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Landers, 28th June 1992, M=7.3

� ��

Mio USD infra-structural damage, � �� � �

damaged
buildings

� � � � � �

N,

� �� �	 � �

W, right-lateral strike-slip

85 km rupture length,


� �  � � �, � �

max � � �

� �� �

located aftershocks in one year

Example for static and dynamic triggering of earthquakes,

for fault step-over and verification of dynamic rupture models
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Chi-Chi, Taiwan, 21. Sept. 1999, M=7.6

� � ��

death toll,

� �� �� �

injured persons,�� � � � � �

damaged buildings

Largest dataset worldwide of near-flield accelerograms
from strong earthquake (about 650 3-component and
74 6-component station)

”extreme large ground accelerations”,
� �

max � �� � � � �� ,� �

max

	 ��

� �� � � 	

N,

�� � � �� 	

E, oblique reverse faulting

�� �  �� � � rupture,


� � � � � �, � �

max � �� �

complex rupture with ”jumping dislocations”,
rupturing of asperities and barriers

 �� �

aftershocks in one year, triggered aftershocks,
foreshocks
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How does earthquake-rupture work?
1. rupture initiates at the nucleation point

2. a rupture front propagates rapidly over the fault surface

3. high slip-rate occurs at and behind the rupture front

4. rupture may jump between neighbouring faults

5. asperities on the fault may generate inhomogeneous
slip distribution

6. abrupt stopping of the rupture front and possible
reflection and backward propagation

7. nonuniform radiation of elastic waves depending on
fracture mode and fault orientation as well as directivity
effects
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Earthquakes and body forces

Faulting involves complex cracking and rupturing resulting in

a space-time history of slipping motion. The process can be

approximated by a dislocation model with dislocation time

history

� �� �

. The dislocation model can be idealised by an

equivalent force system.
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Earthquake parameter

1. time and location of the rupture initiation

2. time and location of the centroid

3. fault plane orientation and dimension

4. average slip vector

5. slip and rupture history
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Small and large earthquake location

Hypocenter (

�

):

� �

and � �� by fitting arrival-times.

Moment centroid (
�

):
� � �

�
� �

� � � � � �� � � �	 � � �

. and

� 
 � � �
� 
 � � 
 �� �� � 
 �	 � � �

by fitting waveforms.
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Earthquake magnitude and moment

Seismic moment: � � � � �
(rectangular planes for large earthquakes, i.e.

� � �
)

Moment magnitude � � �	 
 � � �
�

� � ��
�

� �
(in dyne cm).

Examples:
event

�

(

� � �

)

�� � 	
( �) � � � (

� �� �)
Loma Prieta 1989 40 x 15 1.7 7.1 6.9

�
�

�� � � ��

San Francisco 1906 450 x 10 4 7.8 7.8

�
�


� �� � �

Alaska 1964 500 x 300 7 8.4 9.1

�
�

� � �� ��

Chile 1960 800 x 200 21 8.3 9.5

�
�


� �� � �
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Single force radiation pattern
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Single couple radiation pattern
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Double couple radiation pattern
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Earthquake radiation pattern

two orthogonal nodal planes for P

three nodal points for S

S-waves are large where P-waves are small

ambiguity between fault and auxiliary plane
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Surface wave radiation pattern
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Far-field body-wave representation

�� � �
�

� � � �� �� � � �
�

� �

��
�

with � � ground displacement

� moment tensor

� � Green tensor

� � direction cosine � � �


� � spatial vector measured from source origin

� � time measured from origin time

� � wave velocity

(spatial-temporal point source and body-waves assumed!)
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Generalised force dipoles

Dahm, ICTP 2004 I – p.16/35



Slip on horizontal plane

�

� �

�

� � �

�

� �

�

�� � �
� � �

� � � �

� ��
� � � �

�
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Homogeneous full space Green function

�� � �� � � �� � �
� ��

� � �� �

� � �

� �
� �� � � � �� � �

� ��

� � �� �

� � �

This leads for P-waves to

�� � �
�� 	

� � �� � �

�� 

� �

�

� �� �

� 

�

� � �� � 
 � �

�
� ��

� � �� �

� � �

and for S-waves to

�� � �
� � 	

� � �
�

� �� � 
 � �

� �� 
 � �

� �� � � 
 � �
� ��

� � �� �

� � �
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P-radiation in spherical coordinates

� � � � � � � �
� �� � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � �

or

�� � � ��

�� � � �� � � � � � �� � � � � � � � � � �� �� � � �� � � � � � � � � � �
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Fault plane parameter

Strike

�

(

� �

-
�� � �

)
Dip

�

(

� �

-

�� �
)

Rake

�

( �
� �� �

-

� �� �

)

reverse faulting: upward movement of hanging wall (

� � � �

)
normal faulting: downward movement of h.w. (

� � � �

)
strike slip: right lateral and left lateral
oblique faulting:
thrust and overthrust: (

� � �� �

)
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Basic fault types
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Effects of extended fault and rupture

1. Far-field body-wave representation of spatial point
source:

�� � �
�

� � �

�
��

� �� � � �� � � �
�

�
�

� �
� �

�
��

� �� � �
�

�� �� �

is the moment rate function. The source
time function

� �� �

is the time derivative of the point source
slip function.

2. finite fault ( � �� is the moment tensor density):

�� � �
�

� � �

��� ��
� � �� � �

�
� � � �� � � �

�

�
�

� �
� � � �

�
� �

�
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point source moment rate functions

t t

t t

u

u

T Tdd

du/dt

du/dt

rupture time (

�
� � �

) , rise time (

�� )
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effect of finite rupture
Lc
os
θ

du/dt

t t1 2
t

vr
L

θ

r

r
rupture time

�
� � �

� �
�

�

�

�
��

� �
�

� �

� � � � �

�

�

�
�

�

� � �
�

��

�

� � � �

�

�
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directivity effect

Mo

Mo

Mo Mot

t

t

t

θ = 0

θ = 90

θ = 180

θ = 270

direction
rupture
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temporal point source approx.

the rupture time is roughly

�
� �

�
�

leading to the condition

�
�

�

�

� ��
� ��

�

�
�

�

Note that the temporal point source approximation may be

fulfilled for long period surface waves but not for body waves.
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rupture and rise time

Tr Td Tr Td

* =
tt

+

Deconvolution of rupture duration ”boxcar” with rise time
”boxcar” gives a trapezoidal source time.

Frequency domain:

� �� �

� �
�

�
�

�

� � � �
� �

�

�
� �

�

�
�

�
�

�
�

�
�

� � � �
� ��

�
� ��

�
�

�
�

� � ��

for

� � �
�
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amp.-spectra of trapezoidal function
Tr=10. Td=2.

10-3

10-210-2

10-1

100

A
(f

)

10-3 10-210-2 10-1 100

f (Hz)

fc=1/(Tr+2Td)

slope -2

Dahm, ICTP 2004 I – p.28/35



average stress drop

assuming an average coseismic strain change of

� � � � � � �
� � � � �� � � � �

�

the average stress drop over the fault is:

� � � � �� � �
� � � �

� � �

where� depends on the fault shape and rupture dimension.

e.g. for a circular fault with radius

�

:

� � �
�

��

�

� �

Typically

�

or

�

is estimated from aftershocks or from

�
�.
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is stress drop constant ?
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earthquake statistics I

mag.-freq. relation:

� �

�
� � � �� � � �

� �
�

� � � � �
�

�
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earthquake statistics II

frequency of aftershocks (Omoris law):

�
�� �

�

�

�� � � � �

� � � � �
�

�
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Summary

1. Point source parameter are sufficient to explain
seismograms below the corner frequency of the event

2. Rupture and extended fault can only be studied at
higher frequencies

3. Moment tensor (equivalent force-couples) is a general
description covering most point and extended source
problems
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