united nations educational, scientific and cultural organization (international atomic energy agency the **abdus salam** international centre for theoretical physics 40 anniversary 2004

H4.SMR/1586-11

"7th Workshop on Three-Dimensional Modelling of Seismic Waves Generation and their Propagation"

25 October - 5 November 2004

**Fundamentals of Earth Sources** 

T. Dahm Institüt für Geophysik Universität Hamburg

# Fundamentals of earthquake source

#### ICTP Course 2004 Trieste

Torsten Dahm

dahm@dkrz.de

Institut für Geophysik, Universität Hamburg

#### Content

#### What parameter control earthquakes ?

- 1. Concept of equivalent body forces and earthquake parameter
- 2. Point source parameter
- 3. Source time function
- 4. Source spectra
- 5. Stress drop

#### Landers, 28th June 1992, M=7.3

- 34°13′ N, 116°26′ W, right-lateral strike-slip
- 85 km rupture length,  $\langle \Delta u \rangle = 4 m$ ,  $\Delta u \max = 6 m$
- $\bullet$  > 10<sup>5</sup> located aftershocks in one year

Example for static and dynamic triggering of earthquakes, for fault step-over and verification of dynamic rupture models

## Chi-Chi, Taiwan, 21. Sept. 1999, M=7.6

- 2470 death toll, 11.305 injured persons, 100.000 damaged buildings
- Largest dataset worldwide of near-flield accelerograms from strong earthquake (about 650 3-component and 74 6-component station)
- "extreme large ground accelerations",  $\dot{u}_{max} = 3.28 \, m/s$ ,  $\ddot{u}_{max} \ge 1 \, g$
- 23,85° N, 120.82° E, oblique reverse faulting
- $100x40 \, km$  rupture,  $\langle \Delta u \rangle = 8 \, m$ ,  $\Delta u \max = 12 \, m$
- complex rupture with "jumping dislocations", rupturing of asperities and barriers
- $> 10^4$  aftershocks in one year, triggered aftershocks, foreshocks

## How does earthquake-rupture work?

- 1. rupture initiates at the nucleation point
- 2. a rupture front propagates rapidly over the fault surface
- 3. high slip-rate occurs at and behind the rupture front
- 4. rupture may jump between neighbouring faults
- 5. asperities on the fault may generate inhomogeneous slip distribution
- 6. abrupt stopping of the rupture front and possible reflection and backward propagation
- nonuniform radiation of elastic waves depending on fracture mode and fault orientation as well as directivity effects

## **Earthquakes and body forces**



Faulting involves complex cracking and rupturing resulting in a space-time history of slipping motion. The process can be approximated by a dislocation model with dislocation time history D(t). The dislocation model can be idealised by an equivalent force system.

## **Earthquake parameter**

- 1. time and location of the rupture initiation
- 2. time and location of the centroid
- 3. fault plane orientation and dimension
- 4. average slip vector
- 5. slip and rupture history

## **Small and large earthquake location**



#### PLASTOSPHERE

Hypocenter (*H*):  $t^0$  and  $x_k^0$  by fitting arrival-times.

Moment centroid (*MC*):  $\Delta \tau = \int_{-\infty}^{\infty} (\tau - \tau^0) f(\tau) d\tau = 0$ . and  $\Delta \xi_k = \int_V (\xi_k - \xi_k^0) g(\xi) dV = 0$  by fitting waveforms.

#### **Earthquake magnitude and moment**

Seismic moment:  $M_0 = \mu \langle \Delta u \rangle A$ (rectangular planes for large earthquakes, i.e. A = LW)

Moment magnitude  $M_W = \log M_0/1.5 - 10.73$  (in dyne cm).

#### Examples:

| event              | A (km <sup>2</sup> ) | $\langle \Delta u  angle$ (m) | $M_S$ | $M_W$ | $M_0$ (dnecm)       |
|--------------------|----------------------|-------------------------------|-------|-------|---------------------|
| Loma Prieta 1989   | 40 x 15              | 1.7                           | 7.1   | 6.9   | $3.0 \cdot 10^{26}$ |
| San Francisco 1906 | 450 x 10             | 4                             | 7.8   | 7.8   | $5.4 \cdot 10^{27}$ |
| Alaska 1964        | 500 x 300            | 7                             | 8.4   | 9.1   | $5.2 \cdot 10^{29}$ |
| Chile 1960         | 800 x 200            | 21                            | 8.3   | 9.5   | $2.4 \cdot 10^{30}$ |

## **Single force radiation pattern**



## **Single couple radiation pattern**



## **Double couple radiation pattern**



## **Earthquake radiation pattern**



- two orthogonal nodal planes for P
- three nodal points for S
- S-waves are large where P-waves are small
- ambiguity between fault and auxiliary plane

#### **Surface wave radiation pattern**



#### **Far-field body-wave representation**

$$u_n(\mathbf{x},t) \approx M_{pq} G_{np}(\mathbf{x},t) \frac{\gamma_q}{c}$$

with  $\mathbf{u} =$ ground displacement

- $\mathbf{M} = \mathsf{moment tensor}$
- $\mathbf{G} = \mathbf{G}$  reen tensor
- $\gamma = \text{direction cosine } x_q/r$
- x : spatial vector measured from source origin
- t : time measured from origin time
- c : wave velocity

(spatial-temporal point source and body-waves assumed!)

## **Generalised force dipoles**



## **Slip on horizontal plane**



 $M_{pq} = M_0(\nu_p \Delta \hat{u}_q + \nu_q \Delta \hat{u}_p)$ 

#### **Homogeneous full space Green function**

$$4\pi\rho G_{np} = \gamma_n \gamma_p \frac{\delta(t-r/\alpha)}{\alpha^2 r} + (-\gamma_n \gamma_p + \delta_{np}) \frac{\delta(t-r/\beta)}{\beta^2 r}$$

This leads for P-waves to

$$4\pi\rho u_n^{(P)} = 4\pi\rho M_0 \left(G_{n1}\frac{\gamma_3}{\alpha} + G_{n3}\frac{\gamma_1}{\alpha}\right)$$
$$= 2\gamma_n\gamma_1\gamma_3\frac{M_0\delta(t-r/\alpha)}{\alpha^3 r}$$

and for S-waves to

$$4\pi\rho u_n^{(S)} = (-2\gamma_n\gamma_1\gamma_3 + \delta_{n1}\gamma_3 + \delta_{n3}\gamma_1)\frac{M_0\delta(t - r/\beta)}{\beta^3 r}$$

#### **P-radiation in spherical coordinates**



 $u_n \sim 2\gamma_n \gamma_1 \gamma_3 = \hat{r}_n 2 \sin \Theta \cos \Theta \cos \Phi = \hat{r}_n \sin 2\Theta \cos \Phi$ 

## Fault plane parameter



Strike  $\Phi$  (0° - 360°) Dip  $\delta$  (0° - 90°) Rake  $\lambda$  (-180° - 180°)

reverse faulting: upward movement of hanging wall ( $\lambda > 0^{\circ}$ ) normal faulting: downward movement of h.w. ( $\lambda < 0^{\circ}$ ) strike slip: right lateral and left lateral oblique faulting: thrust and overthrust: ( $\delta < 45^{\circ}$ )

## **Basic fault types**

























#### **Effects of extended fault and rupture**

1. Far-field body-wave representation of spatial point source:

$$u_n(\mathbf{x},t) = M_{pq}^0 S(t) \star G_{np}(\mathbf{x},\xi,t) s_q$$

 $M_{pq}^0 S(t) = \dot{M}_{pq}(t)$  is the moment rate function. The source time function S(t) is the time derivative of the point source slip function.

2. finite fault ( $m_{pq}$  is the moment tensor density):

$$u_n(\mathbf{x},t) = \int_{\xi_1,\xi_2} \dot{m}_{pq}(\xi,t) \star G_{np}(\mathbf{x},\xi,t) s_q d\xi_1 d\xi_2$$

## point source moment rate functions



## effect of finite rupture



rupture time 
$$T_r = t_2 - t_1$$
  

$$= \frac{L}{v_r} + \left(\frac{r}{\beta} - \frac{L\cos\Theta}{\beta}\right) - \frac{r}{\beta}$$

$$= L\left(\frac{1}{v_r} - \frac{\cos\Theta}{\beta}\right)$$

Dahm, ICTP 2004 I - p.24/35

#### directivity effect



Dahm, ICTP 2004 I - p.25/35

#### temporal point source approx.

the rupture time is roughly  $T_r \approx \frac{L}{\beta}$ leading to the condition  $\frac{T}{T_r} = \frac{\lambda/\beta}{L/\beta} = \frac{\lambda}{L} \gg 1$ 

Note that the temporal point source approximation may be fulfilled for long period surface waves but not for body waves.

#### rupture and rise time



Deconvolution of rupture duration "boxcar" with rise time "boxcar" gives a trapezoidal source time.

Frequency domain:

$$A(f) \sim M_0 \left| \frac{\sin \pi f T_r}{\pi f T_r} \right| \left| \frac{\sin \pi f T_d}{\pi f T_d} \right| \sim f^{-2} \text{ for } f > f_c$$



#### average stress drop

assuming an average coseismic strain change of

$$e_{xx} = \partial u_x / \partial x \approx \langle \Delta u \rangle / L$$
,

the average stress drop over the fault is:

$$\Delta \sigma \approx \frac{\mu \langle \Delta u \rangle}{L} = \frac{c M_0}{L^3},$$

where c depends on the fault shape and rupture dimension.

e.g. for a circular fault with radius 
$$R: \Delta \sigma \approx \frac{7}{16} \frac{M_0}{R^3}$$

Typically *L* or *R* is estimated from aftershocks or from  $f_c$ .

#### is stress drop constant?



#### earthquake statistics I





Dahm, ICTP 2004 I - p.31/35

#### earthquake statistics II

frequency of aftershocks (Omoris law):

$$n(t) = \frac{C}{(K+t)^P} \qquad 1 \le P \le 1.4$$





- 1. Point source parameter are sufficient to explain seismograms below the corner frequency of the event
- 2. Rupture and extended fault can only be studied at higher frequencies
- 3. Moment tensor (equivalent force-couples) is a general description covering most point and extended source problems

#### References

Aki and Richards, 1980: Quantitative Seismology Lay and Wallace, 1995: Global seismology Shearer, 1990: Introduction to seismology Scholz, 1990: Mechanics of earthquakes and faulting

Stein and Wysession, 2003: An intoduction to seismology,

earthquakes and earth structure