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Traditional DASH

The practice focused on the“maximum” magnitude

each fault could produce, its closest distance to the

site, and then predicted PGA for these events

In this way, PGA became the primary scalar measure

of ground motion intensity for use in structural

analysis and design schemes

Typically PGA was used to scale a standard response

spectral shape or recorded accelerograms



DSHA vs. PSHA

In practice, the estimated “maximum” magnitude

values used with DSHA were softened often by

adjectives such as “probable”, “credible”, or “design”

Using an elementary probabilistic analysis an estimate of the

“hazard” was defined as the mean annual rate exceedance of

the intensity for any specified ground motion

For each fault, the hazard was derived from a

convolution of the mean annual rate of earthquakes with

the probability that the ground motion level will be

exceeded given that event



Introduction

PBEE

PSHA

DSHA

PSHA produces response spectral ordinates (or other intensity measures) for

each of the annual probabilities that are specified for performance-based

design.

In PBEE, the ground motions may need to be specified not only as intensity

measures such as response spectra, but also by suites of strong motion time

histories for input into time-domain nonlinear analyses of structures.

It is necessary to use a suite of time histories having phasing and spectral

shapes that are appropriate for the characteristics of the earthquake source,

wave propagation path, and site conditions that control the design spectrum.



Introduction

Estimation of Ground Motion

PSHA
Waveform

modelling
Accounts for all

potentially damaging
earthquakes in a

region

Focus on selected
controlling

earthquakes

Single parameter Complete time series

Deeply rooted in
engineering practice
(e.g. building codes)

Dynamic analyses of
critical facilities

PSHA

DSHA

Disaggregation,

recursive analysis

Study of attenuation

relationships



Introduction

In many applications a recursive analysis, where deterministic

interpretations are triggered by probabilistic results and vice

versa, will give the greatest insight and allow the most

informed decisions to be made.

PSHA

DSHA

PEER

Report



Performance-Based Design

Particularly, in the case of forward rupture directivity
most of the energy arrives in a single large pulse of motion

which may give rise to particularly severe ground motion at

sites toward which the fracture propagation progresses.

it involves the transmission of large energy amounts to

the structures in a very short time.

These shaking descriptors, strictly linked with energy

demands, are relevant (even more than acceleration),

especially when dealing with seismic isolation and passive

energy dissipation in buildings.

Parameters extraction



Modern
DSHA
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SITE EFFECTS

Surface topography effects (convexity)
sensitivity to:

a) type of wavefield
b) angle of incidence
c) shape and sharpness

Soft surface layering
a) 1-D: trapping of waves for impedance  contrast

(vertical resonances)
fn=(2n+1) /4H
A  ( 2 v2)/( 1 v1)

b) 2-D 3-D: complex energy focusing
for diffraction effects
(basin edge waves)



Problems in SHA-Site effects

Empirical

techniques
for

Site effect

estimation

Weak (and strong) motion
a) S/B spectral ratio 

(Borcherdt, 1970) 
b) generalized inversion scheme

(Andrews, 1986)
c) coda waves analysis

(Margheriti et al., 1994)
d) parametrized source and path  inversion

(Boatwright et al., 1991)
e) H/V spectral ratio (receiver function)

(Lermo et al., 1993)

Microtremors
a) peak frequencies examination
b) S/B spectral ratio
c) H/V spectral ratio

(Nagoshi, 1971; Nakamura, 1989)
d) array analysis

(Malagnini et al., 1993)

Rij( ) = Soi( ) Pij( ) Sj( )



Problems in SHA-Site effects

Near surface effects: impedance contrast,  velocity

geological maps, v30, vl/4, ??

Basin effects

Basin-edge induced waves

Subsurface focusing

Important issues in SRE

The convolutional model is ultimately artificial

(e.g. fault rupturing along the edge of a deep basin)

Modified from: Field et al., 2000



Problems in SHA-Site effects

Field, 1996
Landers aftershock

Damaged during Hector Mine,
but ...

Gao et al., 1996



Problems in SHA-Site effects

Amplification patterns may vary greatly among the earthquake

scenarios, considering different source locations (and rupture ?)

SRE and SHA



Problems in SHA-Site effects

In PSHA the site effect should be defined as the

average behavior, relative to other sites, given all
potentially damaging earthquakes

This produces an intrinsic variability with respect to

different earthquake locations, that cannot exceed

the difference between sites

Site characterization:

which velocity? 

use of basin depth effect? Is it a proxy for

backazimuth distance?

how to reduce aleatoric uncertainty?

SRE and PSHA



Definition of seismic input

A proper definition of the seismic input at a given site

can be done following two main approaches:

Seismic Input

The first approach is based

on the analysis of the

available strong motion
databases, collected by

existing seismic networks,

and on the grouping of those

accelerograms that contain

similar source, path

and site effects

The second approach is

based on modelling
techniques, developed from

the knowledge of the

seismic source process and

of the propagation of

seismic waves, that can

realistically simulate the

ground motion



Definition of seismic input

The ideal procedure is to follow the two complementary

ways, in order to validate the numerical modelling with

the available recordings.

Validation and calibration should consider intensity

measures (PGA, PGV, PGD, SA, etc.) as well as other

characteristics (e.g. duration).

The misfits can be due to variability in the physical (e.g.

point-source) and/or the parameters models adopted.

Validation



Definition of seismic input

The result of a simulation procedure should be a set of

intensity estimates, as the result of a parametric study

for different “events” and/or for different model

parameters

The modeling variability, estimated through validation,

can be associated to “models” or “parameters”

Prediction

Epistemic
Modeling

(point source,

1D-2D-3D)

Parametric

(incomplete data)

Aleatory
Modeling

(scattering,

rupture)

Parametric

(rupture)



Definition of seismic input

They are used to extract a measure, representing

adequately:

Magnitude, distance

Source characteristics (fling, directivity)

Path effects (attenuation, regional heterogeneities)

Site effects (amplification, duration)

Time histories selection

The scenarios have to be based on

significant ground motion parameters

(e.g. velocity and displacement).



Parameters extraction

Example of Recordings

Strong-motion instruments were designed to record the high accelerations that are

particularly important for designing buildings and other structures. The left panel is a plot

of the three components of acceleration: strong, high-frequency shaking lasted almost a

minute and the peak acceleration was about 150 cm/s2 (or about 0.15g). The middle panel

shows the velocity of ground movement: the peak velocity for this site during that

earthquake was about 20-25 cm/sec. Integrating the velocity, we can compute the

displacement, which is shown in the right-most panel: the permanent offsets near the

seismometer were up, west, and south, for a total distance of about 125 centimeters.

Ground acceleration,

velocity and displacement,

recorded at a strong-

motion seismometer that

was located directly above

the part of a fault that

ruptured during the 1985

Mw = 8.1, Michoacan,

Mexico earthquake.



Parameters extraction

Strong-motion seismology

Concerned with the measurement, interpretation and

estimation of strong shaking generated by potentially

damaging earthquakes.

Principal goal: improve the scientific understanding of

the physical processes that control strong shaking

and to develop reliable estimates of seismic hazards.

Input for improving earthquake resistant design and

retrofit.

But what threshold?? 10 or 100cms-2???



Parameters extraction

Demand parameters

DAMAGE POTENTIAL OF
EARTHQUAKE GROUND MOTION

Damage depends on intensity of the various earthquake hazard

parameters: ground motion accelerations levels, frequency content of

the waves arriving at the site, duration of strong ground motion, etc.

Damage also depends on the earthquake resistance characteristics

of the structure, such as its lateral force-resisting system,

dynamic properties, dissipation capacity, etc.

A demand parameter is defined as a quantity that relates

seismic input (ground motion) to structural response



Parameters extraction

PGA…
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Figure 1 – Acceleration time history. Rocca NS record. 1971 Ancona earthquake (ML=4.7)
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Figure 2 – Acceleration time history. Sylmar N360 record. 1994 Northridge earthquake (Mw=6.7)
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Parameters extraction

Response spectra

m (˙̇ug + ˙̇u)+ c u̇+k u = 0

˙̇u+ 2 n u̇+ n
2 u = ˙̇ug(t)

SDF SYSTEMS

k/2 k/2

c

m

A SDF system is subjected to a ground motion

ug(t). The deformation response u(t) is to be

calculated.

The ground acceleration can be registered
using accelerographs:

onacceleratiPseudo
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=
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s

fs(t) is the force which must be applied

statically in order to create a displacement u(t).



Parameters extraction

REPONSE SPECTRA

A response spectrum is a plot of maximum response (e.g. displacement, velocity,

acceleration) of SDF systems to a given ground acceleration versus systems

parameters (Tn , ).

Example : Deformation response spectrum for El Centro earthquake

)(max tuD
t

=



Parameters extraction

DA

DV

tuD

n

n

2

)(max

=

=

=

onacceleratiPseudoPeak

velocityPseudoPeak

nDeformatioPeak

Deformation, pseudo-velocity and

pseudo-acceleration response spectra

can be defined and ploted on the same

graphs

COMBINED D-V-A SPECTRUM

n : natural circular frequency

       of the SDF system.



Parameters extraction

EXAMPLE

A water tank is subjected to the El Centro

earthquake. Calculate the maximum bending

moment during the earthquake.

srad/s. T
m

k

n
nn 2

2
143 ====

==

==

28718191910

190425477

ms...

mm..

A

D

):obs( DA n
2

=

Spectrum

L
=

1
0

m

m = 10000 kg

k = 98.7 kN/m

When the equivalent static force has been

determined, the internal forces and

stresses can be determined using statics.



Parameters extraction

RESPONSE SPECTRUM CHARACTERISTICS

The spectrum can be divided in 3 period

ranges :

regionsensitiventdisplaceme:s

regionsensitivevelocity:s.

regionsensitiveonaccelerati:s.

T

T

T

n

n

n

3

350

50

>

<<

<

General characteristics can be

derived from the analysis of response

spectra.

kmTn = 2

Tn < 0.03 s : rigid system

                    no deformation

                    u(t)  0  D  0

Tn > 15 s : flexible system

                  no total displacement

                  u(t) = ug(t)  D =

ugo



Parameters extraction

ELASTIC DESIGN SPECTRUM

Problem: how to ensure that a

structure will resist future

earthquakes.

The elastic design spectrum is

obtained from ground motions

data recorded during past

earthquakes at the site or in

regions with near-similar

conditions

EXAMPLE



Parameters extraction

The effective peak acceleration EPA is defined as the average spectral acceleration

over the period range 0.1 to 0.5 s divided by 2.5 (the standard amplification factor

for a 5% damping spectrum), as follows:

5.2

S
EPA

pa
=

where paS is mean pseudo-acceleration value. The empirical constant 2.5 is essentially

an amplification factor of the response spectrum obtained from real peak value

records.

EPA is correlated with the real peak value, but not equal to nor even proportional to

it. If the ground motion consists of high f requency components, EPA will be obviously

smaller than the real peak value.

It represents the acceleration which is most closely rel ated to the structural

response and to the damage potential of an earthquake. The EPA values for the two

records of Ancona and Sylmar stations a re 205 cm/s2 and 774 cm/s2 respectively,

and describe in a more appropriate way, than PGA values, the damage caused by the

two earthquakes.

EPA



Parameters extraction

Duration

The bracketed duration is defined as the time bet ween the fi rst and the last

exceedances of a threshold acceleration (usually .05g).

Among the differ ent duration definitions that can be found in the literature, one

commonly used is that proposed by Trifunac e Brady (1975):

05.095.0D ttt =

where t0.05 and t0.95 are the time at which respectively the 5% and 95%, of the time

integral of the hi story of squared accelerations are reached, w hich corresponds to

the time interval b etween the points at which 5% and 95% of the tot al energy has

been recorded.



Parameters extraction

Arias intensity

The Arias Intensity (Arias, 1969), IA, is defined as follows:

IA =
2g

ag
2 t( )dt

0

t t

where tt and a g are the to tal duration and ground acceleration of a ground motion

record, respectively.

The Arias intensity has units of velocity. IA represents the sum of the total energies,

per unit mass, stored, at the end of the earthquake ground motion, in a population of

undamped linear oscillators.

Arias Intensity, which is a measure of the global energy transmitted to an elastic

system, tends to overestimate the intensity of an earthquake with long duration, high

acceleration and broad band frequency content. Since it is obtained by integration

over the entire duration rather than over the duration of strong motion, its value is

independent of the method used to define the duration of strong motion.



Parameters extraction

Housner intensity

Housner (1952) defined a measure expressing the relative severity of

earthquakes in terms of the area under the pseudo-velocity spectrum between

0.1 and 2.5 seconds. Housner’s spectral intensity IH is defined as:

IH = Spv T,( )dT
0.1

2.5

=
1
2

Spa T,( )TdT
0.1

2. 5

where Spv is the pseudo-velocity at the undamped natural period T and dampin g

ratio , and Spa is the pseudo-acceleration at the undamped natural period T and

damping ratio .

Housner’s spectral intensity is the first moment of the area of Spa (0.1<T<2.5)

about the S pa axis, implying that the Housner spectral intensity is larger f or

ground motions with a significant amount of low frequency content.

The IH parameter captures importa nt aspects of the amplitude and frequency

content in a single parameter, ho wever, it does not provide information on the

strong motion duration which is important for a structural system experiencing

inelastic behaviour and yielding reversals.



Parameters extraction

Destructiveness potential

Araya & Sa ragoni (1984) proposed the destructiveness potential factor, P D, that

considers both the Arias Intensity and the rate of zero cro ssings, 0 and agrees with

the observed damage better than other parameters. The destructiveness potential

factor, which simultaneously considers the effect of the ground motion amplitude,

strong motion duration, and frequency content on the relative destructiveness of

different ground motion records, is defined as:

PD = 2g

ag
2 t( )dt

0

t 0

0
2 =

IA
0
2

0

0
0

t

N
=

where t is the time, a g is the ground acceleration, 0 = N0/t0 is the numbe r of zero

crossings of the acceleration time history per unit of time , N0 is the number of the

crossings with the time axis, t0 is the total duration of the examined record

(sometimes it could be a particular time-window), and IA is the Arias intensity.

 Evaluation of the parameter 0.

ag

t

t0

Number of zero crossings N0



Parameters extraction

Yelding resistance

Linear elastic response s pectra recommended by seismic codes have been proved to

be inadequate by recent seismic events, as they are not directly related to structural

damage. Extremely impo rtant factors such as the duration of the strong ground

motion and the sequence of acceleration pulses are not taken into account adequately.

Therefore response parameters based on the inelastic behaviour of a structure

should be considered with the ground motion characteristics.

In current seismic regulations, the displacement ductility ratio is generally used to

reduce the elastic design forces to a leve l which implicitly considers the po ssibility

that a certain degree of inelastic deformations could occur. To this purpose,

employing numerical methods, constant ductility response spectra were derived

through non-linear dynamic analyses of viscously damped SDOF systems by defining

the following two parameters:

mg

R
C

y

y =
( ) ( ) gu

C

um

R

maxg

y

maxg

y

&&&&
==

where Ry is the yielding resistance, m i s the mass of the system, and ( )maxgu&& is the

maximum ground acceleration.



Parameters extraction
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Parameters extraction

Yelding resistance 2

The parameter Cy represents the structure’s yielding seismic resistance coefficient

and  expresses a system’s yield strength relative to the maximum inertia force of an

infinitely rigid system and reveals the st rength of the system as a fr action of its

weight relative to the peak ground acceleration expressed as a fraction of gravity.

Traditionally, displacement ductility was used as the main parameter to measure the

degree of damage sustained by a structure.

One significant disadvantage of se ismic resistance (Cy) spectra is that the effect of

strong motion duration is not considered. An example of constant ductility Cy spectra,

corresponding to the 1986 San Salvador earthquake (CIG record) and 1985 Chile

earthquake (Llolleo record):it seems tha t the da mage potential of these ground

motions is quite similar, even though the CIG and Llolleo are r ecords of t wo

earthquakes with very different magnitude, 5.4 and 7.8, respectively.
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Parameters extraction

Input energy

Introduction of appropriate parameters defined in terms of energy can lead to more

reliable estimates, since, more than others, the concept of e nergy provides tools

which allow to account rationally for the mechanisms of generation, transmission and

destructiveness of seismic actions.

Energy-based parameters, allowing us to characterize properly the different types of

time histories (impulsive, peri odic with long durations pulses, etc.) which may

correspond to an earthquake, could provid e more insight into th e seismic

performance.

The most promising is the Earthquake Input Energy (EI) and a ssociate parameters

(the damping energy E and the plast ic hysteretic energy EH) introduced by Uang &

Bertero (1990). This parameter considers the inelastic behavior of a str uctural

system and depends on the dynamic features o f both the strong m otion and the

structure.

The formulation of the energy parameters derives from the following balance energy

equation (Uang & Bertero, 1990):

HskI EEEEE +++=

where (EI) is the input energy, (E k) is the kinetic energy, (E ) is the damping energy,

(Es) is the elastic strain energy, and (EH) is the hysteretic energy.



Parameters extraction

Input energy

EI represents the work done by the total base shear at the foundation displacement.

The input energy can be expressed by:

EI

m
= ˙̇utdug = ˙̇ut u̇gdt

where m is the mass, u u ut g= + is the absolute displacement of the mass, and ug is the

earthquake ground displacement. Usually the input energy per unit mass, i.e. EI/m, is

simply denoted as EI.
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Parameters extraction

= 2.06 g/cm

= 650 m/s

= 2.02 g/cm

= 350 m/s

= 2.24 g/cm
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Parameters extraction

Site response estimation in Augusta - transverse

Site index
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Parameters extraction

Seismic Energy Input analysis

On the basis of the parameters characterizing the earthquake

destructiveness power, e.g. Seismic Energy Input, of the available strong

motion records, the results show that the synthetic signals provide an

energy response which is typical of recorded accelerograms.
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Case study examples

Eastern Sicily

Catania Area 

and the 

seismic source 

considered for the 

scenario earthquake 

(Hyblean fault)
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Using the detailed geological and geotechnical information

 along a selected cross section, we study the site response

 in a very realistic case.
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The main result, so far, is that, in order to perform

an accurate estimate of the site effects:

(1) it is necessary to make a parametric study that

takes into account the complex combination of the

source and propagation parameters,

(2) that results obtained with simplified structural

models have a limited applicability and detailed

models should be preferred.

Some conclusions
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