Tim united nations

educational, scientific

and cultural

organization \bigcirc international atomic energy agency

the abdus salam international centre for theoretical physics 4ω anniversary

H4.SMR/1586-11

"7th Workshop on Three-Dimensional Modelling of Seismic Waves Generation and their Propagation"

25 October - 5 November 2004

Fundamentals of Earth Sources

T. Dahm Institüt für Geophysik Universität Hamburg

Fundamentals of earthquake source

ICTP Course 2004 Trieste

Torsten Dahm

dahm@dkrz.de

Institut für Geophysik, Universität Hamburg

Content

What parameter control earthquakes ?

- 1. Concept of equivalent body forces and earthquake parameter
- 2. Point source parameter
- 3. Source time function
- 4. Source spectra
- 5. Stress drop

Landers, 28th June 1992, M=7.3

- ± 10 Mio USD infra-structural damage, ≈ 4500 damaged buildings
- $\sqrt{2}$
- N, 116°26′ W, right-lateral strike-slip
i rupture length, $\langle \Delta u \rangle = 4\, m$, Δu max
located aftershocks in one vear 85 km rupture length, $\langle \Delta u \rangle$ $4\,m$, Δu max = 6 m
one year
- \sim 1 \sim 5

والموالد برواد والمرو ootion of dupopointum for fault step-over and veri fication of dynamic rupture models located aftershocks in one year
for static and dynamic triggerin Example for static and dynamic triggering of earthquakes,

Chi-Chi, Taiwan, 21. Sept. 1999, M=7.6

- 2470 death toll, 11 95 injured persons, --000 damaged buildings
- Largest dataset worldwide of near-flield accelerograms from strong earthquake (about 650 3-component and 74 6-component station)
- *"A*vtrama Israa arall $\overline{1}$ "extreme large ground accelerations", \dot{u} max $=3.28\,m/s,$ max $\begin{align} \text{limg} \ & = 12 \end{align}$ \sim 1 י
י
- \sim \sim
- max
 $3,85^{\circ}$
 $00x4$ $,85^{\circ}$ N,
0x40 kr E, oblique reverse faulting
e, $\langle \Delta u \rangle = 8 \, m, \, \Delta u_{\text{max}} = 12$ $00x40\ km$ rupture, $\langle \Delta u \rangle$ $8m$, Δu max = 12 m
- rupturing of asperities and barriers max
ocat
nere complex rupture with "jumping dislocations",
- \sim 10 ansol 10^4 aftershocks in one year, triggered aftershocks,
preshocks foreshocks

How does earthquake-rupture work?

- 1. rupture initiates at the nucleation point
- 2. ^a rupture front propagates rapidly over the fault surface
- 3. high slip-rate occurs at and behind the rupture front
- 4. rupture may jump between neighbouring faults
- 5. asperities on the fault may generate inhomogeneous slip distribution
- 6. abrupt stopping of the rupture front and possible re flection and backward propagation
- 7. nonuniform radiation of elastic waves depending on fracture mode and fault orientation as well as directivity effects

Earthquakes and body forces

Faulting involves complex cracking and rupturing resulting in ^a space-time history of slipping motion. The process can be approximated by ^a dislocation model with dislocation time history $D(t).$ The dislocation model can be idealised by an equivalent force system.

Earthquake parameter

- 1. time and location of the rupture initiation
- 2. time and location of the centroid
- 3. fault plane orientation and dimension
- 4. average slip vector
- 5. slip and rupture history

Small and large earthquake location

PLASTOSPHERE

Hypocenter (*H*): t^0 by fitting arrival-times.

and
 MC) dV \sim \sim \sim \sim -
.
. Moment centroid (MC) : $\Delta \tau$ =)
I $\tau =$ $\int f(\tau)d\tau = 0$. and - - $\Omega_k^0)g(\xi)dV=0$ by fitting waveforms. -
.
.
.

Earthquake magnitude and moment

Seismic moment: M \blacksquare (rectangular planes for large earthquakes, i.e. A $-LW$

Moment magnitude ~ 1 or M_{\odot} - 3 (in dyne cm).

Examples:

Single force radiation pattern

Single couple radiation pattern

Double couple radiation pattern

Earthquake radiation pattern

- two orthogonal nodal planes for P
- three nodal points for S
- S-waves are large where P-waves are small
- ambiguity between fault and auxiliary plane

Surface wave radiation pattern

Far-field body-wave representation

$$
u_n(\mathbf{x},t) \approx M_{pq} G_{np}(\mathbf{x},t) \frac{\gamma_q}{c}
$$

th **u** = ground displace
M = moment tensor

c
ac
in with $\begin{array}{rcl} \mathsf{h} & \mathsf{u} & = & \mathsf{ground}\ \mathsf{M} & = & \mathsf{moment}\ \end{array}$

- $M =$ moment tensor
- moment tensor
Green tensor
- Green tensor
direction cosi
	- $=$ direction cosine $x_q/$
: spatial vector meas : spatial vector measured from source origin
- t : time measured from origin time
- c : wave velocity

(spatial-temporal point source and body-waves assumed!)

Generalised force dipoles

Slip on horizontal plane

 \sim \equiv N/Ω $\overline{U_{\infty}}$ - $\overline{}$ $\overline{11}$ - $\overline{}$

Homogeneous full space Green function

$$
4\pi \rho G_{np} = \gamma_n \gamma_p \frac{\delta(t - r/\alpha)}{\alpha^2 r} + (-\gamma_n \gamma_p + \delta_{np}) \frac{\delta(t - r/\beta)}{\beta^2 r}
$$

This leads for P-waves to

$$
4\pi \rho u_n^{(P)} = 4\pi \rho M_0 \left(G_{n1} \frac{\gamma_3}{\alpha} + G_{n3} \frac{\gamma_1}{\alpha} \right)
$$

$$
= 2\gamma_n \gamma_1 \gamma_3 \frac{M_0 \delta(t - r/\alpha)}{\alpha^3 r}
$$

and for S-waves to

$$
4\pi \rho u_n^{(S)} = (-2\gamma_n \gamma_1 \gamma_3 + \delta_{n1} \gamma_3 + \delta_{n3} \gamma_1) \frac{M_0 \delta(t - r/\beta)}{\beta^3 r}
$$

P-radiation in spherical coordinates

 $\hat{r}_{\alpha} \sim 2\gamma_{\alpha}\gamma_1\gamma_2 = \hat{r}_{\alpha}2\sin\Theta\cos\Theta\cos\Phi = \hat{r}_{\alpha}\sin 2\Theta\cos\Phi$ $\hat{r}_n \gamma_1 \gamma_3 = \hat{r}_n$ $2\sin\Theta\cos\Theta\cos\Phi = \hat{r}_n\sin 2\Theta\cos\Phi$

Fault plane parameter

Strike $\int (0^{\circ})$ Rake λ (-180° - 1 - 60°) Dip δ $(0^{\circ}$ - $0^\circ)$ $\overline{}$ \sim \sim \sim - (80°)

reverse faulting: upward movement of hanging wall ($\lambda > 0^{\circ})$ normal faulting: downward movement of h.w. $(\lambda < 0^{\circ})$ strike slip: right lateral and left lateral oblique faulting: thrust and overthrust: $(\delta < 45^\circ)$

Basic fault types

Oblique

Effects of extended fault and rupture

1. Far-field body-wave representation of spatial point source:

$$
u_n(\mathbf{x},t) = M_{pq}^0 S(t) \star G_{np}(\mathbf{x},\xi,t) s_q
$$

time function $S(t)$ is the time derivativ ,
|
| $\ddot{}$ $, \xi,$
tio $\sum_{i=1}^{n} S(t)$ $M_{pa}(t)$ is the moment rate function. The source slip function. (t) is the time derivative of the point source

 2. finite fault ($m_{\bm p}$ $_{q}$ is the moment tensor density):

$$
u_n(\mathbf{x},t) = \int_{\xi_1,\xi_2} \dot{m}_{pq}(\xi,t) \star G_{np}(\mathbf{x},\xi,t) s_q d\xi_1 d\xi_2
$$

point source moment rate functions

effect of finite rupture

rupture time

\n
$$
T_r = t_2 - t_1
$$
\n
$$
= \frac{L}{v_r} + \left(\frac{r}{\beta} - \frac{L \cos \Theta}{\beta}\right) - \frac{r}{\beta}
$$
\n
$$
= L\left(\frac{1}{v_r} - \frac{\cos \Theta}{\beta}\right)
$$
\nand

directivity effect

Dahm, ICTP 2004 I – p.25/35

temporal point source approx.

the rupture time is roughly $T_r~\approx$ leading to the condition $\frac{1}{C}$ β
 λ
 \overline{L} $\frac{1}{10}$ =

|
|
! $\ddot{}$ Note that the temporal point source approximation may be ful filled for long period surface waves but not for body waves.

rupture and rise time

Deconvolution of rupture duration "boxcar" with rise time "boxcar" gives ^a trapezoidal source time.

Frequency domain:

$$
A(f) \sim M_0 \left| \frac{\sin \pi f T_r}{\pi f T_r} \right| \left| \frac{\sin \pi f T_d}{\pi f T_d} \right| \sim f^{-2} \text{ for } f > f_c
$$

average stress drop

assuming an average coseismic strain change of

$$
e_{xx} = \partial u_x / \partial x \approx \langle \Delta u \rangle / L \,,
$$

the average stress drop over the fault is:

$$
\Delta \sigma \;\; \approx \;\; \frac{\mu \langle \Delta u \rangle}{L} \; = \; \frac{c M_0}{L^3} \,,
$$

where c depends on the fault shape and rupture dimension.

e.g. for a circular fault with radius
$$
R: \Delta \sigma \approx \frac{7}{16} \frac{M_0}{R^3}
$$

 $\frac{1}{10}$ Typically L or R is estimated from aftershocks or from .

is stress drop constant ?

earthquake statistics I

earthquake statistics II

frequency of aftershocks (Omoris law):

$$
n(t) = \frac{C}{(K+t)^P} \qquad 1 \le P \le 1.4
$$

- 1. Point source parameter are sufficient to explain seismograms below the corner frequency of the event
- 2. Rupture and extended fault can only be studied at higher frequencies
- 3. Moment tensor (equivalent force-couples) is ^a general description covering most point and extended source problems

References

Aki and Richards, 1980: Quantitative Seismology Lay and Wallace, 1995: Global seismology Shearer, 1990: Introduction to seismology Scholz, 1990: Mechanics of earthquakes and faulting

Stein and Wysession, 2003: An intoduction to seismology,

earthquakes and earth structure