
angle between the direction  of maximal size and strike axis, lmin - estimate of minimal mean 
size of the source, v - estimate of the absolute value of instant centroid mean velocity v and ϕv 
-  the angle between v and strike axis. 
     Using the Bessel inequality for the moments under discussion we can obtain the following 
constrain for the parameters considered above (Bukchin, 1995): 

1sincos
2
min

2

2
max

2
22 ≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ϕ
+

ϕ
∆

ll
tv ,                             (3.9) 

where ϕ is the angle between major axis of the source and direction of v. 
Assuming that the source is a plane fault and representation (1.20) is valid let us consider a 
rough grid in the space of 6 parameters defined above. These parameters have to follow 
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inequality (3.9). Let models of the media be given and the moment tensor be fixed as well as 
the depth of the best point source. Let the fault plane (one of two nodal planes) be identified. 
Using  formula (3.8)  we  can  calculate  the  amplitude spectra of surface waves at the points 
of observation for every possible combination of values of the varying  parameters. 
Comparison of calculated and observed amplitude spectra give us a residual for every 
point of observation, every wave and every frequency 

ε ( )i

ω . Let  be any observed 
value of the spectrum, i = 1,…,N; - corresponding residual of | u |. We define the 
normalized amplitude residual by formula  
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The optimal values of the parameters that minimize ε we consider as estimates of these 
parameters. We search them by a systematic exploration of the six dimensional parameter 
space. To characterize the degree of resolution of every of these source characteristics we 
calculate partial residual functions in the same way as was described in previous section. We 
define 6 functions of the residual corresponding to the 6 varying parameters: ε (∆ ∆t t ) , 

, , ε (l l
m a x m a x ) ε (l l

m in m in ) ε ( ϕϕ l l ) , )vv (ε and )vv
(ϕε ϕ . The value of the parameter 

for which the corresponding function of the residual attains its minimum we define as 
estimate of this parameter. At the same time these functions characterize the degree of 
resolution of the corresponding parameters.  
 
Example of application 
We illustrate the technique by results of its application for a study of the same Colima 
earthquake, which we considered above.  
To estimate duration and geometry of the source we have used amplitude spectra of 
fundamental modes of Love and Rayleigh waves in the spectral domain from 50 to 100 
seconds. We selected 11 Love wave records and 9 Rayleigh wave records from FDSN 
stations. Their azimuthal distribution is shown in figure 7. 
We fixed source depth (28km), focal mechanism and seismic moment obtained from analysis 
of long period surface wave spectra considered above. The nodal plane dipping to the 
Northeast was identified as a fault plane.  
The inversion (figure 8) yields a characteristic duration of 10 s, a characteristic source length 
of 50 km. The minor ellipse axis length, i,e, the characteristic width, is poorly resolved, lying 
between 0 and 20 km. The average instant centroid velocity estimate is about 3 km/s. The 
angles giving the ellipse and velocity vector orientations are measured clockwise on the foot 
wall starting from the strike axis. They are consistent with each other and correspondent 
residual functions, calculated while all other parameters were fixed to their optimum values, 
attain their minimum values at 105°.  
The propagation of rupture may be characterized by directivity ratio d proposed by McGuire 
et al. (2002). This parameter is defined as the ratio of the average velocity of the instant 
centroid over the apparent rupture velocity equal to lmax /∆t. For a unilateral rupture where slip 
nucleates at one end of a rectangular fault and propagates to the other at a uniform rupture 
velocity with a uniform slip distribution, d = 1. However, for a symmetric bilateral rupture 
that initiates in the middle and propagates to both ends of a fault at uniform rupture velocity 
with uniform slip distribution, d = 0. Predominantly bilateral ruptures correspond to 

 while predominantly unilateral ruptures correspond to . We find d = 
0.6 for our model. This value shows that unilateral (northward) rupture propagation is slightly 
preferred.  

5.00 <≤ d 15.0 ≤< d
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We compared our estimate of source duration with similar integral estimate calculated as 
second moment of moment-rate function (see figure 9), calculated by Yagi (Home Page, 
2003). The value obtained for this estimate is equal to 10.5 s, which is very close to our 
estimate of source duration.  
The source model characterized by considered integral estimates is schematically represented 
in figure 10.  
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IV. Surface wave focusing 
 

As it was mentioned above, calculating surface wave Green function we assume that 
waves propagate along great circles. Practically all applications related to surface wave 
interpretation are based on this assumption. At the same time it is known from tomography 
studies that lateral variations of surface wave phase velocity can attain 10%. These variations 
can cause significant deviation of wave traces from great circles and related to it anomalies of 
geometrical spreading (focusing effects). 

A numerical modeling of these effects was performed in collaboration with 
T.Yanovskaya, A.Mostinsky, J.-P. Montagner, and E. Beucler. The modeling is based on a 
new technique for kinematic ray tracing and dynamic ray tracing on a spherical surface, 
developed by T.Yanovskaya. We will not consider the technique in this lecture. We will show 
examples of its application and results of comparison of predicted and observed amplitude 
anomalies related to surface wave focusing. 

For a given map of phase velocity anomalies and location of earthquake epicenter we 
perform ray tracing for any location of receiver or for a greed covering the Earth surface. 

Using this technique and recent global phase velocity maps we calculate spectral 
anomalies for fundamental Rayleigh mode in the period range from 60 to 150 seconds.  

Observed surface wave spectra depend on elastic model of the Earth and on its anelastic 
model, determining the wave attenuation. Deviation of these two models from spherical 
symmetry effect on wave amplitude spectra. We compare these two effects. 

We analyze the fitting between calculated and observed focusing effects using records of 
the earthquakes occurred in different seismic regions with magnitude Ms varying from 6 to 7 
(over 3000 measurements).  
 
Calculation of surface wave spectra 
As it was mentioned above we approximate the elastic model of the Earth by a weak laterally 
inhomogeneous model. The spectrum of displacements u(ω) in surface wave generated by an 
instant point source in such a model (Levshin et al., 1989) can be expressed in form   
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Here ω is the angular frequency; xs and xr are the coordinates of the source and of the 
registration point; γ  is the ray azimuth in the source; c and v – phase and group velocity of the 
wave; χ  is the radiation pattern of the source dependent on the moment tensor, eigen 
functions and their derivatives in the source vicinity, and direction of radiation; U is the eigen 
function describing the distribution of displacements in the wave along the vertical direction; 
q is a factor describing the wave attenuation; I is the energy integral of eigen function; s and r 
are the indexes of the source and receiver correspondently; J is the geometrical spreading; τ is 
the wave arrival time. So, the surface wave spectrum in this approximation is determined by 
the near source and near receiver velocity structure, by the averaged along the wave path 
phase velocity and attenuation, and by geometrical spreading. For spherical symmetric Earth 
model we have τ = R∆/c0,  q = exp[-ωQ0

-1R∆/(2c0)],  J = Rsin∆. Here R is the Earth radius, ∆ 
is the epicentral distance,  c0 is the value of phase velocity of the wave, and Q0

-1 is the 
attenuation coefficient. In the case of laterally inhomogeneous medium we calculate the 
arrival time, attenuation and geometrical spreading of the wave integrating the systems of 
equations for ray tracing. 
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Numerical modeling of wave field anomalies 
We perform numerical modeling of the effects due to lateral inhomogeneity of the elastic 
Earth model using global phase velocity anomaly maps for fundamental Rayleigh mode in the 
period range from 60 to 150 seconds (Beucler, 2002). An example of such a map for period 
75 seconds is given in figure 11. The map is constructed in azimuthal equidistant projection 
for two hemispheres. The velocity anomalies errors are measured in percentage to the 
reference velocity value for spherically symmetric model PREM. 

For any location of earthquake epicenter we perform ray tracing for any location of 
receiver or for a set of rays covering the Earth surface. 

An example of a scheme of rays for fundamental Rayleigh mode for period 75 seconds is 
presented in figure 12. The epicenter is located in Indonesia. The rays are drawn in azimuthal 
equidistant projection. The deviations of rays from great circle arcs are small at distances not 
exceeding 90°, therefore the rays are shown for hemisphere centered at the epicenter’s 
antipode       (90° < ∆ < 180°), where these deviations become significant.  As can be seen 
from the figure a multipathing area bounded by caustics appears in the vicinity of epicenter’s 
antipode and even at large distances from antipode. Geometrical spreading is vanishing at the 
point where ray touches a caustic, and becomes negative after the tangency point. Numerical 
calculations show that among the rays passing any point of multipathing area there is at least 
one ray that has touched a caustic. These features of ray field are determined not only by 
lateral inhomogeneity of the Earth but also by the fact that rays are propagating on a sphere.   

We measure amplitude anomaly caused by ray deviation from great circle arc by focusing 
coefficient f, defined as ratio of spectral amplitude in the case of lateral inhomogeneous Earth 
model and spectral amplitude of the same wave for correspondent spherically symmetric 
model. As it follows from formula (1) the value of  f  can be calculated by formula 

Jf /sin ∆= , where geometrical spreading J is calculated by dynamic ray tracing. 
The amplitude anomaly map correspondent to the scheme of rays for fundamental 

Rayleigh mode for period 75 seconds considered above is represented in figure 13. The map 
is constructed in azimuthal equidistant projection for two hemispheres centered at the 
epicenter and at the epicenter’s antipode. The amplitude anomalies are calculated at the rays 
covering the entire Earth surface except the multipathing area that is shaded gray. As can be 
seen from the figure generally sufficiently strong anomalies appear at epicentral distances      
∆ > 90°. But they can be significant at shorter distances as well. 
 
Effects of aspherical elastic and anelastic models on surface wave amplitude spectra 
Deviation from spherical symmetry of anelastic model, determining the wave attenuation, 
effects on surface wave amplitude spectra as well as lateral inhomogeneity of velocity 
structure. We measure correspondent amplitude anomaly by relative q factor, defined 
similarly to focusing coefficient as ratio of spectral amplitude in the case of aspherical 
anelastic model and spectral amplitude of the same wave for correspondent spherically 
symmetric model. Its value is equal to the ratio of values of factor q in formula (1) calculated 
by integrating along the ray for two mentioned models. 

We compare these amplitude anomalies with anomalies caused by rays focusing for 
fundamental Rayleigh mode at period 150 seconds. We use global map of local attenuation 
(Romanowicz, 1995) given by spherical harmonics expansion of order 10. 

We selected 25 seismofocal zones from all over the world (see figure 14). Considering 
every zone as epicenter we calculated both effects for 250 locations of stations of the 
worldwide seismic network, in all 6138 traces. If the station was found in a multipathing area 
it was rejected from the consideration. The results of comparison of effects under 
consideration are represented by 2D diagram for relative q factor and focusing coefficient in 
figure 15. Every circle at the diagram corresponds to one of traces. As can be seen from the 
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figure the focusing effect caused by lateral inhomogeneity of the elastic Earth model can be 
significantly larger than the effect related to the lateral inhomogeneity of attenuation model, 
which does not exceed 20% for fundamental Rayleigh mode at period 150 seconds. Relying 
on this observation and since global aspherical models for Rayleigh wave attenuation for 
periods shorter than 100 seconds are not available we use in following analysis Q-1 values 
given by spherically symmetric model PREM. 
 
Comparison of predicted focusing effect with observations  
We performed the comparison of predicted and observed amplitude anomalies in fundamental 
Rayleigh wave using broadband records of 106 earthquakes (6 < Ms <7) located in 25 seismic 
zones presented in figure 14. Using frequency-time analysis technique and floating filtering 
(Levshin et al., 1989) we isolated fundamental Rayleigh mode for about 1400 traces. We 
don’t consider signals recorded within the multipathing area or at distances from caustic 
exceeding one and a half of wavelength. We use records of a good quality, with significant 
signal to noise ratio and normal polarization in period range from 60 to 150 seconds. We 
calculated amplitude spectrum for periods 60, 75, 100 and 150 seconds for all filtered records. 
The spectra were corrected for the instrument response. Calculating synthetic spectra by 
formula (1) we used normalized moment tensors given by CMT solutions from Harvard 
catalog, and recalculated seismic moments from analyzing records. The structure models in 
source and station vicinities were given by 3SMAC model (Ricard at al., 1996). For every 
observed value of amplitude spectra we calculate two synthetic values: one is calculated 
taking into account the focusing effect, and another one – without taking it into account. 
Analyzing the fitting of these two synthetic spectra with observed spectral amplitudes we try 
to find if taking into account the focusing effect reduces the misfit significantly. We calculate 
the focusing coefficient f by shooting, integrating the ray tracing systems. At one time with 
focusing coefficient f we calculate the average along the ray values of errors of velocity 
anomalies determination β, which characterize the reliability of  f estimate. 
 
Data sampling  
The total number of selected measurements is equal to 3256. We consider different samples of 
observations and correspondent synthetics according to the value of focusing coefficient f and 
to the value of average error β. Along with samples containing traces characterized by any 
value of f from its entire range we consider correspondent samples containing traces 
characterized by strong focusing effect (f > 1.25 or f < 0.75). Characterizing traces for every 
of concerned periods by error ratio r = β / βmax where βmax is the maximum value of error β 
for this period, we consider samples with different value of r measured in percents. 

The size of different samples for entire range of focusing effect is shown in table 1, and 
for traces with strong focusing effect – in table 2. 

 
Period r ≤100 r ≤ 80 r ≤ 60 r ≤ 40 r ≤ 20

Mix of 4 period 3256 3177 2504 1370 431
60s 802 777 573 277 50 
75s 895 873 690 327 65 
100s 872 848 666 398 147
150s 687 679 575 368 169

 
Table1. Data sampling with respect to the error of velocity anomalies determination for  
entire range of focusing effect. 
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Period r ≤ 100 r ≤ 80 r ≤ 60 r ≤ 40 r ≤ 20

Mix of 4 period 786 751 564 259 72 
60s 263 251 168 78 15 
75s 276 263 208 77 15 
100s 167 157 122 61 23 
150s 80 80 66 43 19 

 
Table2. Data sampling with respect to the error of velocity anomalies determination for  
strong  focusing effect. 

 
The distribution density of the number of measurements with respect to the value of 

focusing coefficient for different samples according to the error ratio r is shown in figure 16.  
Characterizing the fitting between synthetic and observed amplitude spectra we consider 

relative misfit as well as absolute misfit. 
 
Relative misfit  
We characterize the fitting between synthetic and observed amplitude spectra by value 

.)/ln(  = obssyn uuξ  Here usyn is the value of synthetic amplitude spectra and uobs is the value of 
observed amplitude spectra. In the case of ideal fitting ξ is vanishing. When the values of 
synthetic and observed amplitude spectra are close ξ coincides with the value of relative error 
of the theoretical estimate.  

The histograms for ξ value calculated for different samples are presented in figure 17. In 
the case of ideal fitting between synthetic and observed amplitude spectra the ξ histogram 
should represent a delta function concentrated in zero. For every sample we show two 
histograms: one corresponds to synthetic amplitude spectra calculated taking into account the 
focusing effect, another one corresponds to synthetic amplitude spectra calculated without 
taking into account this effect. As one can see the improvement of fitting due to correction of 
spectra for focusing effect becomes remarkable when we consider the traces characterized by 
small enough error ratio r. Particularly it is clear for the sample correspondent to strong 
focusing effect.  

We measure the fitting between synthetic and observed amplitude spectra by rms value of 

ξ defined by formula ∑
=

=
N

i
i Ns

1

2 /ξ , where N is the number of observations. In the case of 

ideal fitting s is vanishing. Let s0 be the s value calculated without taking into account the 
focusing effect, and scorr corresponds to synthetic amplitude spectra corrected for it. Then the 
reduction of misfit due to correction for focusing effect can be calculated as ∆s = s0 - scorr. The 
ratio ∆s/s0 for the mix of four concerned periods and for every period separately is shown in 
figure 18. The ratio characterizing the reduction of misfit is given as a function of the upper 
boundary of the error ratio r. We present separately the results for samples correspondent to 
entire range of focusing effect and the results for traces with strong focusing effect.  

Along with reduction of relative misfit we calculate its normalized value. Let 

∑
=

=
N

i
i Ns

1

2
0 /ξ  corresponds to synthetic amplitude spectra calculated without taking into 

account the focusing effect. As it follows from formula (1) and from the definition of focusing 
coefficient f we have for corrected spectra  
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Let us introduce the following notation:  
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It can be shown that following inequality is valid: 
fcorr ssss ≤−=∆ 0  

We define the ratio as normalized reduction of misfit. The results for normalized 
reduction are presented in figure 19 in the same form as for reduction in figure 18. As one can 
see the values of normalized reduction for large samples correspondent to entire range of 
focusing effect and for relatively small samples with traces characterized by strong focusing 
effect are comparable. This fact makes the reduction estimates for strong focusing effect 
shown in figure 18 more reliable. 

fss /∆

 
Absolute misfit – estimate1 
Let 

iqε and 
icorrqε  be the absolute misfit between synthetic and observed amplitude spectra for 

i-th measurement of q-th earthquake calculated without taking into account the focusing effect 
and taking it into account correspondingly. Let Nq be the number of such measurements, - 

the seismic moment of the q-th earthquake, and 
q

m0

0m  - the earthquake-average value of 
seismic moment. We characterize the misfit for q-th earthquake by rms values of 

iqε and 

icorrqε normalized by seismic moment: 
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We define the earthquake-average reduction of absolute misfit as difference between these 
two values averaged over all earthquakes:  

.corrEEE −=∆  

The ratio EE∆  for the mix of four concerned periods and for every period separately are 
shown in figure 20. Similarly to figures 18 and 19 the ratio characterizing the reduction of 
absolute misfit is given as a function of the upper boundary of the error ratio r. 
 
Absolute misfit – estimate 2  
We characterize the absolute misfit for any sample of data by rms value of misfits 

iqε and 

icorrqε  considered in preceding paragraph, normalized by correspondent seismic moments. Let 
L be the number of earthquakes. We define the misfits calculated without taking into account 
the focusing effect and taking it into account by formulae 
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and the reduction of misfit by correspondent difference  
.corrEEE −=∆  

The ratio EE∆  for the mix of four concerned periods and for every period separately is 
shown in figure 21. 
 
Discussion of results  
As can be seen from presented results the reduction of misfit caused by taking into account 
the focusing effect predominantly grows up with decreasing of the maximum of the error ratio 
r. Such a sensitivity of fitting improvement to the averaged along ray pass accuracy of 
tomography maps is natural. For samples including traces characterized by any value of r (r < 
100%) the reduction of misfit is vanishing or becomes even negative, what means increase of 
misfit. The improvement of fitting becomes considerable for traces characterized by strong 
focusing effect and small error ratio r.  

The results obtained for different periods differ from each other visibly. The most 
significant improvement is achieved for periods 100s and 75 s. The magnitude of focusing 
effect is calculated using velocity anomaly maps. But the sampling of data related to the error 
ratio r is performed on the basis of maps for errors of velocity anomalies determination. So, 
the difference of results for different periods may reflect the different quality of both kinds of 
maps.  

 
Conclusions  
Presented results of numerical modeling and analysis of real seismic records show that 
synthetic and observed Rayleigh wave amplitude spectra are more similar if the focusing 
effect is taken into account. The improvement of the fit of synthetics to observations is 
sensitive to the averaged along ray pass accuracy of tomography maps. It is significant from 
practical point of view for traces with high average accuracy and strong focusing effect 
exceeding the errors due to other factors, such as lateral inhomogeneity of attenuation, errors 
of source parameters determination, scattering effects etc. Focusing effect should be taken 
into account in different applications, such as seismic source study, magnitude measurements, 
and Q estimation. Neglect of large anomalies of geometrical spreading, as well as stronger 
effects, such as caustics and multipathing, may lead to false estimates. 
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