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Chapter 1

NORMAL MODE THEORY IN
VISCOELASTICITY

1. RHEOLOGICAL MODELS
In modeling a particular geophysical phenomenon, the choice of the rheology

used depends on 1) mathematical difficulty, 2) the quality of the geophysical
data which the calculations of the model are required to match and 3) our
knowledge of the rheological behavior of the medium at hand. Over the last
few decades a considerable amount of knowledge has been gained about mantle
rheology in terms of the values of rheological parameters and deformation
mechanisms. For instance, what is most important, as far as mantle convection
is concerned, is clearly the strong temperature dependence of the viscosity
which the laboratory-derived values of the activation energy and volume seem
to suggest. This intense interest in understanding convection in a fluid with
markedly temperature-dependent viscosity is attested by the recent fundamental
studies by geophysicists using analytical, numerical and experimental methods.
In what follows, however, rather than discussing topics of mantle rheology and
mantle convection, for which we refer to the book by Ranalli (1995), we will try
to address the main questions that are at issue in attempting to study transient
and long time scale geodynamic phenomena in a wide arc of time scales, ranging
from years, characteristic of post-seismic deformation, to hundreds of millions
of years as in the case of true polar wander driven by subduction, making use
of the analytical normal mode theory in viscoelasticity with different models
of mantle rheology. In Figure 1.1 we sketch the entire geodynamic spectrum
spanning the whole range of phenomenological time scales. One of the key
questions is whether one can devise a constitutive law which can satisfactorily
model all these phenomena, from the anelastic transient regime to the steady-
state domain.
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2 GLOBAL DYNAMICS OF THE EARTH
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Figure 1.1. Diagram illustrating the relation of the characteristic time scale for several geophys-
ical phenomena to the Maxwell time of the mantle defined as vi/fii - with v\ and /j,\ denoting
respectively the steady state mantle viscosity and rigidity - which separates the steady state and
the transient regimes of mantle creep.

The appropriate constitutive relation which is to be employed in analyzing
transient geodynamic phenomena, such as postglacial rebound or Glacial Iso-
static Adjustment (GIA), is currently a matter of controversy in geophysics.
Advocates of non-linear rheology (e.g., Melosh, 1980) use as supporting ar-
guments the laboratory data of single-crystal olivine whose power law index
is about three (Goetze, 1978; Durham and Goetze, 1977). But there is now
mounting evidence that at the stress levels in postglacial rebound (less than
0(102 bar)) the creep mechanism may in fact be linear for polycrystalline ag-
gregates (Relandeau, 1981) since grain boundary processes, such as Coble creep
, may become dominant. There are also recent theoretical studies indicating
that the power law index changes gradually with stress and hence the transition
stress which marks the boundary between linear and nonlinear behavior is not
as sharply defined as has previously been thought (Greenwood et al., 1980).
Indeed, a proper mathematical formulation of the mixed initial and boundary-
value problems associated with nonlinear viscoelasticity is a formidable one,
fraught with numerical difficulties. It is also important to note that there is
no unambiguous evidence in either the postglacial rebound event or in other
types of geodynamic data which absolutely requires a nonlinear viscoelastic
rheology, in spite of claims to the contrary. For these reasons, geophysicists
tend to prefer the simple linear models in viscoelasticity, which allow for a
considerably simpler mathematical treatment of the dynamics. Moreover, the
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Figure 1.2. Mechanical analog of Maxwell rheology. The elastic response is governed by the
shear modulus HI of the spring while the long-term creep is controlled by the viscosity v\ of the
dashpot.

linear approach also allows one to study easily the potentially interesting effects
of the interaction between transient and steady-state rheologies. The simplest
viscoelastic model which can describe the Earth as an elastic body for short time
scales and as a viscous fluid for time scales characteristic of continental drift
is that of a linear Maxwell solid. Figure 1.2 shows a standard one-dimensional
spring and dashpot analog of the Maxwell rheology. The speed for shear wave
propagation depends on the square root of the instantaneous rigidity /ii , whereas
the strength of mantle convection depends inversely upon the magnitude of the
steady-state viscosity v\.

A powerful method of solving transient problems of linear viscoelasticity has
been the use of the Correspondence Principle (Peltier, 1974), which allows one
to employ the elastic solution of a given problem in the Laplace-transformed
version of the corresponding viscoelastic problem. The Correspondence Prin-
ciple for the Maxwell rheology and normal mode theory is introduced hereafter
in this chapter.

2. MOMENTUM AND POISSON EQUATIONS
The following mathematical model describes the response of the viscoelastic

linear Maxwell earth model to a delta function type of force. After having
derived the Green functions , the response of the Earth to arbitrary loads or
forces in space and time is found by convolving these functions with the loads
or forces.
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4 GLOBAL DYNAMICS OF THE EARTH

We assume that the rheological laws (stress - strain and stress - strain rate
relations) are linear and that the strains are infinitesimal. We do not deal with
non-linear rheologies and finite strain theory, but that does not imply that these
are not important for the Earth Sciences. However, for a wide spectrum of
solid-Earth relaxation processes, we can neglect both.

For long time scale processes the inertial forces vanish, and conservation of
linear momentum requires that the body forces F per unit mass acting on the
element of the body are balanced by the stresses that act on the surface of the
element. At any instant of time we thus have for the stress tensor a acting on
the infinitesimal block with density p:

V-<r + pF = 0. (1.1)

We assume first that the Earth is compressible , laterally homogeneous (but
radially stratified!) and hydrostatically pre-stressed . We also assume that the
Earth is not rotating (we will study rotation at a later stage). We will consider
the elastic equations of motion , since any linear viscoelastic problem, which
is of interest to us, is equivalent to an elastic problem in the Laplace domain
, in agreement with the Correspondence Principle , as will be shown in the
following. We thus solve the momentum and gravity equations for an elastic
medium, and only at the last stage, once the elastic solution has been obtained,
the Correspondence Principle is applied.

The stress tensor a is the sum of the initial pressure, due to the hydrostatically
prestressed conditions, plus a perturbation cr\, so that cr reads

(7 = CTx -pOl. (1.2)

<T\ denotes a tensor which describes the acquired, non-hydrostatic stress,
which will be related to the strain by means of the appropriate constitutive
equations. The hydrostatic pressure po, with I the identity matrix, enters the
equation above with the minus sign since it denotes a compressive stress, which
is negative according to the convention that stresses are positive when they act
in the same direction as the outward normal to the surface. On the elementary
surface enclosing the elementary volume in which the equation of equilibrium
holds, the stress due to the load of the overlying material, namely the pressure,
is negative according to this convention. The equation of conservation of linear
momentum thus reads

V - o - i - VPo + pF = O. (1.3)

If the body is subject to an elastic displacement u in to, then the pressure in
to + St at a fixed point in space is given by

-u-Vpo. (1.4)

D R A F T February 19, 2004, 4:41pm D R A F T



Normal Mode Theory in Viscoelasticity 5

The minus sign accounts for the fact that the pressure has to increase at a
fixed point in space if the elastic displacement occurs in the opposite direction
with respect to the pressure gradient.

The equation of conservation of linear momentum after the elastic displace-
ment reads, withpo(^o + 5t) instead of po(to),

V • o-i - Vpo(io) + V(u • Vp0) + pF = 0. (1.5)

The gradient of the initial pressure is given by

Vpo = -Po#e r , (1.6)

where e r denotes the unit vector, positive outward from the Earth center. With
this explicit expression of the gradient of the initial pressure, the equation of
equilibrium becomes

V • <ri - Vpo(to) - V(pogu • e r) + pF = 0. (1.7)

The force F can generally be split into gravity and all kinds of other forcings
and loads (e.g., tidal forces, centrifugal forces, loads due to ice-water redistri-
bution, earthquake forcings, etc.). Let us, for the moment, assume that the force
F is gravity (so essentially the condition of a free, self-gravitating Earth with
no other forcings or loads acting on its surface or interior) and that, as it is a
conservative force, it can be expressed as the negative gradient of the potential
field^

F = - V 0 . (1.8)

The potential field 0 can be written as

0 = 0o + 0i, (1.9)

with 0o as the field in the initial state and 0i the infinitesimal perturbation.
The linearized equation of momentum becomes, with p\ the perturbation in

the density and g the gravity,

V • ai - V(pogu • er) - poV0i - piger = 0, (1.10)

since the second term of equation (1.7) is canceled by the term -poV0o.
The first term of equation (1.10) describes the contribution from the stress,

the second term the advection of the (hydrostatic) pre-stress, the third term
the changed gravity (self-gravitation) and the fourth term the changed density
(compressibility). In cases where self-gravitation is neglected, the third term
will be zero, while in the case of incompressibility the fourth term will be zero.

The perturbed gravitational potential 0i satisfies the Poisson equation
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6 GLOBAL DYNAMICS OF THE EARTH

V2(f>i=4irGp1, (1.11)

with G as the universal gravitational constant. In the case of incompressibility
the right-hand term will be zero since pi = 0, and equation (1.11) reduces to
the Laplace equation

V20i = O. (1.12)

The equations above need to be supplemented by a constitutive equation de-
scribing how stress and strain (or strain rate) are related to each other. Through-
out this book we will make use of the Maxwell model depicted in Figure 1.2.
The momentum and Poisson equations for an elastic solid will first be expanded
in spherical harmonics and only afterwards the Correspondence Principle will
be applied in order to retrieve the viscoelastic solution, which in our case is
specialized for an incompressible material.

The equilibrium and Poisson equations can be written in spherical coordi-
nates with r denoting the radial distance from the center of the Earth, 0 the
colatitude and (j> the longitude (Schubert et al, 2001, page 281), with deriva-
tives with respect to r and 9 denoted by dr and dg. By assuming that there are no
longitudinal components in the fields as well as in their derivatives, with sym-
metric deformation around the polar axis and taking account of the continuity
equation written as follows

Pi = - V • (pou) = - u • e r drpo - p0V • u, (1.13)

with A = V • u and p\ denoting the perturbed density, the two r and 6 compo-
nents of the momentum and Poisson equations become

- podr(ugo) + drarr
(1.14)

+r ldg(jrQ + r l (2arr - ogg - (?&& + arg cot 0) = 0

-por
 lde<j)i - pogor 1d0u

(1.15)
+drar6 + r 1d9crgg + r l{{agg - a^>) cot 0 + 3are) - 0

>1) = -4irG(PoA+udrpo), (1.16)

where arr, agg, a^ and arg denote the stress components in spherical coordi-
nates expressed as

arr = A A + 2/xerr (1.17)
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Normal Mode Theory in Viscoelasticity 7

ago = \A + 2fieoo (1.18)

(1.19)

arS = 2/j,ere, (1.20)

expressed in terms of the strain tensor components err, ego, e^, er# and Lame
parameters A and p,.

In this section we focus on the spheroidal components with the <fr component
of the displacement equal to zero. The strain tensor components are thus given
in terms of the displacement

err = dru (1.21)

e9e = r-1{d9v + u) (1.22)

= r~1(v cote + u) (1.23)

ere = \{drv-r-lv + r~ld9u), (1.24)

where u and v denote the radial and tangential (along meridian) components of
the displacement vector.

The r component of the momentum equations becomes in terms of the dis-
placement components

-podr(f>i + pogA - podr(ug) + dr(XA + 2fidru)

+£[4rdru -Au + r(dedrv + drvcot9) (1.25)

+d$u + deu cot 0 - 3(dev + v cot 0)] = 0.

The 6 component of the momentum equation is given by

+lde{\A) + ^{djv + dflucot 0-v cot2 9 - v) (1.26)

The terms in equations (1.25) and (1.26) have been arranged in such a way as
to make it easier the elimination of the derivatives with respect to the coordinate
0 by making use of the Legendre equations and of its derivatives, once the fields
u and v are expanded in Legendre polynomials, as done in section 1.3.
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8 GLOBAL DYNAMICS OF THE EARTH

From equation (A.123) by Ben-Menahem and Singh (1981) we obtain the
divergence of the displacement in spherical coordinates, which will be expanded
in Legendre polynomials in the following section 1.3,

2 1 cotB
V-u = dru+ -u + -dev + v. (1.27)

r r r

3. EXPANSION IN SPHERICAL HARMONICS:
SPHEROIDAL AND TOROIDAL SOLUTIONS

In principle, deformation, stress field and gravity field can be solved by
means of numerical integration techniques from the three equations (1.16) and
(1.25)-(1.26). However, we will see that it is also possible to solve these equa-
tions virtually analytically by means of normal model modeling in the Laplace-
transformed domain, as stated by the Correspondence Principle. This kind of
analytical solution has a few great advantages: it leads us to a deeper insight
into the mechanisms of the relaxation process with additional checking possi-
bilities, and certainly for spherical (global) models it often proves easier to be
used than numerical integration techniques. Numerical integration techniques
also have their advantages. For instance, they can generally deal more easily
with more elaborate models (e.g., those that use non-linear rheologies or lateral
variations) and often prove simpler to be used in half-space (regional) mod-
els, although also for half-space models analytical solutions are available (e.g.,
Wolf, 1985a,b). So the numerical and analytical models are to be seen as being
more complementary than redundant.

Following our normal mode approach, the momentum equations (1.25)-
(1.26) and the Poisson equation (1.16) must be expanded in spherical harmonics.
Phinney and Burridge (1973) provide the methodology to expand any tensor
field in spherical harmonics, defined by

y/™(<9, tf>) = (-l)mPf1 (cosO) exp(zm^), (1.28)

with I = 0,1,2,... and m = -1,-1 + l,...l and Pjm(cos9) denoting the
associated Legendre function

I 1
(

Since our earth model is laterally homogeneous, the spheroidal solution does
not contain any longitudinal component, and the spheroidal radial and tangen-
tial displacement components, the divergence A and the perturbation of the
gravitational potential that will be used throughout are expanded in Legendre
polynomials Pi(cos9) rather than in spherical harmonics Y^m(0, <fi). We thus
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Normal Mode Theory in Viscoelasticity 9

have for the spheroidal part the radial displacement u, the tangential (colatitu-
dinal) component v, A and the perturbation in the gravitational potential fa as
functions of the scalars Ui,Vi, xi and fa, which depend solely on the harmonic
degree I and on the radial distance r from the center of the Earth

oo

U =

1=0

oo

1=0

oo

A = N YI (r) Pi (cos 6) (1 32)
1=0

oo

(=0

where the Legendre polynomial Pi (cos9) is obtained from the Rodrigues' for-
mula

1 dl

— " , ,,(co8Se-l)1, (1.34)

or from m = 0 in the previous definition (1.29) of the associated Legendre
function. Note that the spheroidal solution does not carry any longitudinal
displacement, as anticipated above.

The toroidal displacement components, v' along colatitude and w along lon-
gitude, are defined by the following expansion in spherical harmonics

V 0 y z
m ( 0 , $ (1.35)

1=0 m=-l

oo m=l

ip,®, (1.36)

which provide the toroidal components of the latitudinal and longitudinal dis-
placements v' and w as a function of the Wi scalar harmonic coefficients. Col-
lectively, Ui, Vi, W[ and fa are named scalar eigenfunctions and satisfy linear
systems of homogeneous ordinary differential equations in the radial variable
r.
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10 GLOBAL DYNAMICS OF THE EARTH

3.1 SPHEROIDAL SOLUTION FOR THE
INCOMPRESSIBLE CASE

By making use of the expansion of the spheroidal displacement components
u, v, A and <j>\ defined in equations (1.30)-(1.33), of the Legendre equation

—2^(19) + cot G—Pi(9) = -1(1 -

and of the derivative of the Legendre equation

cot 9 - ± m + cot* 0} = -1(1 + l ) | f i , (1.38)
l +

the r and 9 components of the momentum equations become for each harmonic
degree /

podr(f>i + pogxi - Podr(gUi) + dr(Xxi
(1.39)

2 1(1 + 1)(-Ut - rdrVx + 3F;)] = 0

Po<f>i ~ PogUi + Xxi + rfj,dr(drVi - r~lVi + r~lUi)
(1.40)

1
 t - Vj - 21(1 + l)Vj] = 0.

The Poisson equation becomes

The terms in the 0 component of the momentum equation have been multi-
plied by r. The r and 9 components of the momentum equations are expanded
respectively on the Legendre polynomial Pi and on its derivative dgP[.

Once equations (1.39)-( 1.41) are solved for each degree I, we obtain the fields
summing up all the linearly independent solutions via equations (1.30)-(1.33).

For the divergence of the displacement A we obtain, by making use of
equation (1.27) and of the Legendre equation,

Xi = dTUt + 2r-lUt - 1(1 + l^Vi. (1.42)

The spheroidal solution vector y is defined as (Wu and Peltier, 1982)
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V\ =

V2 =

2/5 = -<t>i

y e = -dr<f>i - ^

where II; = Xxi • The quantity y& is for obvious reasons sometimes nicknamed
the potential stress. Why y& is chosen rather than dr<f>i will become clear when
the boundary conditions are discussed as follows.

From the condition of incompressibility

Xi = 0 (1.44)

and homogeneity of each layer

drpo = 0, (1.45)

we obtain the Laplace equation

f -drh - v
 2 'fa = 0 (1.46)

and momentum equations

(1-47)
- 417, + 1(1 + 1){-Uh - rdrVh + 3Vj)] = 0

(1.48)
3rdrV[ -Vt- 21(1 + 1)VJ] = 0,

where we have taken into account that the product Xxi remains finite for an in-
compressible body. From %z = 0 we obtain the following relationship between
the tangential and radial components of the displacement

once we make use of the condition of incompressibility V • u = 0.
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12 GLOBAL DYNAMICS OF THE EARTH

Exercise. Prove that, with the above definition of solution vector (1.43), the
momentum and Laplace equations for the incompressible case can be cast in
the matrix form

^ - y = A - y , (1.50)
dr

where the matrix A/(r) reads

/ 2

\
4 /3^ \ 1(1+1) (§ji \ n
— — OftQ I — OCiQ I 0

r \ r yuy) r \ r H"y)
_ I (§&. _ "\ 2(2l2+2l-l)n

0

0

0

r

0

I

r
_ 3

r

0

0

Po(M-l)
r

r

0

0

Pi

0

-4TTGPO 0 0 0 - ^ 1

47rGpo(i+l) 4nGp0l(l+l) l-\
\ r r 0 0 0 — /

(1.51)
with the gravity g = 4irGpor/3.

Deriving equation (1.47) with respect to r and summing the result of this
derivation to (1.47) multiplied by 2/r and to (1.48) multiplied by -1(1 + l ) / r 2 ,
we obtain

and finally, making use of equation (1.49) derived twice with respect to r in
order to eliminate d^Ui, we obtain

Vr(/9o</>; — PodUi + II;) = 0, (1.53)

where

V2 = d2
r + -dr - ^ 4 ^ ' d"54)

which is equation (25) in Wu and Peltier (1982), multiplied by /?o-
From (1.47) by collecting the derivative with respect to r,

dr(po(pi - PogoUi + Hi) = -2/j.drUi
(1.55)

-£[4rdrUi - Wi +1(1 + l)(-Uh - rdrVi + 3V/)],

which can be rearranged as follows
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dr(pofa ~ Po9oUi + II,) = -2nd?Ut
(1.56)

-^[ArdrUt - AUt - 1(1 + l)Ut - rl(l + l)drVi + 31(1 ) ]

which becomes with equation (1.49)

dr(pofa-pogoUl+Ul) = -fid^-A^drUi^^Ut + ̂ l^ + l)^. (1.57)

Multiplying equation (1.55) by r2 and taking into account equation (1.57)
yields, after having changed sign in each term,

rUl+2iiUl-lil{l + l)Ut. (1.58)

We define

r,. (1.59)

Exercise. Show that the solution of the Laplace equation (1.46) takes the form

(1.60)

where rl denotes the regular solution in r = 0 and r~('+1) denotes the singular
one. The subscript 3 in equation (1.60) is used for convenience.

F{ satisfies the Laplace equation (1.53) and thus takes the following form, with
the same dependence of fa with respect to r, where the constants c\ and c\,
with subscript 1, are multiplied by /i for convenience, as will be apparent in the
following

(1.61)

The homogeneous equation

r2d2
rJJi + ArdrUi + 2Ut - 1(1 + l)Ut = 0, (1.62)

obtained from equation (1.57) with the left member set to zero, has two solu-
tions, a regular one

U[ = c2r^-l) (1.63)

and a singular one
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14 GLOBAL DYNAMICS OF THE EARTH

(1.64)

A particular solution for the regular component can be obtained by substi-
tuting the regular component of Y, providing

Ui + 2Ut - 1(1 + l)Ut = r 2 ^ 1 ' ^ . (1.65)

The regular solution is thus

The singular component of the solution becomes, with the same procedures,
becomes

< L 6 7 )

Summing up all the contributions, we obtain

From equation (1.68) and (1.49) we obtain the horizontal component of the
displacement

l+3 rl+l -4- m r'~1 -I- r* 2~l r~l r* r

) { ) r + C 2 ^ T + C l l ) r C 2 l+l • (1.69)

Exercise. Verify that with the definitions of the solution vector (1.43) the
components 2/3,1/4 and y6 take the form

2/3 = ci [(lp09r+
2fi;^

)rl] + c2[P05r + 2(1 -

+C3 [-Port] + cl [ ^ g l f f i f - 1 ^ ] d.70)

d-71)
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Normal Mode Theory in Viscoelasticity 15

2/6 =
1 - c3(2l

(1.72)

For each of the iV layers of the earth model (assuming that each layer has
material parameters which are constant inside it and that gravity g is constant
inside such a layer), on the basis of equations (1.60), (1.68) - (1-72) the solution
can thus be written as

y ( r ) = Y , ( r ) - C , , (1.73)

in which Y/ is the fundamental matrix and Q a 6-component vector integration
constant.

The fundamental matrix Yj(r, s) reads

2(21+3)

2(21+3)

0
2TrGp0lr

l+l

21+3

J - l

(Ipo9r+2(l2-l-3)li)r' , „ , , _
2(21+3) \Pogr -t- t(i

I

0

J-2

0

0

—r

l+l
(l+l)Pogr-2(l2+3l-l)n p0gr-2(l+2)ii

()
0

2nGpo(l+l)

0 N

0

/
(1.74)

Each column of this fundamental matrix represents an independent solution
of the system (1.50) of ordinary differential equations. The analytical expres-
sion of the fundamental solution, which includes the regular and singular part
in r = 0, was first obtained in Sabadini et al. (1982a), while the regular part,
which is appropriate for the solution of a homogeneous, viscoelastic sphere,
was first obtained by Wu and Peltier (1982). The inverse of the fundamental
matrix Y; has the form
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16 GLOBAL DYNAMICS OF THE EARTH

Yf1(r) = Dl(r)Yl(r),

with D being a diagonal matrix with elements

(1.75)

diag(D;(r)) =

21+1
i+i

and

2(2Z-l)r'
1 lrl W+l) rl+2

^ T , <•' , 2(22+3)'

(1.76)

Y«(r) =

2i(/+2) - £

0 0

-f- ^ ^ -2/0+2) ^
4wGpr 0 0

0

0 \

0

-1

0

0 0 0 21+1 - r /

(1.77)
Although it would be quite laborious to derive such an analytical compact

form of a 6 x 6 inverse matrix 'by hand', this can be done nowadays by means
of an algebraic software package like Mathematica. It was first done by Spada
et al. (1990, 1992b). Of course, it is not difficult to show analytically that
Y| x Y;" 1 = I, with I the identity matrix, by hand! Appendix A provides the
elements of the fundamental matrix for the compressible case (Vermeersen et
al, 1996b).

3.2 TOROIDAL SOLUTION FOR THE
INCOMPRESSIBLE CASE

With the following definition of the toroidal vector solution y

Vi = (1.78)

Wt (1.79)

the toroidal differential equations take the following form for each harmonic
degree I

—y = A • y.
dr

where the A matrix has been obtained by Alterman et al. (1959)

(1.80)
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A/(r) = ( M(,(iii)-2) i ) • d-81)

Exercise. Show that the I component of the fundamental solution for the toroidal
solution is given by

/ ri r-i-i \
Yl{r) = [ fiiliy-1 ^s)(l + 2)r-1-2 I ( L 8 2 )

The inverse matrix of the fundamental toroidal solution reads

4. FUNDAMENTAL SPHEROIDAL MATRIX IN THE
LAPLACE DOMAIN

The Laplace transform f(s) of a function f(t) is defined by

rOO

f(s) = / f(t)e-stdt, (1.84)
Jo

with t as time and s the Laplace variable (which has the dimension of inverse
time). It is straightforward to show that the Laplace transform of the time
derivative df /dt of the function f(t) is sf(s).

All the results shown in this book are based on the incompressible viscoelastic
Maxwell solid, which means that only the rigidity \x enters the fundamental
solution (see equation (1.74)). We can thus make use of the one-dimensional
relationship between the stress and strain rate for a Maxwell solid depicted in
Figure 1.2 as given by

de a 1 da
+ ( h 8 5 )

with v being the viscosity of the dashpot (of the mantle, for the case of the
Earth!). Laplace transformation of the equation above leads to

j j (1.86)

with the Laplace-transformed Lame parameter //(s) being

V d-87)
jv
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18 GLOBAL DYNAMICS OF THE EARTH

Note that equation (1.86) has the form of a Hookean (linearly elastic) equa-
tion in the Laplace-transformed domain. This is a very important aspect and
greatly facilitates calculations. So we can derive equations for linear Maxwell
viscoelastic bodies in the time domain with formulas for linear Hooke elastic
bodies in the Laplace-transformed domain. It can be shown that this is generally
valid for all linear viscoelastic bodies (so also, e.g., the Kelvin-Voigt and Burg-
ers models in Ranalli, 1995). The so-called Correspondence Principle states
that by calculating the associated elastic solutions in the Laplace-transformed
domain the time dependent viscoelastic solutions can be found by Laplace in-
version in a unique way. From now on, in the other sections of this chapter, the
tilde over the quantities will be neglected in order not to overwhelm the text,
although all the equations and quantities are defined in the Laplace-transformed
domain.

5. PROPAGATOR MATRIX TECHNIQUE
For each layer of a spherical earth model, the solution vector (1.43) can

be determined from the fundamental matrix. This solution vector expresses
the most general solution for displacements (radial and horizontal), stresses
(radial and tangential), gravity and y^, from which the gravity gradient can be
derived for each layer of the spherical model and for each harmonic degree I
in the Laplace domain. Each viscoelastic layer of the model is bounded by
either another internal viscoelastic layer or an external layer (free outer surface,
inviscid outer core layer at the core-mantle boundary (CMB) ). For each of
these cases we need to determine the boundary conditions.

The internal boundary conditions are quite easy: for a boundary between
two elastic or viscoelastic layers we require that Ui, Vi, arri, arei and fa be
continuous. This implies that during deformation there will be no 'cavitation'
and no slip, while it is also assumed that no material crosses the boundary.
Internal boundaries where no material crosses are called chemical boundaries.
Internal boundaries where material does cross, undergoing a phase change, are
called phase-change boundaries. The boundary between the upper mantle and
lower mantle at about 670 km depth is likely to be partly a chemical and partly
a phase-change boundary, but we will assume first that in our earth models
there are only chemical boundaries. In the following section 1.7, phase-change
boundaries will also be tackled.

As was already alluded to when ye was defined in equation (1.43), we do not
take the gravity gradient as sixth component of the vector but a combination
of gravity, gravity gradient and radial displacement. The reason becomes clear
when the boundary condition for the gravity gradient at the free outer surface of
the model is considered. If cf>e denotes the external potential and <f> the potential
evaluated in the top layer of the earth model, then applying the Gauss theorem
at the Poisson equation within a volume embedded in a pill-box at the free
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surface, with p\ = —poV • u from equation (1.13), the surface layer being
homogeneous in density, we obtain

Only the radial component of the gravitational potential and the radial com-
ponent of the displacement contribute to the surface integral.

The gravity gradient of the external layer resulting from the term in r
from equation (1.60) satisfies

M__£±i,.
The contribution from the other term from equation (1.60), proportional to

rl, becomes irregular at infinity and must be excluded. We also have

ft = <f>i, (1-90)
so that we can express the external boundary condition as

y6 = ~-l-^<t> + 4irGPUl = 0. (1.91)
or r

With this it is clear that also y& is continuous for internal boundaries between
viscoelastic layers.

5.1 PROPAGATION OF THE SPHEROIDAL
SOLUTION

Due to the continuity of the fields yj (j = 1, 2, 3,4, 5, 6) at the interface
r = rj+i, the top layer i, in which

, (1.92)

can be linked to the layer i + 1 below it, with

1> (1.93)

by assuming the continuity of the components of the solution vector

as a consequence of the boundary conditions at the internal boundaries. The
subscript I denoting the harmonic degree is deleted from now on, in order to not
overwhelm the notation. With equations (1.92)-(1.94) it is possible to express
the unknown constant vector C ^ in terms of the unknown constant vector
C( l+1). By doing this for every internal boundary of an N layer model (layer 1
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is the top layer [crust or lithosphere], layers 2,3,... , N — 1 the layers below it,
and layer N the core), the solution vector at the surface of the Earth at r\ = a
can be related to the conditions C) ' (rc) at the core-mantle boundary (CMB)
rN = rc as

y(a,s) = (f[Y^(ri,8)Y^1(ri+1,s))Y^Hrc,s)&N\ (1.95)
i= l /

The conditions at the CMB have been disputed among geophysicists since the
1960's. This controversy focuses on the treatment of the continuity conditions
for the vertical deformation at the CMB. Without going into details, if it is
required that the vertical deformation at the CMB be continuous, then this
restricts the core to being either in a state of neutral equilibrium (homogeneous
with neutral adiabatic temperature gradient) or that the radial stress at the CMB
is zero. Both could be the case, but such restrictions are obviously not always
the case in reality. Therefore the vertical deformation should in general not
be continuous at the CMB. This might seem strange, as one would think that
this could lead to 'cavitation' or to the overlapping of layers. The way out
of this conundrum is that the fluid core layers are rather to be interpreted as
equipotentials rather than material layers.

Gravity should be continuous at the CMB, at least if we assume that there
are no additional masses positioned at the CMB. Inside the core, gravity should
be proportional to rl, as the other solution of equation (1.60) is irregular at the
center of the Earth. So for the lowermost mantle layer at the CMB we get

i (1.96)
with K\ a constant.

Assuming that the core is inviscid (fluid) , we can readily deduce that the
tangential displacement of the mantle is not restricted, so for the lowermost
mantle layer at the CMB we have

yf\rc) = K2l (1.97)
with K2 as a constant and y2

 m e second component of the vector y ^ .
The following condition holds for the lowermost mantle layer at the CMB,

where the first term provides the radial displacement of the equipotential <p/gc

(note the minus sign of cf> in (1.43))

y[
N\rc) = - ^ + X3 = -f^-Kl + K3, (1.98)

9c 47rGp
with gc being the gravity at the CMB, K3 a constant, pc the density of the core
and y\ the first component of the vector y (N~).
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The radial stress (pressure) should be continuous over the CMB. This leads
for the lowermost mantle layer at the CMB to the condition

= -TrGp2
crcK3, (1.99)

with yg the third component of the vector y(N'.
The tangential stress in the fluid core is zero, and thus continuity of stress

requires for the lowermost mantle layer at the CMB that

i/4 \~c) — u, (1.100)

with y^ ' as the fourth component of the vector y(N\
Finally, ye should also be continuous at the CMB, leading for the lowermost

mantle layer at the CMB to the condition

ylN)(re) = 2 ( l - (1.101)

with yg1"' as the sixth component of the vector y ^ .
If we treat the core as the innermost layer, then the conditions at the CMB

can be expressed as a 6 x 3 interface matrix Ic(rc) as

(1.102)

with

Ic(rc) =

-L/Ac

0

0

0
./

0

1

0

0

0

1

0

PcA

0

0

V 2(l-l)r£-1

(1.103)

with pc being the (uniform) density of the core, Ac = ^irGpc, and C c =
a 3-component constant vector.

The solution vector y(a, s), equation (1.95), with (1.103) can be used to
express either the conditions for a free surface, or the conditions for a surface
or internal loading. The loading/forcing case will be treated afterwards.

The solution vector y(a, s) can be split into two parts: one that contains
the unconstrained parameters Uu Vi and <pi (which we are solving for), and the
other containing the constrained y-$ = arr, y^ = arg and ye-

For a free surface, the components of the latter, as we have already seen, are
all zero at the surface. If P i denotes the projection operator on the third, fourth
and sixth components of the solution vector given by equation (1.43), then we
get the following condition
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Ic(rc)Cc , (1.104)

with P i the projection operator

(1.105)

/ 0 0 0 0 0 0 \
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1 J

This condition constrains the s-values in the sense that only those s-values
for which

/N-l
ri+1,s)

2 = 1

= 0 (1.106)

are non-zero solutions of equation (1.104). The expression given by equation
(1.106) is called the secular equation and the determinant the secular determi-
nant. Its solutions s = Sj (j = 1,2,3,..., M) are the inverse relaxation times
of the M relaxation modes of the earth model. These Sj are dependent on the
harmonic degree / (and thus must be determined for each harmonic degree), but
the index I has been left out in order not to complicate the indexing. The total
number of relaxation modes M for each harmonic degree is the same for each
harmonic degree (with the exception of degree 1, but we will not digress any
further on the differences between degree 1 on the one hand and degrees 2 and
higher on the other).

Experience and (extremely laborious) analytical proofs have led to the fol-
lowing results:

• The surface contributes one mode, labeled M0.

• If there is an elastic lithosphere on top of a viscoelastic mantle, then there
is one mode triggered by the lithosphere-mantle boundary, labeled L0.

• At the boundary of two viscoelastic layers, one buoyancy mode is triggered
if the density on both sides of the boundary is different. Buoyancy modes
between two mantle layers are usually labeled Mi, with i = 1,2,3,...,
whereby M l is usually the buoyancy mode associated with the 670 km
discontinuity (upper / lower mantle) and M2 with the 400 km discontinuity
(shallow upper mantle / mantle transition zone).
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• At the same boundary two additional viscoelastic modes are triggered if the
Maxwell time on both sides of the boundary is different (so if the viscos-
ity and rigidity are different, but the ratio of viscosity and rigidity is not,
then these viscoelastic modes are absent). These 'paired' modes are also
called transient modes as they have relatively short relaxation times and are
therefore usually labeled Tj, with i = 1,2,3,....

• The boundary between the lowermost mantle layer and the inviscid core
contributes one mode, labeled CO.

It is thus possible, with the above rules, to determine the total number of
modes of equation (1.106). This is of importance as solving this equation has
to be done numerically. However, this root-solving is the only non-analytical
part of the viscoelastic relaxation method as described in this chapter.

The root-solving procedure usually consists of two parts: grid-spacing, fol-
lowed by a bisection algorithm. In the grid-spacing part, the s-domain is split
into a number of discrete intervals. For each s-value at a boundary of an interval,
the value of the determinant expressed by equation (1.106) is calculated, after
which this value is multiplied with the value of the determinant of the s-value
of the boundary next to it. If this product is positive, then the determinant has
not changed in sign (or has changed an even number of times). If the product
is negative, then we are sure that there is (at least) one root inside the interval
bounded by the two s-values for which the determinant was calculated. In that
case, the interval is split up in two parts, and the procedure of determining the
product of the determinant of the bounding s-values is repeated. The interval
where the determinant changes sign will result again in a negative product, and
for this interval the procedure of cutting the interval in two, etc., is repeated.
Thus the s-value where the determinant (1.106) is equal to zero becomes pro-
gressively better estimated with each further step in this bisection algorithm.
Of course, it can happen that the determinant (1.106) changes sign over a small
s-interval twice or even more times. It is thus necessary to choose small grids
in the s-domain (in practice, it appears that especially the two modes of each
T-mode pair have inverse relaxation times (s-values) that are very close to each
other). Only after the complete number (determined with the rules above) of
roots/modes of equation (1.106) has been found can one be sure that the com-
plete signal will be retrieved after inverse-Laplace transformation. For this
final step in the relaxation modeling procedure we use the so-called method of
complex contour integration. Those readers who are not acquainted with this
technique will find an overview in Appendix B.

5.2 PROPAGATION OF THE TOROIDAL SOLUTION
The same procedure discussed above can be used to propagate the toroidal

solution. At the CMB the boundary condition is
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Jfc(c) = 0, (1.107)

which states that at the core-mantle boundary the tangential stresses are zero
(Smylie and Manshina, 1971).

Exercise. On analogy with the spheroidal case, it is possible to build Ic(rc),
which is now a vector, so as to make use of the same propagation procedure
described for the spheroidal case. Making use of the boundary condition at the
CMB for the tangential stress shows that Ic(rc) takes the form

( ((-I),. 31+1
I+S

 Q
+rc I • d-108)

6. INVERSE RELAXATION TIMES FOR
INCOMPRESSIBLE EARTH MODELS

In order to gain insights into the physics of the relaxation processes, it is
important to take a close look at the relaxation times corresponding to the
modes excited by discontinuities in the physical parameters of simple earth
models. We will consider the spheroidal case. The relaxation times for the five
layer model, depicted in Figure 1.3, panel (a), are shown in Figures 1.4 and 1.5
as a function of the harmonic degree I. A simpler 4-layer model is shown in
Figure 1.3, panel (b), for comparison.

The relaxation times Tr = — 1/s; are expressed in years, ranging from I = 2
to I = 100. Figure 1.4 deals with a viscosity increase in the lower mantle, with
the ratio B between the lower and upper mantle viscosity ranging from 1 to
200. OM stands for an old viscosity model in which the upper mantle viscosity
is fixed at 1021 Pa s, while NM stands for a new viscosity model in which v\
is fixed at 0.5 x 1021 Pa s, in agreement with the recent analyses by Lambeck
et al. (1990), Vermeersen et al. (1999) and Devoti et al. (2001) based on
postglacial rebound modeling from different perspectives, sea-level changes in
the far field and long-wavelength geopotential variations. These models are
chemically stratified at 420 and 670 km depth, Figure 1.3 panel (a), and the
viscosity is uniform in the whole upper mantle; this stratification supports nine
relaxation modes. The slowest modes have been named M l and M2 by Wu
and Peltier (1982) and are associated with the two internal chemical boundaries
at 670 and 420 km. These M l and M2 modes will be quoted several times
in the book when dealing with the geophysical processes affected by the slow
readjustment of the 670 and 420 km density discontinuities.

At low degrees, Figure 1.4, they are followed by the lithospheric (LO) mode
and by the core (CO) and mantle (MO) modes, as portrayed in the panel NM
by B = 1, with B = vilv\ denoting the ratio between the lower to upper
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(b)

viscosi

Figure 1.3. Schematic diagram with the rheological models, which include a hard transition
zone, panel (a), considered for the evaluation of the relaxation times and a two-layer mantle,
panel (b), shown for comparison.

mantle viscosity. When B is increased from 1 to 200, all the curves are moved
upward toward slower relaxation times. This upward migration occurs first for
longer wavelengths, say lower than I = 10, followed by the shorter ones, which
are less affected by lower mantle viscosity. For shorter wavelengths only the
Ml , M2 and core modes have slower relaxation times, while the lithospheric
and mantle modes are rather unaffected, the deformation at such high harmonic
degrees being concentrated in the upper mantle and thus unaffected by lower
mantle viscosity variations. The NM curves, in the left panel, can be obtained
from their counterparts in the right panel by a uniform downward shift towards
faster relaxation times, in agreement with the lowering of the global mantle
viscosity of this model.

Figure 1.5 shows the effects of a viscosity increase in the transition zone for
the new model NM, with C = v%lv\ denoting the ratio between the viscosity
in the transition zone v% with respect to the viscosity in the upper mantle. These
models, with a stiff transition zone at the upper lower mantle boundary, are based
on the laboratory studies by Karato (1989) and Meade and Jeanloz (1990), which
suggest that the transition zone may form a layer of relatively high viscosity
between the upper and lower mantle. The C parameter is varied between 1 and
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OM
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angular order, I

Figure 1.4. Relaxation times in years as a function of the harmonic degree I and varying lower
mantle viscosity. The parameter B = V2/vi is varied from 1 to 200. OM corresponds to
v\ = 1021 Pa s, while NM corresponds to v\ = 0.5 x 1021 Pa s. (Figure 2 in Spada et al,
1992b).

200. Panel LB, with LB standing for lower bound, corresponds to an upper
mantle viscosity of 0.5 x 1021 Pa s and the low value of v2 = 2 x 1021 Pa s in
the lower mantle, while UB, with UB standing for upper bound, corresponds
to the same upper mantle viscosity and to a higher lower mantle viscosity of
u2 = 2 x 1022 Pa s. LB and UB for the lower mantle viscosity stand for the two
possible viscosity solutions when true polar wander data and variations in the
long-wavelength gravity field are used to constrain the viscosity of the lower
mantle (see Chapters 4 and 5). Viscosity increase in the hard layer influences
all the modes for all the models, in particular the Ml and M2 modes, which
is not surprising as these modes are excited by the discontinuities that bound
the region where the viscosity is varied. With respect to the previous figure,
all the modes are now affected by the viscosity increase in the transition layer
which, lying close to the surface, is also able to affect the short wavelength,
high-degree modes.

7. PHASE-CHANGE INTERFACE
Density contrasts associated with phase changes that allow for material cross-

ing the interface have been developed by Johnston et al. (1997) and applied
to simplified 5-layer models. If the transition zone of the mantle behaves as a
phase change, Johnston et al. (1997) have shown that the appropriate boundary
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Figure 1.5. Relaxation times in years as a function of the harmonic degree / and varying lower
mantle viscosity. The parameter C = vs/vi is varied from 1 to 200. LB corresponds to
vi = 0.5 x 1021 Pa s and v2 = 2 x 1021 Pa s, while UB corresponds to vi = 0.5 x 1021 Pa s
and i/2 = 2 x 1022 Pa s. (Figure 3 in Spada et al., 1992b).

condition, with i, i + 1 denoting the two layers that match at the phase-change
interface, is given by

(1.109)

where & denotes the response function for the ^-th layer defined by Christensen
(1985), I denotes the identity matrix and c^, /3j are given by

= {APi/Pi-i,0A0,0,0) (1.110)

(ri)), (1.111)

where Ap2 = pi-\ — pi denotes the density contrast. It should be noted that the
definition of on and fii differ from that given in the equation (30) by Johnston
et al. (1997) since their procedure has been adapted to ours, where the inner
layers correspond to increasing values of the index i. Equation (1.109) does
not apply at rheological interfaces, like the lithosphere-mantle or core-mantle
interface, where £ = 0 is used.

In our propagation method, the secular equation (1.106) now becomes
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= 0 .

(1.112)
For an univariant phase change, the response factor £j takes the following

explicit expression as a function of various thermodynamic parameters

£ 1 (

where k is the thermal diffusivity, cp the specific heat at constant pressure, T the
absolute temperature, w the vertical component of the background convection
velocity and dPc/dT is the Clapeyron slope, which gives the rate of change of
the pressure of the phase change with respect to the temperature.

Once the parameters in Table 2 of Johnston et al. (1997) are used, it is found
that an appropriate value for the response factor at 420 and 670 km is & = 0.7.
The physical meaning of the response factor can be easily understood if we
recall here its definition in terms of the difference between the displacement e
of the interface where the phase change occurs and the particle displacement u
(Johnston ef al, 1997).

e - u(r0) = £ - ^ — , (1.114)
Pi+\9

wherep5 is the incremental pressure due to the surface loads. If£ = 0 the density
contrast moves with the material particles and it denotes a chemical interface,
while for £ = 1 the density discontinuity due to the phase change occurs at
constant pressure and is thus termed isobaric; in this case, the density jump is
totally adiabatic because the temperature does not play any role in controlling
the final position of the interface. Intermediate values of the response factor,
in the interval between £ = 0 and £ = 1, are responsible for a behavior of the
phase change interface between those two end members.

For an upper mantle viscosity v\ fixed at 1021 Pa s, Figure 1.6 portrays
the inverse relaxation times - 1 / s ; for variations in the lower mantle viscosity
V2- The Si are the zeros of the secular equations (1.106) and (1.112), top and
bottom panels respectively, for the 5-layer model described in Table 2.2 where
the densities are volume averages of the Preliminary Reference Earth Model
(PREM) of Dziewonski and Anderson (1981).

The top panel corresponds to a chemically stratified mantle, while the bottom
treats the case of a phase change with £ — 0.7 at the 420 and 670 km interfaces.
We notice, comparing the two panels of Figure 1.6, that the modification in the
£ parameters from 0 to 0.7 affects only the slowest buoyancy relaxation modes,
as expected, with those corresponding to the phase change being slower. It is
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Figure 1.6. Inverse relaxation times for the isostatic modes, equations (1.106) and (1.112), for
the 5-layer model of Table 2.2, for chemical and phase-change boundary conditions at 420 and
670 km, (a) and (b) panels respectively. The phase change is characterized by £ = 0.7. The
circles and the crosses correspond to the 420 and 670 km discontinuities. Redrawn from Figure
2 in Sabadini et al. (2002).

also interesting to note that these particular buoyancy modes are less sensitive
to viscosity variation in the analyzed range than to changes in £, suggesting that
the nature of the transition zone, whether chemical or phase change, must play
a crucial role in the rotation dynamics of the Earth.

8. LOADING THE EARTH
The general solution of the following non-homogeneous system of ordinary

differential equations for each harmonic degree /, where f is the vector charac-
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terizing a general kind of source loading the Earth embedded at a depth rs and
A being the spheroidal or toroidal system matrix

-^-y = A - y + f, (1.115)
ar

is given by

y(r) =Y(r)[[r Y-^r'nr^dr' +Y-1(r0)y(r0)}, (1.116)
Jro

where r$ denotes an interface lying below the source and Y(r) is the fundamen-
tal matrix given by equation (1.74) for the spheroidal case or equation (1.82)
for the toroidal case; the harmonic degree / is not explicitly given.

In the following derivation it is assumed that the source is embedded in the
outermost layer of radius a, denoting the radius of the Earth, and internal radius
6, denoting the interface between the bottom of the lithosphere and underlying
layer. This procedure can be generalized to a source embedded in an arbitrary
internal layer. If the vector f has this form

f = f<J(r-r s) , (1.117)

with rs denoting the radius of the source, the solution of the non-homogeneous
system of ordinary differential equations takes the following form

_ / Y{r)[Y-l{rs)U + Y-\b)y{b)l rs < r < a;
H b<r<rs.

Exercise. Show that, if the forcing vector has the form

•p — P A (7"1 f \ I "p A (v* T* 1 r 1 1 1 Q^

the solution is given by

/ \ _ J Y ( r ) [ Y ~ 1 ( r s ) ( I f + A ( r s ) f ) + Y^1(b)y(b)} rs<r<a; 1
y ( r j = \ Y(r )Y- 1 (^)y(&) , b<r<rs, )

(1.120)
where A is any of the matrices given by equation (1.51) or (1.81).

8.1 INTERNAL LOADING: EARTHQUAKES,
SUBDUCTION

The boundary conditions for an internal forcing (earthquakes or internal
density anomalies) are the vanishing of the stress components and y$ at the
Earth's surface:
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y3{a) = y4{a) = y6(a) = 0. (1.121)

For internal density contrasts appropriate for modeling subduction processes,
the f vector takes the form

f = (0 , 0 ,-—g(rs)(2l + l)/rs
2 , 0 , 0 , -G(2l + l ) / r s

2 ) . (1.122)

These conditions can be cast in the following form once we make use of
equations (1.119) and (1.120)

PiY(a)[Y- 1 ( r i ) ( I f + A(r s ) f ) + Y-1(6)y(6)] = 0 , (1.123)

where P i denotes the projection operator on the third, fourth and sixth compo-
nents of the solution vector defined in equation (1.105).

If the three-component vector b is defined in the following way

b = -P 1 Y(a)Y" 1 ( r s ) ( I f + A(r s ) f ) , (1.124)

the boundary conditions at the surface become

P1Y(a)Y~1(b)y(b)]=b, (1.125)

which coincides with equation (52) in Sabadini et al. (1982a).
For earthquake sources, the appropriate f and f vectors entering equation

(1.120) can be found in Appendix C.

8.2 SURFACE LOADING: POINT MASS AND TIDAL
FORCING

In the case of surface loading, the loading vector f affects only the stress
components of the solution vector and the component related to the gradient of
the perturbed potential ys, j/4, y§. In the case of a point mass load acting at the
Earth's surface, the b vector takes the form (Sabadini et al., 1982a)

b = (-^g(a)(2l + l ) /a 2 , 0 , -G(2l + l ) /a 2 ) . (1.126)

which coincides with equation (1.122) once rs = a.
For tidal forcing appropriate for solving problems related to changes in the

centrifugal potential, as in the case of the Earth's rotation instabilities, the 3-
component vector b becomes (Takeuchi et al., 1962)

b = (0, 0 , -{2l + l)/a). (1.127)

With these definitions, the boundary conditions at the surface for internal
loading or surface loading become formally equivalent.
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8.3 SOLVING FOR THE DISPLACEMENT AND
PERTURBATION IN THE GRAVITATIONAL
POTENTIAL

With the above definition for the b vector, whose expression depends on
the forcing as shown previously, the boundary conditions at the Earth's surface
become

N-l

I c(r c)C c . (1.128)

The unconstrained parameters Ui, V; and <f>i at the surface can be expressed

as

Cc, (1.129)

with P2 as the projection operator on the first, second and fifth component of
the solution vector given by

2 =

/ 1 0 0 0 0 0 \
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

(1.130)

\ o o o o o o y
Elimination of C c from equation (1.128) and (1.129) results in

N-l

where b is any of the vectors defined in equation (1.124), (1.126) or (1.127).
Each of the M solutions SJ of equation (1.106) or (1.112) represents a sin-

gularity for the right hand member of equation (1.131). In fact, the quantity in
the second brackets in the right member with
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B = ][[ Y^(rt,s)Y^~1(rt+1,s) (1.132)

can be written as

(P1BIc(rc))-
1 = (P 1BI c(r c))Vdet(P 1BI c(r c)) , (1.133)

where (PiBI c(r c))t denotes the matrix of the complementary minors. The de-
terminant det(PiBI c(r c)) entering equation (1.133) can be written as Ylf^i(s~
Si), where the Sj are the solutions of equation (1.106) or (1.112): each si is thus
responsible for the appearance of a singularity that corresponds to a first-order
pole.

The inverse Laplace transform of equation (1.131) from the s to the time
domain can thus be carried out by means of the residue theorem in Appendix
B.3, as shown hereafter.

The inverse Laplace transform f(t) of a function f(s) is formally defined
by complex contour integration by

1 n+ico _
/(*) = IT-- / f(s)estds, (1.134)

Zni J1-ioo
in which the real constant 7 is chosen such that singularities of f(s)est are
either all on the left or all on the right side of the vertical line running from
7 - ioo to 7 + ioo. Closing the contour with a half-circle (either on the left of
the line or on the right, depending on where the singularities are situated) leads
to a complex contour that is known as the Bromwich path.

The residue theorem states that if f(s) is an analytical function with M
singularities of first order, in our case the right hand side of equation (1.131),
then

1 /-7+ioo _ M

/ f(s)estds = J2[Res(f(s)es%=Sj, (1.135)

where the residue in the pole of first order s = Sj is given by (equation (B.30))

Res(f(s)est)\s=Sj = lims^Sj(s - Sj)f{s)est. (1.136)

The above equation (1.136), with (s — Sj) multiplying the function f(s)
in the s -domain and the exponential, tells us that, since at the denominator of
equation (1.131) we have the product ] l i^ i ( s — si)> w e finally remain with
Yli^j (SJ - s^ at the denominator after we have made use of it. It can be easily
seen that l\ffj{sj - »i) equals £ det(PiBI c(r c)) | s = 5 j .

The solution of the field U\, V\ and —§\ at the surface of the Earth can thus
be cast in the following form of the 3-component K(£) vector
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M

Ky(a)es>t
) (1.137)

in which, on the basis of the equations above, the K/j (a) are the vector residues
of the solution kernel vector y (r, s) given by

' \ idet(P,BIc(rc)) ; ( = ( .

and K-ie(a) denoting the elastic limit obtained by

K,e(o) = lim (P2BI c(r c) • (P iBI^r , ) ) " 1 ) • b . (1.139)

For surface loading the dimensionless form of the first two components of
the K/ vector are usually indicated by the Love numbers hi, li for the radial
and tangential displacement. The nondimensionalization constant is <f>2,i/g =
a/ME, where cf>2,i is the potential perturbation due to the load and a and ME
denote rhe radius and the mass of the Earth. The third component is <fo,/ (1+h) ,
where k\ is the Love number of the geopotential perturbation and 1 denotes the
direct effect of the load.

The appearance of the delta S(t) in the time domain is a consequence of the
fact that equation (1.139) is a constant in the s-domain. These results provide
the radially dependent part of the Green functions for the variables for each
degree I.

Multiplying the Green functions with the Laplace-transformed forcing func-
tions (which is the same as a convolution in the space-time domain) and per-
forming an inverse Laplace transformation gives the sought-for expressions for
the displacement fields and perturbation in the gravitational potential due to any
kind of time-dependent loading.

Solution (1.137) shows that for each harmonic degree I the horizontal dis-
placement, vertical displacement and change in gravity consist of an immediate
response to the load (the elastic response), followed by M exponentially decay-
ing (viscous) responses. At the least, the viscous responses are decaying only
if the inverse relaxation times Sj for each harmonic degree are negative. For
incompressible models this turns out to be always the case if the Earth layers
show no density inversions in the radial Earth profile. However, if there is a
layer with a greater density than its neighboring layer below, then the buoy-
ancy mode for the interface will have a positive inverse relaxation time for each
harmonic degree I. Such a positive relaxation time leads, according to equa-
tion (1.137), to an exponentially increasing response in the displacements and
gravity variations, and thus the interface becomes Rayleigh-Taylor unstable. If
this occurs, convective motions will be triggered in the earth model, and the
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linearization assumed in the normal-mode theory as developed in this chapter
breaks down.

From Chapter 3 onwards, we will make use of the superscript L in the Love
numbers in order to denote a load, such as that associated with surface density
anomalies, while the Love numbers corresponding to tidal loading will not carry
any superscript.

9. APPROXIMATION METHOD FOR HIGH-DEGREE
HARMONICS

When using spherical harmonics to describe Earth surface deformations,
we always have to face the problem of how many terms we should sum up
in order to obtain an accurate solution. Since every harmonic represents a
standing wave on the Earth's surface, whose equator is about 40,000 km long,
it is easy to determine the resolution given by each term of that series wherein
the wavelength is given by the length of the equator divided by the harmonic
degree. For point-like seismic sources, we find in the modeling carried out
in Chapter 8 that this wavelength is uniquely related to the source depth for
the elastic response and to the thickness of the elastic layer for (viscoelastic)
relaxation: the summation of several thousand harmonics is thus required to
get saturated convergence of the solution in the case of shallow earthquakes.

Modeling of the post-seismic effects of shallow and moderate-size earth-
quakes in the Mediterranean has motivated the development of new algorithms,
with respect to those used for studying global post-seismic deformation as in
Sabadini et al. (1984a) or Piersanti et al. (1995), appropriate for normal mode
techniques at very high harmonic degrees, necessary for resolving wavelengths
of a few hundred meters. These new algorithms are built on the multilayer code
first developed in Vermeersen and Sabadini (1997), in which the core of the nor-
mal mode technique, namely the rootfinding procedures for multilayer models,
had been modified and improved with respect to the old models (Sabadini et
al., 1984a; Piersanti et al., 1995) in which the standard routines of rootfinding
can deal with a five-layer model at the most.

The analytical propagator matrix technique, due to the stiffness of the fun-
damental matrices, does not allow, in practice, a straightforward calculation of
more than a few thousands degrees. This is due to the r±l dependence of the
fundamental matrix, equation (1.74), which causes numerical problems of over-
and under-flow for high order harmonic degrees. The particular structure of the
analytical fundamental solutions used in normal mode techniques thus does not
allow a straightforward calculation, since numerical problems can readily occur
due to the stiffness of the matrices used in the propagation routines. However,
it is possible to mathematically demonstrate that the irregular fundamental so-
lutions in non-homogeneous earth models are not necessary for calculating all
the harmonic degrees, their weight getting smaller and smaller with increasing
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degree. From a certain degree onwards, namely I > 102 — 103, depending
on the earth model, it is possible to obtain an approximated expression of the
fundamental solutions by keeping only the regular part. This makes it possible
to remove the rl growth of this part by rescaling procedures, as shown for the
first time in Riva and Vermeersen (2002).

This section deals with a way of removing this stiffness problem by approx-
imating the fundamental matrix solutions, followed by a rescaling procedure;
in this way we can virtually go up to whatever harmonic degree is required.
One way to cope with the stiffness problem is to use minors of the fundamental
matrices (e.g., Woodhouse, 1988). This technique is commonly used in seismic
applications that employ numerical integration by means of propagator matri-
ces. Here we present a new alternative approximation technique that can be
used for analytical propagator matrix models.

Here we will first demonstrate, by means of matrix algebra, that it is possible
to obtain a first order approximation of the fundamental solutions by neglecting
the irregular part of the fundamental matrix from a certain degree onwards. We
will then determine the accuracy of this approximation and describe how to
apply a reliable rescaling procedure. The following section is taken from Riva
and Vermeersen (2002) and adapted to our formalism.

9.1 APPROXIMATION OF THE SOLUTION
Equation (1.106) for the inverse relaxation times Sj of the modes j can be

changed into the following expression

det[M(ri)B'Ic] = 0, (1.140)

in which M = P i Y ^ ' ( r i ) is the fundamental matrix Y with the first, second
and fifth rows deleted (i.e., the rows corresponding to the displacements and to
the gravitational potential), Ic is a 6 x 3 matrix containing the conditions at the
core-mantle boundary given by equation (1.103) and B ' differs from equation
(1.132) and is given by

B' = YW"1^) [J YW(ri)YM-1(ri+1). (1.141)
i=2

With these definitions, the residues, i.e. the amplitudes of the modes j , for
each of the roots Sj are thus given by

13 V £det[M(n)B'I
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where the vector b is defined in section 1.8.2 for surface loading, N is Y ^ (r\)
with the third, fourth and sixth rows deleted (corresponding to the stresses and
the potential gradient) and the f symbol denotes the (-l)l+:/-transposed of
the nine minor determinants of the matrix between the brackets, with i and
j denoting the number of rows and columns. The elastic response is given
as the limit for s going to infinity of the same relation (1.142), without the
s—derivative.

We now focus on the incompressible case; explicit expressions for Y for the
compressible case can be found in Appendix A.

The problem we have to deal with in calculating residuals given by equation
(1.142) is that the fundamental matrix Y contains three regular functions rl

and three irregular r~l. The radii are non-dimensionalized by division by the
average Earth radius a and are thus represented by a number between zero and
one; it is obvious that

lim rl—>Q and lim r '—> + oo. (1.143)
I—too l

Especially for deep layers (r ~ 1/2 at the CMB), and due to the stiffness of
the matrices, numerical evaluation of the fundamental solutions can represent
a serious problem for high-degree harmonics; for practical purposes, then, we
need to find a way to rescale equations (1.140) and (1.142). However, the
propagation matrix technique, which is at the basis of the explicit form for
B ' (or B in equation (1.132)), does not allow a simple rescaling due to the
non-commutativity of the matrix algebra. The fundamental matrix is stiff and
this stiffness, in turn, would require rescaling by means of a transformation like
Y' = KY, with K being a 6 x 6 linear operator. But once we put all the Y ' and
(Y')" 1 into (1.140) and (1.142) we have no way, at the end of the calculations,
to find an inverse transformation which can produce the actual values for the
relaxation times and their residuals.

The explicit analytical form of the layer propagator matrix Y Y " 1 can be
found in Martinec and Wolf (1998); note, however, that use of the explicit
analytical form of the propagator matrix in the propagator matrix technique
does not solve the stiffness problem.

However, there is an approximation method that does solve the stiffness
problem, as discussed in the following section.

The basic idea underlying the approximation procedure is to consider the
6 x 6 matrix Y as formed by two 6 x 3 matrices, one regular (Y#) and one
irregular (Y/),

Y = [ Y f l Y / ] . (1.144)
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This splitting can also be found in Sabadini et al. (1982a). The first three rows
of the inverse Y " 1 can be cast as a 3 x 6 irregular matrix that we define as Y^1.

We then split B ' into two parts as well, Bu (up) and Bp (down), both 3 x 6 ,

B ' = [ * » ] , (U45,

and we will demonstrate below that Bu is irregular and Bu regular. The matrix
N of equation (1.142) is evaluated at the surface and keeps the same structure as
Y (left part regular, right irregular), so that performing the products in equation
(1.142) results in

NB'IC = [ N f l N / ] [ g y 1 Ic = NRBUIC + N/B B I C . (1.146)

In this way we have separated NB'IC into the two terms N R B [ / I C and
N/B£>IC, which present a different behavior since

lim NflB[/Ic—> + oo, whereas lim N/B/jIc—>0. (1.147)
I—>oo I—>oo

The same holds for MB'IC in equation (1.142) and we are thus allowed to
write

lim NBIC—>NRBuIc and lim MBIC—>MRBuIc . (1.148)
I—too l

As a result, when we determine the products in equation (1.142) by taking
into account equation (1.148), we obtain

hm Ky —>• ( j , , ̂  , „ , t — ) • b. (1.149)

The relaxation times result from the approximated form of the secular equa-
tion (1.140):

Btflc] = 0, (1.150)

with Bu defined as

N-l

Bu = Y^u\r2) IJ Y^R(ri)Y%\ri+1). (1.151)
1=2
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We can demonstrate that B ' keeps the same structure as in equation (1.145)
(upper part irregular, lower part regular) independently of the number of layers.
It is possible to rewrite equation (1.141) by grouping the matrices evaluated at
the same radii and by isolating the one at the CMB:

B ' =
7 V - 1 . _

(rc). (1.152)
I i=2

It is evident, then, that all couples of matrices evaluated at the same radii
compensate each r\ term with an analogous rx~ term: the only net dependence
on the radius is from the inverse fundamental matrix at the CMB. As a conse-
quence, the general structure of B ' is the same as Y~1(r c) , thus characterized
by an irregular upper part and a regular lower one (as is clear from the structure
of the fundamental matrix and from YY""1 = I).

A further refinement of this last result is also possible. A direct consequence
of equation (1.152) is the possibility of applying only a partial approximation
to equation (1.141), instead of the full one in equation (1.151), by splitting the
product into two parts:

NA-1 N-l _ 1

I \li) -I V l) J^ x [/ \'i) *• R V ' i / > ^I.IJJ^

i=2 i=ATA

where iVyl is the first boundary where approximated solutions are used. In
this way a good compromise can be found between approximation accuracy
and numerical stability. As a general rule, the resolution required by shallow
seismic events can be reached by approximating boundaries only within the
lower mantle, typically represented by the CMB itself.

The possibility of a partial approximation becomes crucial to implementing
the case of an internal mantle loading as a pointlike seismic source in the crust
or lithosphere: these applications will be shown in Chapter 8, dealing with
post-seismic deformation.

All the arguments presented continue to hold and no further demonstration
is required when the approximation is applied below the source: the new terms
only consist of matrices evaluated at the surface and at the source depth and are
thus not affected by the approximation.

9.2 RESCALING THE SOLUTION
As anticipated above, the net dependence of the amplitudes on the basis

functions in the B ' matrix results from the inverse fundamental matrix evaluated
at the CMB.
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Considering that only the first column of Ic depends on powers of the radius
(see equation (1.103)), due to the free-slip boundary condition at the interface
with the fluid core, it is easy to show that

r-2l -21 -21
' c ' c ' c
r-2l -21 r-2l
' c ' c ' c
r-2l -21 r-2l
' c ' c ' c

(1.154)

and

(0 r"2 ' (1.155)

so that, once we make use of equations (1.154) and (1.155) to evaluate equation
(1.149), the dependence on r~21 compensates between the numerator and the
denominator.

The key point consists in the possibility of taking the r±l dependence out of
the computation at the very beginning and to obtain the same residues. This
can be done by normalizing Y# by means of rl and Y^ 1 by means of r~l. In
this way the stiffness problem is avoided.

The accuracy of the approximation is analyzed for the value of elastic and
fluid Love numbers for an incompressible Earth in the case of surface loading.
All the results are expressed as normalized residuals

^norm.res.
k-k, app.

k
(1.156)

with k the Love number without the approximation and kapp, the approximated
Love number. In the figures, a square represents the radial displacement number,
a triangle the tangential displacement and a circle the gravitational ones.

The earth model taken into consideration is characterized by five layers: an
elastic lithosphere 120 km thick, a viscoelastic mantle with chemical disconti-
nuities at 420 km and 660 km and, finally, an inviscid core. Values for rigidity
and density are PREM-averaged (Dziewonski and Anderson, 1981) as in Table
2.2 of the following chapter and viscosity in the mantle is fixed at 1021 Pa s.

In Figure 1.7 we show the elastic k normalized residues of the Earth when
the approximation procedure is started at different depths. In panel (a) we take
the regular part of the solution only at the core-mantle boundary: differences
between exact and approximated Love numbers are up to 40% but affect only
the first few terms and are negligible for degree 10 and higher. In panel (b) we
rescale all the boundaries from the 420 km discontinuity downwards (i.e. also
at 660 km and the CMB): the vertical and gravitational responses are highly
affected (more than 100% difference) but still converge quite rapidly to the
exact solution (1% difference at degree 50); the horizontal Love number is
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Figure 1.7. Normalized residual elastic Love numbers (Figure 1 in Riva and Vermeersen, 2002).
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less affected, but convergence is slower (less than 1 % at degree 70). Finally,
in panel (c), full approximation is applied: more terms are required before
reaching convergence between the exact and the approximated solution (1%
difference around degree 160 for the vertical and the gravitational numbers), in
particular for the horizontal Love number which remains significantly different
for the first 200 terms and reaches the 1% level around degree 330.

In Figure 1.8 we show the effect of the approximation for the fluid response:
results are not significantly different from the elastic case. When only the CMB
is approximated, as in panel (a), convergence is very fast and the maximum
difference is limited (only the gravitational number is above 10% for degree
2). When approximation is started at 420 km, as in panel (b), both vertical and
gravitational Love numbers show a discrepancy from the exact solution smaller
than 20% and again a fast convergence (below 1% at degree 25), whereas a few
more horizontal terms are highly affected. This last feature, however, is due to
the fact that the horizontal fluid number is changing sign around degree 10 and
the normalization is not appropriate. The only limit we found is the impossibility
of applying the approximation at a boundary with an elastic layer when the
fluid response is evaluated: null residuals are obtained in this case. This fact,
however, does not represent a real problem, since several thousand terms are
already reached by just rescaling the solution at deeper boundaries. Another
important issue is the numerical computation of spherical harmonics using the
recursive relation for the Legendre polynomials: results up to degree 60,000
have been compared after working with both double- and quadruple-precision
and the relation appears to be stable. The stiffness problem can thus be overcome
by applying a successful approximation and rescaling procedure to the analytical
propagator matrix technique commonly employed in normal mode models.
The irregular fundamental solutions in non-homogeneous earth models can be
neglected, the weight getting smaller and smaller with increasing harmonic
degree. Keeping only the regular part of the fundamental solution makes it
possible to by-pass the non-commutativity problem of the matrix algebra and
to rescale the solution within the propagation procedure. Thus, the method
presented here is an alternative to the minors-only method commonly employed
in (seismic) numerical normal mode modeling.

These results provide a quantitative estimate of the applicability of the ap-
proximation procedure. In practice, in most cases it is only necessary to rescale
the CMB, which means that just the first few terms need the full solution in
order to obtain adequate results. However, even when the solution is fully
approximated, good results are obtained after a few hundred terms.

This approach has been explicitly discussed for the case of an incompressible
linear rheology due to the availability of a short explicit form for both the
fundamental matrix and its inverse. This assumption is not necessary for the
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Figure 1.8. Normalized residual fluid Love numbers (Figure 2 in Riva and Vermeersen, 2002).
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demonstration, as the character of the fundamental solutions (regular/irregular)
is the only information which is required.
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