united nations educational, scientific and cultural organization (international atomic energy agency the **abdus salam** international centre for theoretical physics ¹⁹⁶⁴ ²⁰⁰⁴

H4.SMR/1586-12

"7th Workshop on Three-Dimensional Modelling of Seismic Waves Generation and their Propagation"

25 October - 5 November 2004

Study of Seismic Swarms Associated with Fluid Intrusions

> T. Dahm Institüt für Geophysik Universität Hamburg

Study of seismic swarms associated with fluid intrusions

ICTP Course 2004 Trieste

Torsten Dahm

dahm@dkrz.de

Institut für Geophysik, Universität Hamburg

Content

- 1. Physics of fluid intrusions and earthquake swarm models
- 2. study of seismic swarms
- 3. Practical: relative moment tensor inversion

fluid-induced swarms - observations

- Typically in volcanic / geothermal regions
- In long activity with possible key events or bursts, M < 4
- Iarge b-values (b > 1), e.g. up to 2.5
- no typical Omori law decay
- possible hypocenter migration
- often large double-couple components, partly positive isotropic component, rarely pure tensile events
- accompanied by long-period or tremor events, ground deformation or degassing

South Iceland Seismic Zone

Eyjafjallajoekull 1994 dike intrusion

Mt St. Helens

The Vogtland swarm region

Dahm, ICTP 2004 II - p.7/??

elements of swarm models

- 1. highly fractured media, without large, planar faults under shear
- 2. inhomogeneous stress fields and/or nonuniform loading
- 3. loading of cracks and faults by fluids

e.g. Mogi, 1963; Sammis & Julian, 1987; Rubin & Gillard, 1998

Hills model

swarms are caused by stress loading (e.g. by dikes) in the extensional field of leaky transform faults.

Dikes and shear cracks use different faults.

Intrusion-induced swarms

how do vertical intrusions look

Dahm, ICTP 2004 II – p.11/??

numerical 3D buoyant dike

stress loading by buoyant diking

Change of the Coulombstress

 $\Delta \sigma_{\rm C} = \Delta \tau - \mu \Delta \sigma_{\rm n}$

Dahm, ICTP 2004 II - p.13/??

Gelatine experiments

- 3% gelatine, brittle, transparent
- air is injected with a syringe
- characteristic length of cracks in the order of some cm

speed of the movie: $25 \times$

1998 Piton de la Fournaise eruption

Migration of earthquake focal depths

Crack tip predicted by gelatine model

Rivalta & Dahm, submitted to GJI

non-buoyant intrusion

- Hydrofrac in Plexiglas: experiment by Prof. Rummel
- animated gif to follow incremental growth of sub-events

Example: Hydrofrac in a salt mine

Dahm, Manthei & Eisenblätter (1999), Dahm (2001)

hypocenter follow penny shape crack

moment tensor solutions

summed distribution of P and T axis from 180 studied events

best double couple of typical solution

poles of typical nodal plane

poles of horizontal layers

pole of fluid-filled fracture plane

- shear cracks
- horizontal fault planes

Interpretation

Example: Vogtland 2000 swarm

Fischer (2002)

Dahm, ICTP 2004 II - p.23/??

migration of events

Example: Izu Bonin intrusion 2000

Hayashi & Morita, GJI, 2002: A magma intrusion process

inferred from hypocenter migration of earthquake swarm

Izu Bonin

Source mechanism study

Composite focal solution of similar events indicate that shear cracks are induced outside the dike volume

Summary

- 1. high-precision relative location shows migration of events and can reveal intrusion history
- 2. (relative) moment tensor are important to understand intrusion physics
- 3. intrusion-induced earthquakes are usually (off-plane) shear events. They may have small volume expansion components