united nations educational, scientific and cultural organization the **abdus salam** international centre for theoretical physics **4** O anniversary 2004

H4.SMR/1586-21

"7th Workshop on Three-Dimensional Modelling of Seismic Waves Generation and their Propagation"

25 October - 5 November 2004

Seismic Waves Propagation in Complex Media

> Fabio ROMANELLI Dept. Earth Sciences Universitaⁱ degli studi di Trieste Trieste

7th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion Miramar, 2004

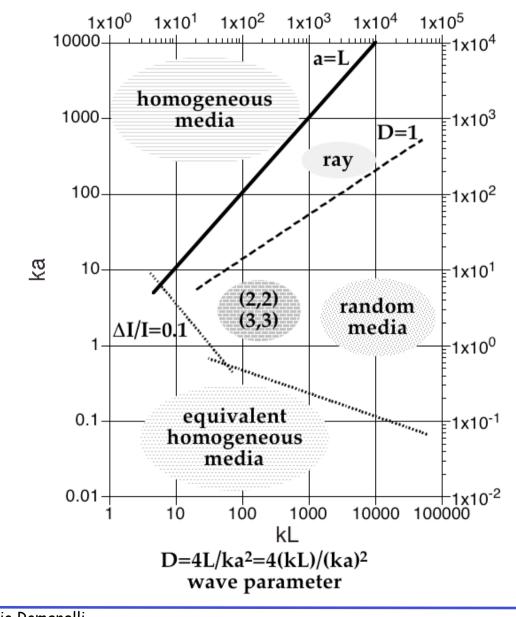
Seismic waves propagation in complex media

Fabio ROMANELLI

Dept. Earth Sciences

Università degli studi di Trieste romanel@dst.units.it

Propagation in Complex media



Seismic wave propagation problems can be classified using some parameters.

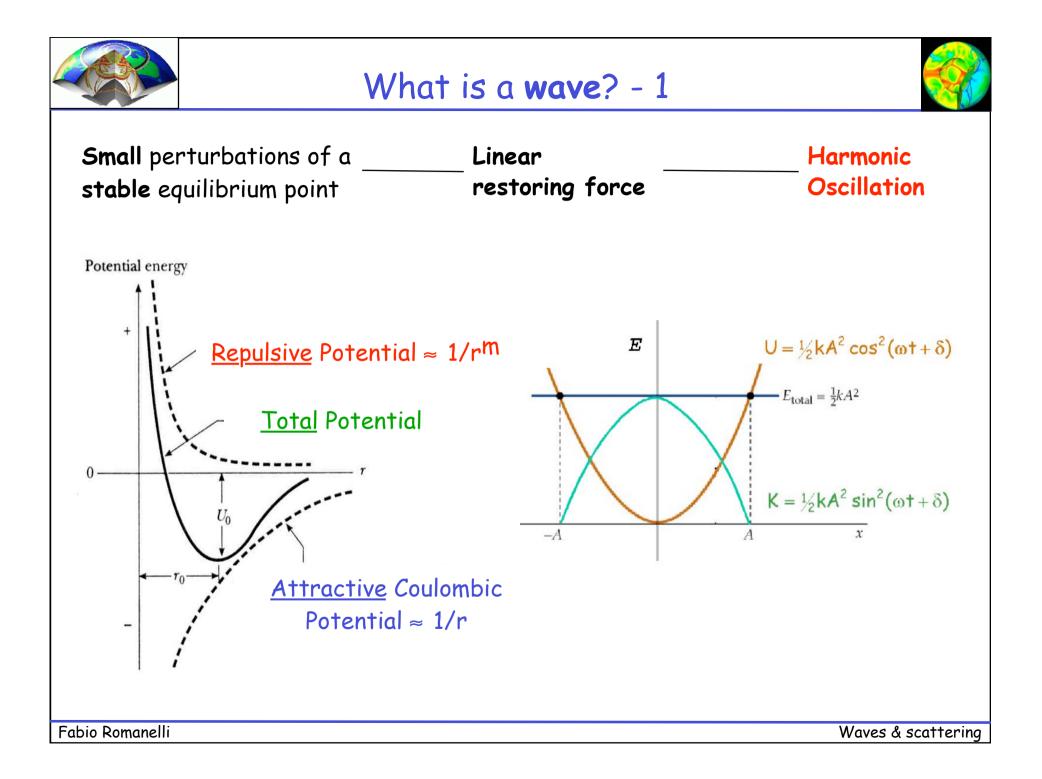
This classification is crucial for the choice of technique to calculate synthetic seismograms, but it needs a deep comprehension of the physical meaning of the problem.

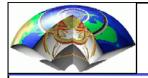
(Adapted from Aki and Richards, 1980)

Seismic wave propagation in COMPLEX MEDIA

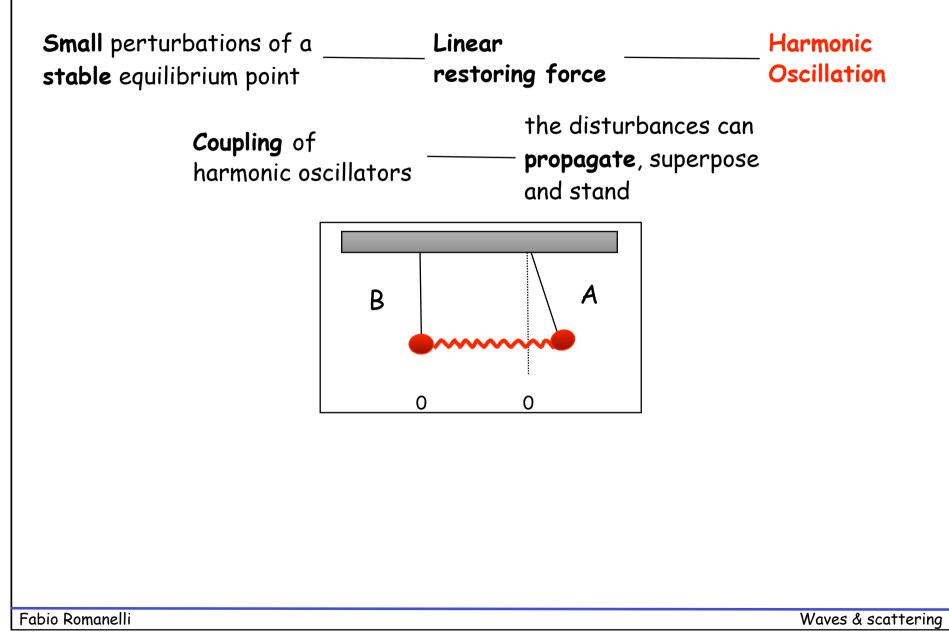
Part 1: Scattering classification

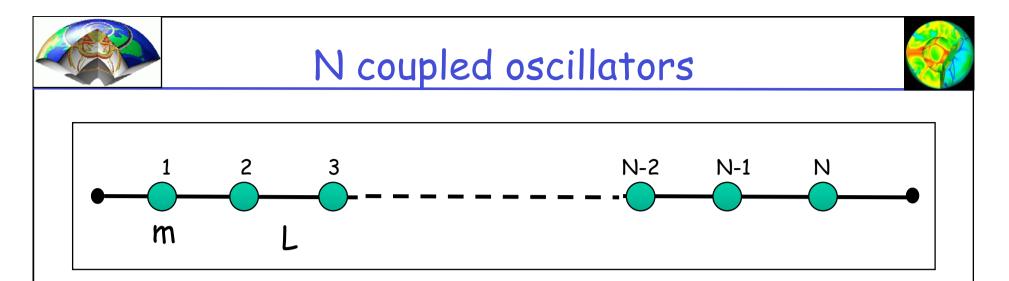
Outline Basic physical concepts 1 What is a wave? Born of elastic wave equation Basic mathematical reference: PDE: Poisson, diffusion and wave equation Basic physical concepts 2 EM scattering and diffusion Application to the seismic wavefield Seismic scattering, diffusion Methods for laterally heterogenous media





What is a wave? - 2

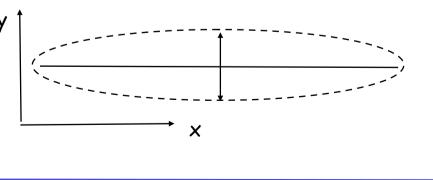




Consider a flexible elastic string to which is attached N identical particles, each mass m, equally spaced a distance L apart.

The ends of the string are fixed a distance L from mass 1 and mass N. The initial tension in the string is T.

Consider small transverse displacements of the masses



$$F_{p} = -T \frac{-Y_{p} - Y_{p-1}}{-L} \frac{-Y_{p+1} - Y_{p}}{-L} \frac{-Y_{p}}{-L} \frac{-Y_{p+1} - Y_{p}}{-L} \frac{-Y_{p}}{-L} \frac$$

but
$$F_p = m_p a_p$$

$$\therefore \quad m\frac{d^2 y_p}{dt^2} = \cdots T : \underbrace{ \begin{array}{c} y_p \cdot y_{p,1} \\ \vdots \\ L \end{array} }_{::} \begin{array}{c} y_{p+1} \cdot y_p \\ \vdots \\ L \end{array} }_{::} \begin{array}{c} y_{p+1} \cdot y_p \\ \vdots \\ L \end{array} \right)$$

Substitute T/mL = \approx_0^2

•••

$$\frac{d^2 \gamma_p}{dt^2} = \dots \stackrel{2}{\cdots} (\gamma_p \dots \gamma_{p \cdot 1}) + \stackrel{2}{\cdots} (\gamma_{p+1} \dots \gamma_p)$$

or
$$\frac{d^2 \gamma_p}{dt^2} + 2\omega_o^2 \gamma_p \omega \omega_o^2 (\gamma_{p+1} \omega \gamma_{p\omega}) = 0$$

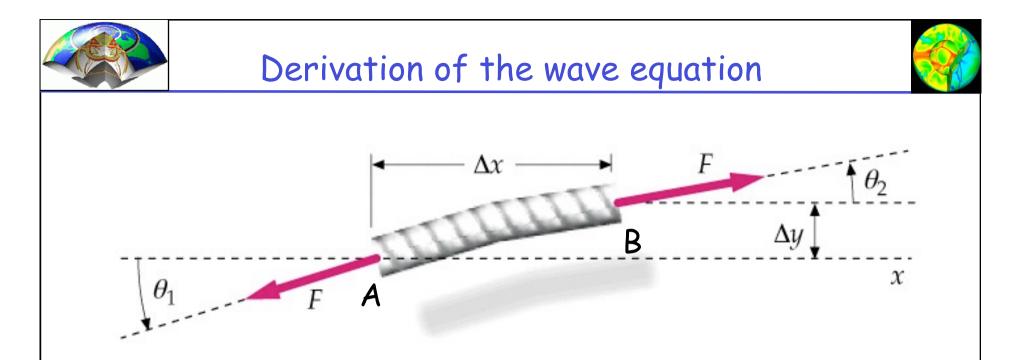
We can write a similar expression for all N particles

Therefore we have a set of N differential equations one for each value of p from p=1 to p=N.

NB at fixed ends: $y_0 = 0$ and $y_{N+1} = 0$

Fabio Romanelli

Waves & scattering



Consider a small segment of string of length $\approx x$ and tension F on which a travelling wave is propagating.

The ends of the string make small angles \approx_1 and \approx_2 with the x-axis. The vertical displacement \approx_y is very small compared to the length of the string

Consider a wavefunction of the form $y(x,t) = A \sin(kx - \approx t)$

$$\frac{\partial^2 \gamma}{\partial t^2} = \partial \partial^2 A \sin(kx \partial \partial t) \qquad \qquad \frac{\partial^2 \gamma}{\partial x^2} = \partial k^2 A \sin(kx \partial \partial t)$$

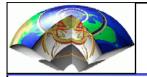
If we substitute these into the linear wave equation

$$\frac{\mu}{F}(--{}^{2}A\sin(kx--t)) = -k^{2}A\sin(kx--t)$$
$$\frac{\mu}{F}\omega^{2} = k^{2}$$

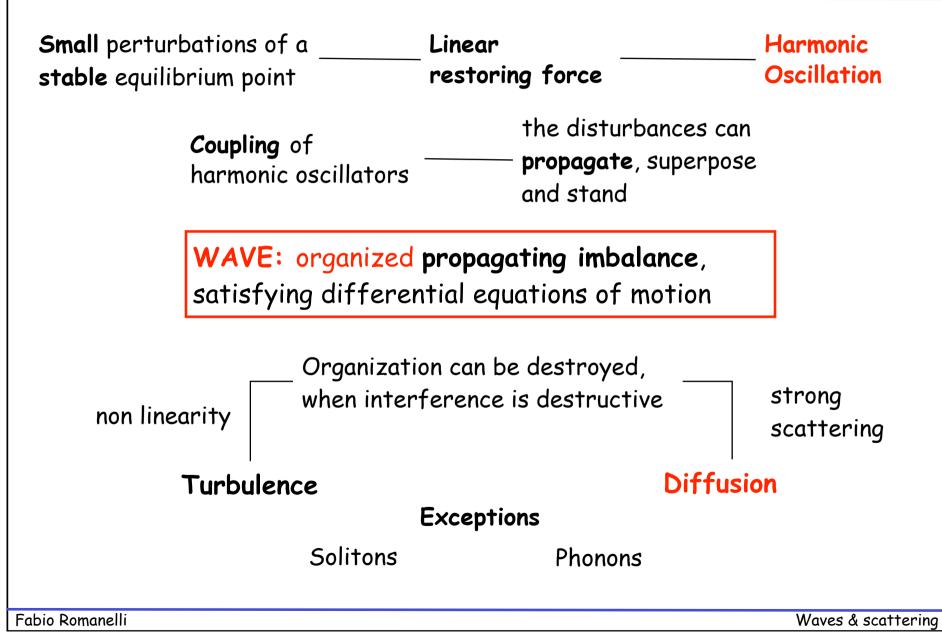
Using the relationship v = \approx/k , v² = \approx^2/k^2 = F/ μ v = $\sqrt{F/\mu}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \qquad \begin{array}{c} \text{General form} \\ \text{of LWE} \end{array}$

Fabio Romanelli

Waves & scattering



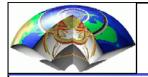
What is a wave? - 3



Seismic wave propagation in COMPLEX MEDIA

Part 1: Scattering classification

Outline Basic physical concepts 1 What is a wave? Born of elastic wave equation Basic mathematical reference: PDE: Poisson, diffusion and wave equation Basic physical concepts 2 EM scattering and diffusion Application to the seismic wavefield Seismic scattering, diffusion Methods for laterally heterogenous media



Classification of Partial Differential Equations (PDE)

Second-order PDEs of two variables are of the form:

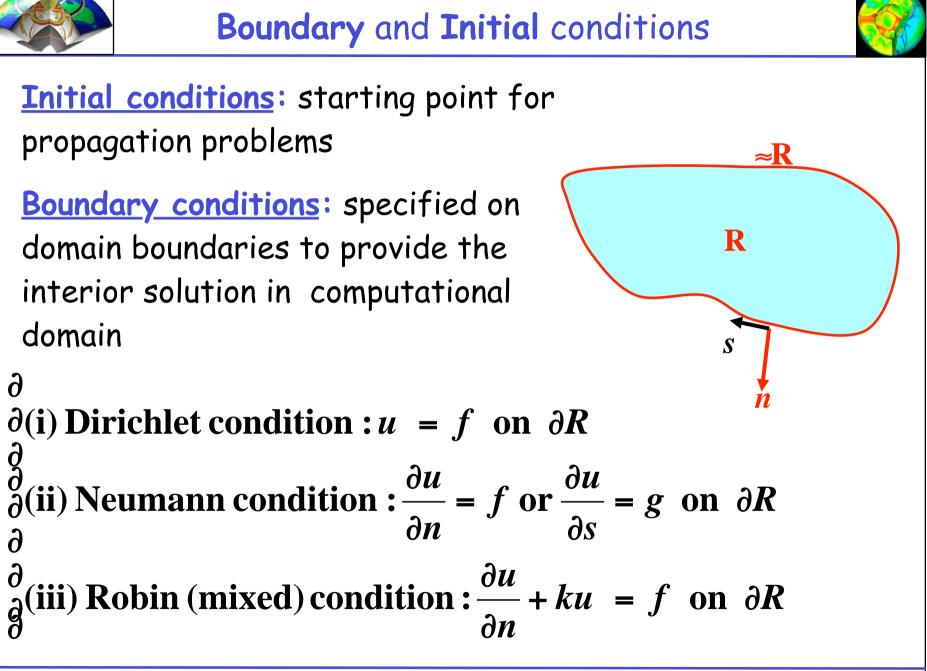
$$a\frac{-{}^{2}f(x,y)}{-x^{2}} + b\frac{-{}^{2}f(x,y)}{-x-y} + c\frac{-{}^{2}f(x,y)}{-y^{2}} + d\frac{-f(x,y)}{-x} + e\frac{-f(x,y)}{-y} = F(x,y)$$

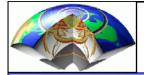
 $b^2 - 4ac < 0$ ellipticLAPLACE equation $b^2 - 4ac = 0$ parabolicDIFFUSION equation $b^2 - 4ac > 0$ hyperbolicWAVE equation

Elliptic equations produce stationary and energy-minimizing solutions

Parabolic equations a **smooth-spreading flow** of an initial disturbance

Hyperbolic equations a propagating disturbance





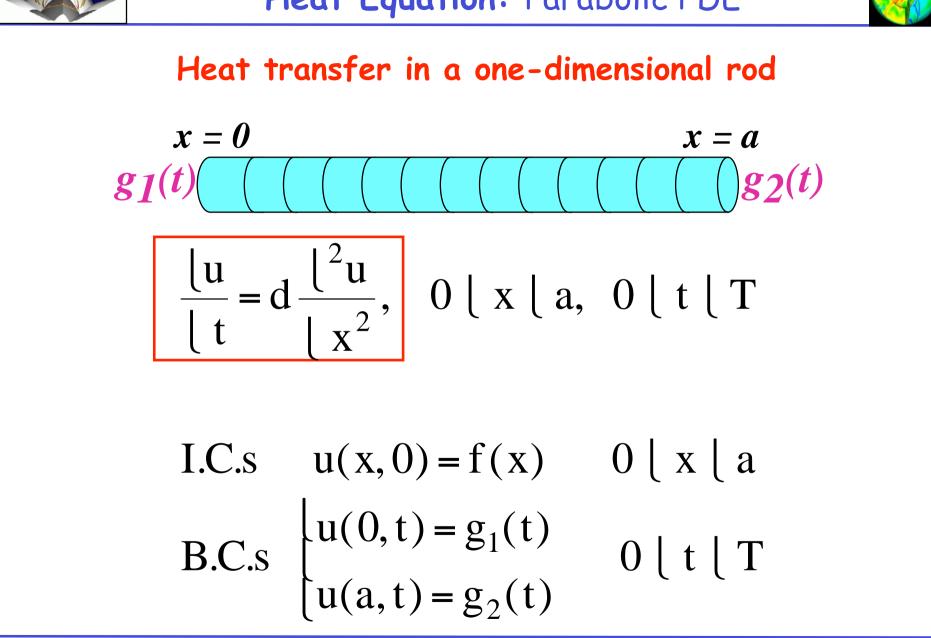
Steady-state two-dimensional heat conduction equation is prototypical elliptic PDE

Laplace equation - no heat generation

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

Poisson equation - with heat source

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = f(x, y)$$



I	-Iyperbolic Equation		
E	b ² - 4ac = 0 - 4(1)(-c ²) > 0 : Hyperbolic		
	$\frac{\lfloor^2 u}{\lfloor t^2} = v^2 \frac{\lfloor^2 u}{\lfloor x^2}, 0 \mid x \mid a, 0$	D t	
	I.C.s $\begin{cases} u(x,0) = f_1(x) \\ u_t(x,0) = f_2(x) \end{cases} = 0$	xla	
	B.C.s $\begin{cases} u(0,t) = g_1(t) \\ u(a,t) = g_2(t) \end{cases} t >$	0	
	$\frac{\lfloor^2 u}{\lfloor t^2} = v^2 \frac{\lfloor^2 u}{\lfloor x^2}, 0 \mid x \mid a, 0 \mid x \mid x \mid a, 0 \mid x \mid x, 0 \mid x \mid x, 0 \mid x \mid x \mid x, x \mid x, x \mid x \mid x \mid x, x \mid x$) l t x l a	

Fabio Romanelli

Waves & scattering

Navier-Stokes Equations

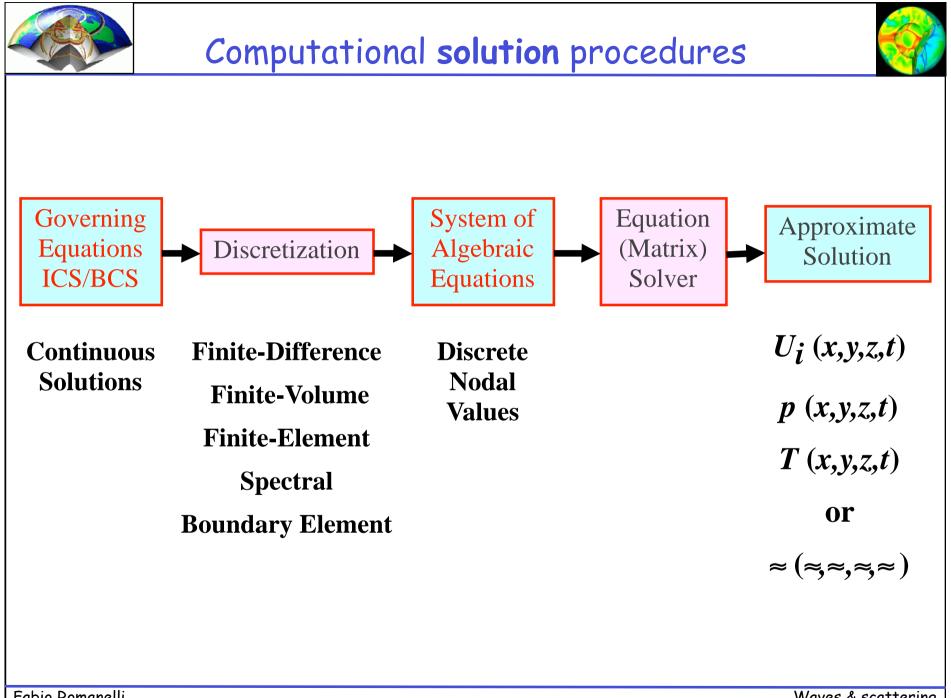
Complex geometry Complex equations (nonlinear, coupled) Complex initial / boundary conditions

> No analytic solutions

> Numerical methods needed !!

<u>Objective</u>: Speed, Accuracy at minimum cost

- Numerical Accuracy (error analysis)
- Numerical Stability (stability analysis)
- Numerical Efficiency (minimize cost)
- Validation (model/prototype data, field data, analytic solution, theory, asymptotic solution)
- Reliability and Flexibility (reduce preparation and debugging time)
- Flow Visualization (graphics and animations)



Fabio Romanelli

Waves & scattering

Time derivatives

- almost exclusively by finite-difference methods
- Spatial derivatives
 - Finite-difference: Taylor-series expansion
 - Finite-element: low-order shape function and interpolation function, continuous within each element
 - Finite-volume: integral form of PDE in each control volume
 - There are also other methods, e.g. collocation, spectral method, spectral element, panel method, boundary element method

Finite Difference

> Taylor series

$$f(x) = f(x_o) + (x' x_o)f'(x_o) + \frac{(x' x_o)^2}{2!}f''(x_o) + \frac{(x' x_o)^3}{3!}f'''(x_o) + \frac{(x' x_o)^3}{3!}f'''(x_o) + \dots + \frac{(x' x_o)^n}{n!}f^{(n)}(x_o) + \dots + \frac{(x' x_o)^n$$

Truncation error

$$T_{E} = \frac{(x \xi x_{o})^{n+1}}{(n+1)!} f^{(n+1)}(\xi), \quad a \xi \xi \xi b$$

- > How to reduce truncation errors?
- Reduce grid spacing, use smaller $\approx x = x x_0$
- Increase order of accuracy, use larger n

- Forward difference
- Backward difference
- Central difference

$$\frac{\partial \partial u}{\partial \partial x} \frac{\partial^{n}}{\partial_{j}} = \frac{u_{j+1}^{n} \partial u_{j}^{n}}{\partial x} + O(\partial x)$$

$$\frac{\partial \partial u}{\partial \partial x} \frac{\partial^{n}}{\partial_{j}} = \frac{u_{j}^{n} \partial u_{j\partial 1}^{n}}{\partial x} + O(\partial x)$$

$$\frac{\partial \partial u}{\partial \partial x} \frac{\partial^{n}}{\partial_{j}} = \frac{u_{j+1}^{n} \partial u_{j\partial 1}^{n}}{2\partial x} + O(\partial x^{2})$$

$$\frac{\partial \partial^{2} u}{\partial \partial x^{2}} \frac{\partial^{n}}{\partial_{j}} = \frac{u_{j+1}^{n} \partial 2u_{j}^{n} + u_{j\partial 1}^{n}}{\partial x^{2}} + O(\partial x^{2})$$

Waves & scattering

Seismic wave propagation in COMPLEX MEDIA

Part 1: Scattering classification

Outline

Basic physical concepts 1 What is a wave? Born of elastic wave equation Basic mathematical reference: PDE: Poisson, diffusion and wave equation Basic physical concepts 2 EM scattering and diffusion Application to the seismic wavefield Seismic scattering, diffusion Methods for laterally heterogenous media

Extinction and **emission** are two main types of the interactions between an electromagnetic radiation field and a medium (e.g., the atmosphere).

Extinction is due to absorption and scattering.

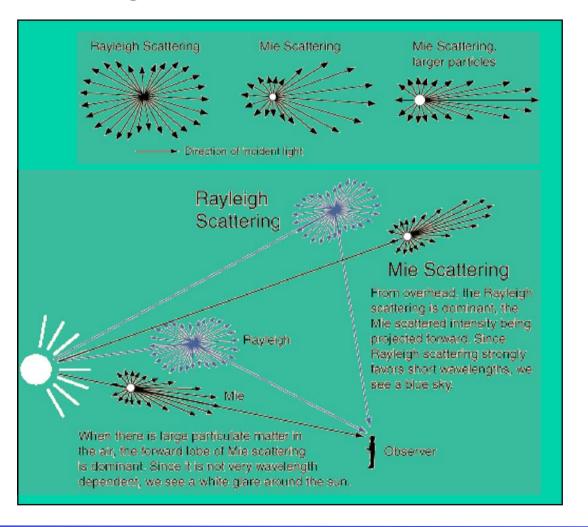
Absorption is a process that removes the radiant energy from an electromagnetic field and transfers it to other forms of energy.
Scattering is a process that does not remove energy from the radiation field, but redirect it. Scattering can be thought of as absorption of radiant energy followed by re-emission back to the electromagnetic field with negligible conversion of energy, i.e.can be a "source" of radiant energy for the light beams traveling in other directions.

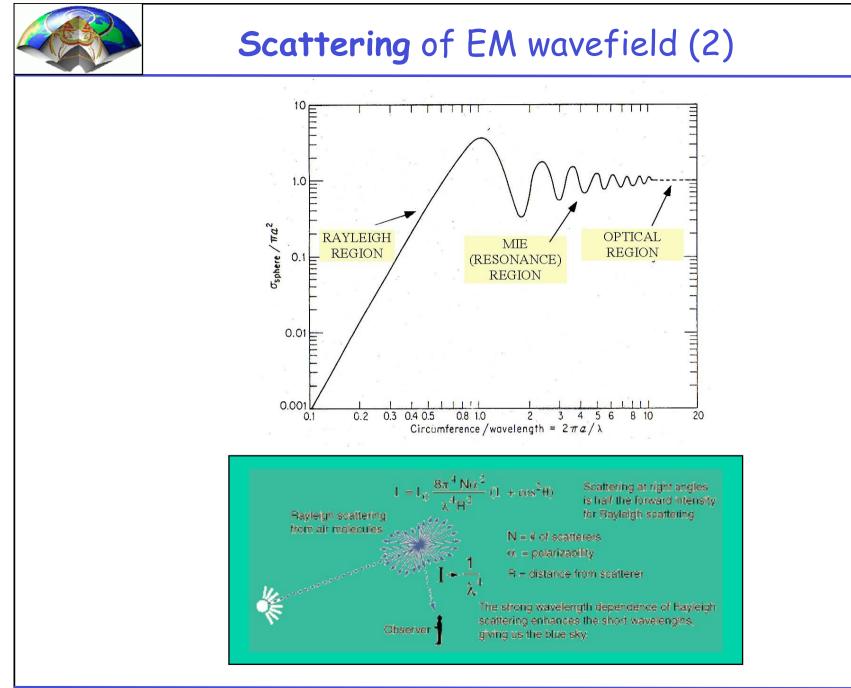
Scattering occurs at all wavelengths (spectrally not selective) in the electromagnetic spectrum, for any material whose refractive index is different from that of the surrounding medium (optically inhomogeneous).

The amount of scattered energy depends strongly on the ratio of: particle size (a) to wavelength (≈) of the incident wave

When (a < ≈/10), the scattered intensity on both forward and backward directions are equal. This type of scattering is called <u>Rayleigh scattering</u>.

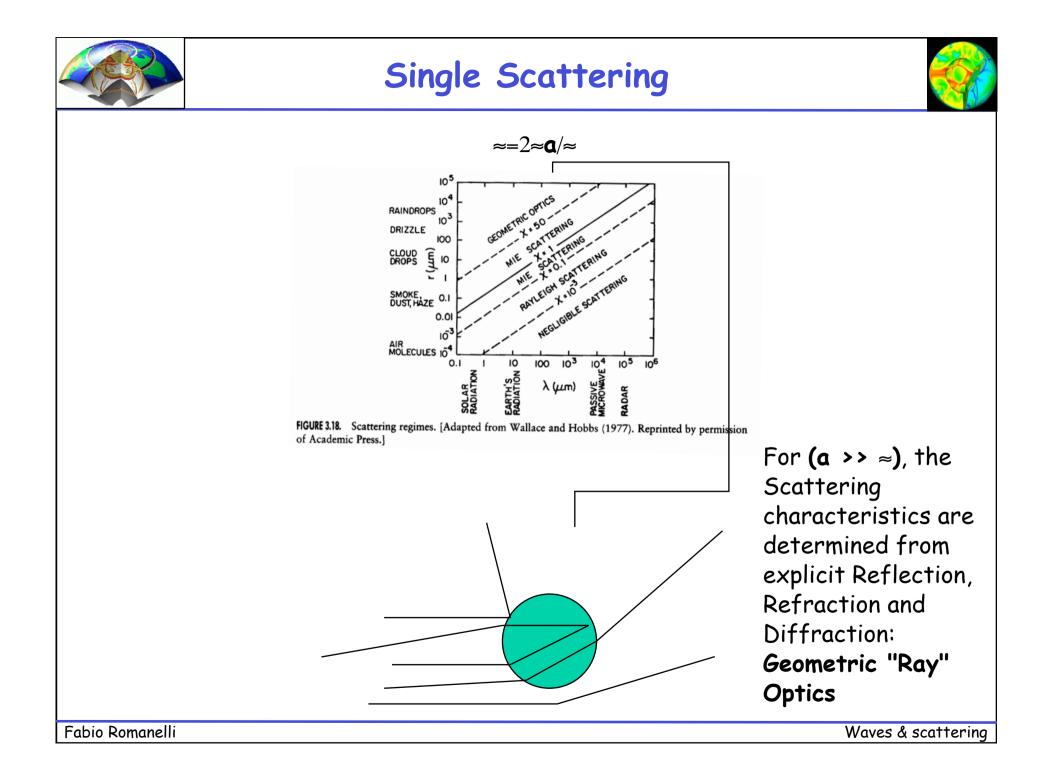
For (a > ≈), the angular distribution of scattered intensity becomes more complex with more energy scattered in the forward direction. This type of scattering is called <u>Mie scattering</u>

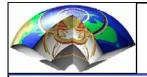




Fabio Romanelli

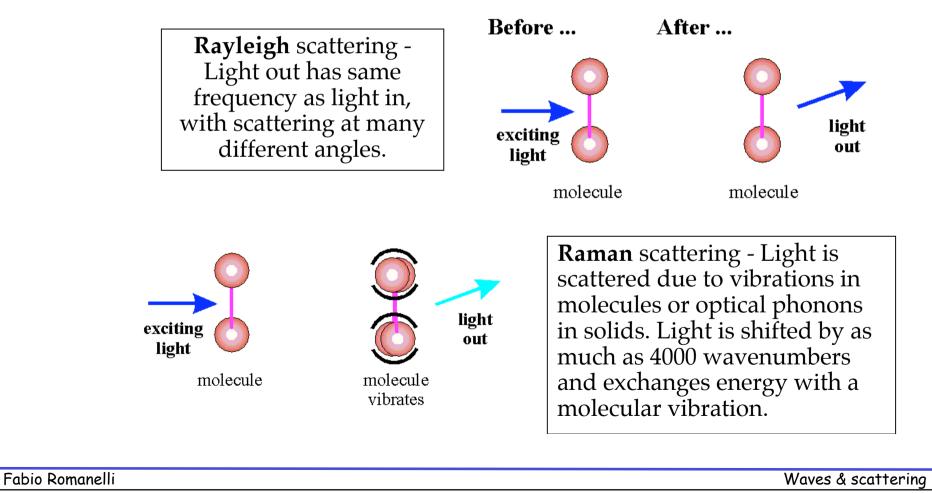
Waves & scattering



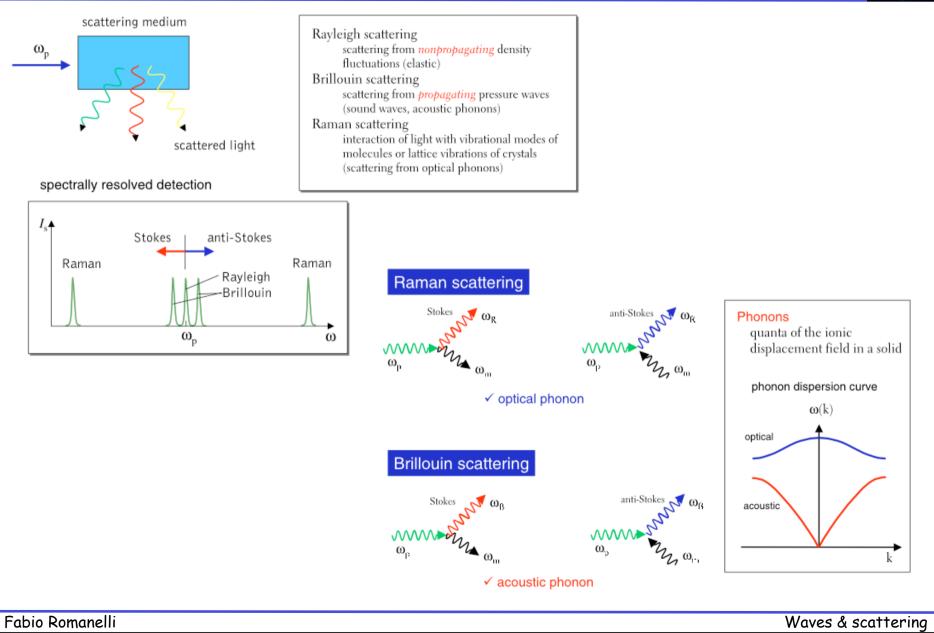


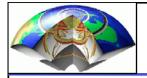
Composition of the scatterer (n) is important!

The interaction (and its redirection) of electromagnetic radiation with matter May or may not occur with **transfer of energy**, i.e., the scattered radiation has a slightly different or the same wavelength.

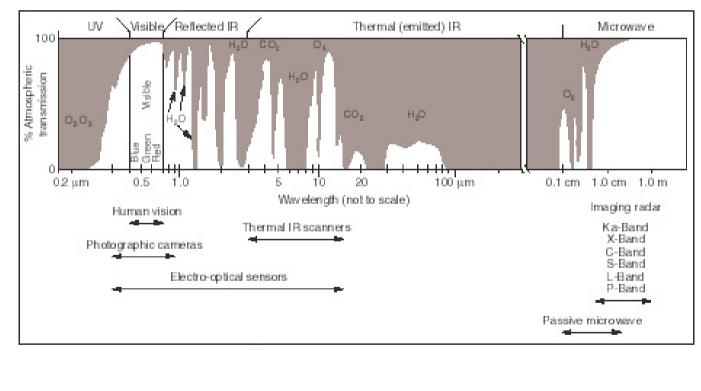


Scattering of EM wavefield (4)





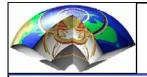
When the photon is absorbed and re-emitted at a different wavelength, this is absorption.



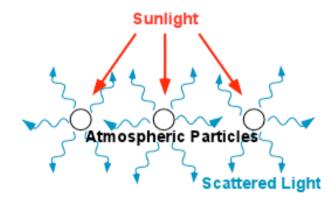
Transmissivity of the Earth's atmosphere

Fabio Romanelli

Waves & scattering



In single scattering, the properties of the scatterer are important, but multiple scattering erases these effects - eventually **all** wavelengths are scattered in **all** directions.



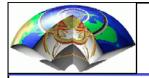
Works for turbid media: clouds, beer foam, milk, etc...

Example: when a solid has a very low temperature, phonons behave like waves (long mean free paths) and heat propagate following ballistic term.
At higher temperatures, the phonons are in a diffusive regime and heat propagate following Maxwell law.

Seismic wave propagation in COMPLEX MEDIA

Part 1: Scattering classification

Outline Basic physical concepts 1 What is a wave? Born of elastic wave equation Basic mathematical reference: PDE: Poisson, diffusion and wave equation Basic physical concepts 2 EM scattering and diffusion Application to the seismic wavefield Seismic scattering, diffusion Methods for laterally heterogenous media



The governing parameters for the seismic scattering are:

wavelength of the wavefield (or wavenumber k) $\approx (10^{0}-10^{5} \text{ m})$

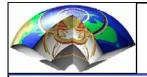
correlation length or dimension, of the heterogeneity a (10?-10³ m)

distance travelled in the heterogeneity

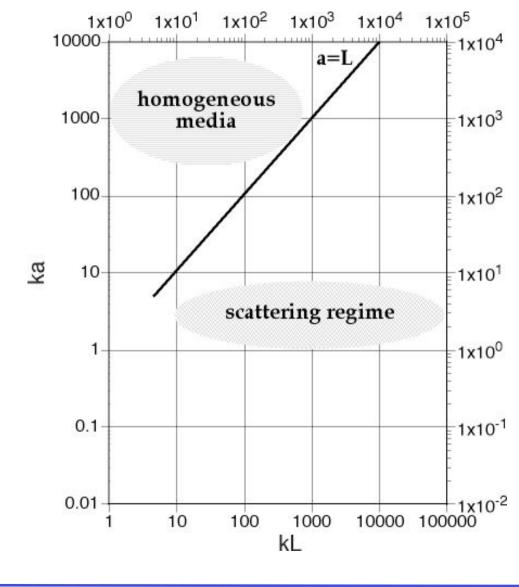
 $L(10^{0}-10^{5} m)$

With special cases:

- a = L homogeneous region
- a >> ≈ ray theory is valid
- $a \approx \approx$ strong scattering effects



Seismic Scattering (1)

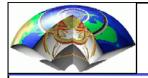


Wave propagation problems can be classified using the parameters just introduced.

This classification is crucial for the choice of technique to calculate synthetic seismograms

(Adapted from Aki and Richards, 1980)

Fabio Romanelli



Let us consider a **perturbed** model: reference+perturbation (in elastic parameters)

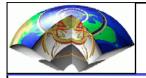
$$\mu = \mu_0 + \dots + \mu_0 + \dots + \mu = \mu_0 + \dots + \mu$$

resulting in a velocity perturbation

 $c = c_0 + \cdots c$

solution: **Primary** field + **Scattered** field $\mathbf{u} = \mathbf{u}_0 + \mathbf{u}_1(\cdots, \cdots, \mu)$

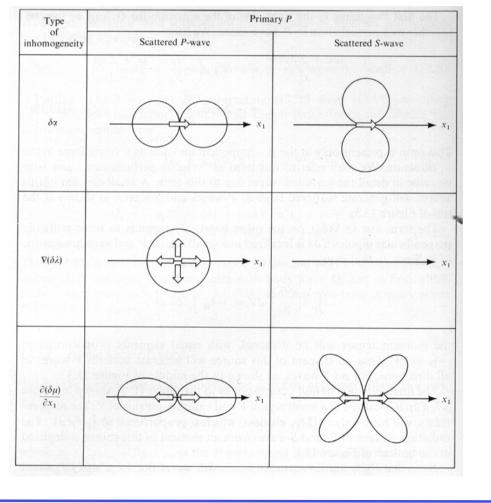
satisfying equations of motion: $\cdot_{0} \ddot{\mathbf{u}}_{i}^{0} \cdot (\cdot_{0} + \mu_{0}) (\cdot \cdot \mathbf{u}^{0})_{,i} \cdot \mu_{0} \cdot {}^{2} \mathbf{u}_{i}^{0} = 0$ $\cdot_{0} \ddot{\mathbf{u}}_{i} \cdot (\cdot \cdot \mathbf{u})_{,i} \cdot \left[\mu (\mathbf{u}_{i,j} + \mathbf{u}_{j,i}) \right]_{,j} = 0$ $\cdot_{0} \ddot{\mathbf{u}}_{i}^{1} \cdot (\cdot_{0} + \mu_{0}) (\cdot \cdot \mathbf{u}^{1})_{,i} \cdot \mu_{0} \cdot {}^{2} \mathbf{u}_{i}^{1} = \mathbf{Q}_{i}$



How does a point-like perturbation of the elastic parameters affect the wavefield?

Perturbation of the different elastic parameters produce characteristic radiation patterns. These effects are used in diffraction tomography to recover the perturbations from the recorded wavefield.

(Figure from Aki and Richards, 1980)



Fabio Romanelli

Correlation distance

When velocity varies in all directions with a finite scale length, it is more convenient to consider spatial fluctuations

Autocorrelation function (a is the **correlation distance**):

$$N(\mathbf{r}_{1}) = \frac{\left\langle \frac{\theta c(\mathbf{r})}{c_{0}(\mathbf{r})} \frac{\theta c(\mathbf{r} + \mathbf{r}_{1})}{c_{0}(\mathbf{r} + \mathbf{r}_{1})} \right\rangle}{\left\langle \frac{\theta \theta c(\mathbf{r})}{\theta} \frac{\theta^{2}}{c_{0}(\mathbf{r})} \right\rangle} = \frac{\theta}{\theta} e^{\theta |\mathbf{r}_{1}| / a}}{\left\langle \frac{\theta \theta c(\mathbf{r})}{\theta} \frac{\theta^{2}}{c_{0}(\mathbf{r})} \right\rangle}$$

Power Spectra of scattered waves

θ k⁴ if ka << 1 (Rayleigh scattering) if ka is large (forward scattering)

Energy loss through a cube of size L (Born approximation)

$$\frac{\infty I}{I} \propto \sum_{\substack{\infty \\ \infty \\ \infty}}^{\infty} k^4 a^3 L \left(1 + 4k^2 a^2\right)^{\infty I}$$

but violates the energy conservation law and it is valid if (<0.1)

the **perturbations** (P &A) are function of the **wave parameter**:

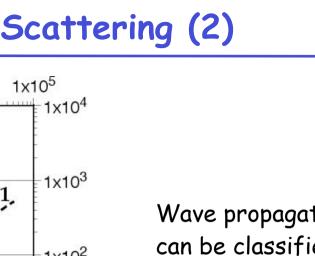
$$D = \frac{4L}{ka^2}$$

 $D = \overset{\infty}{\underset{\infty}{\infty}} phase perturbation phase = amplitude$

when D<1, geometric ray theory is valid

Fabio Romanelli

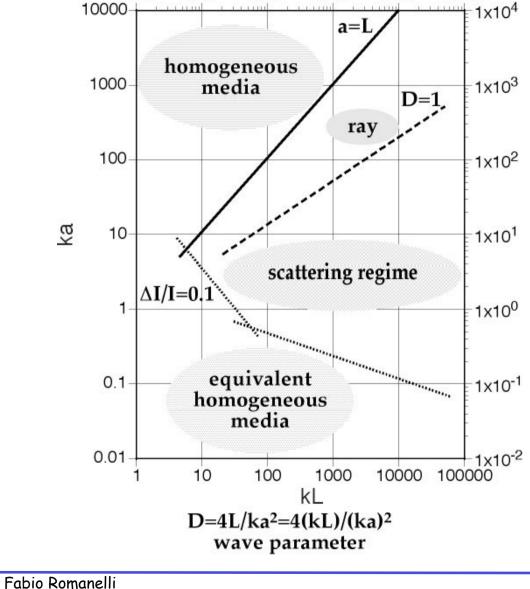
Seismic Scattering (2)



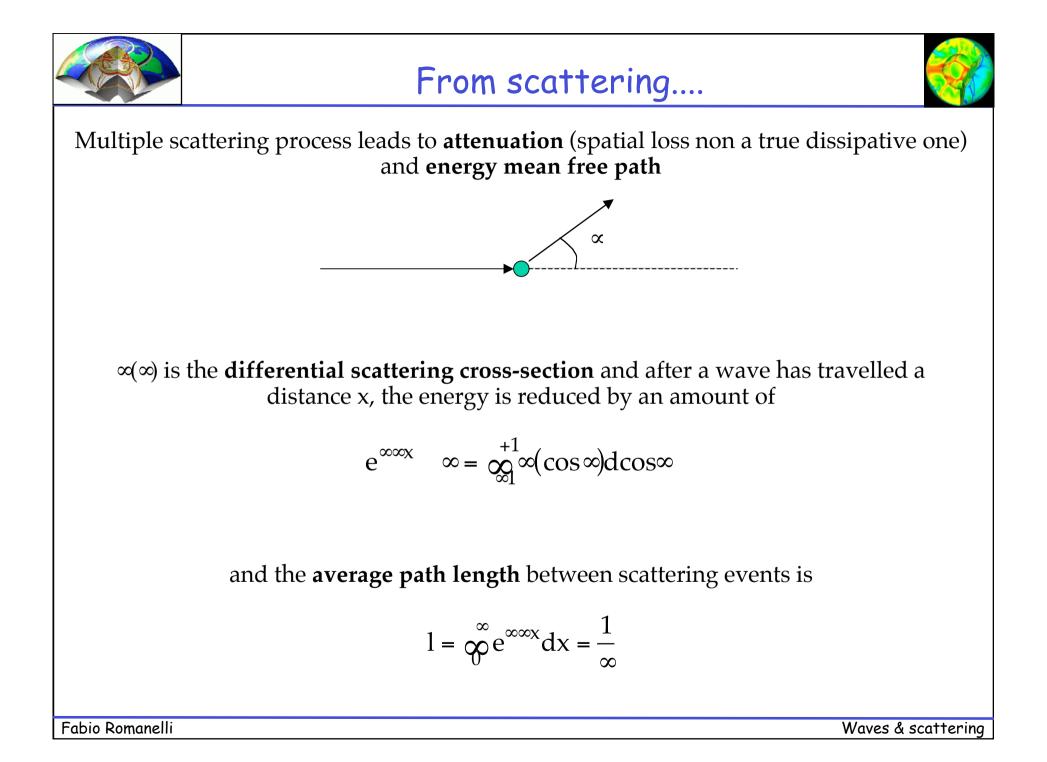
Wave propagation problems can be classified using the parameters just introduced.

This classification is crucial for the choice of technique to calculate synthetic seismograms

(Adapted from Aki and Richards, 1980)



 1×10^{0} 1×10^{1} 1×10^{2} 1×10^{3} 1×10^{4}



forward scattering tendency

$$|' = |_{1}^{+1}(\cos |)|(\cos |)d\cos |$$
 $| > 0$ forward
 $| 0$ isotropic
 < 0 backward

Multiple scattering randomizes the phases of the waves adding a diffuse (incoherent) component to the average wavefield.

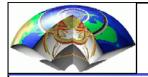
Statistical approaches can be used to derive **elastic radiative transfer equations**

Diffusion constants use the definition of a diffusion (transport) mean free path

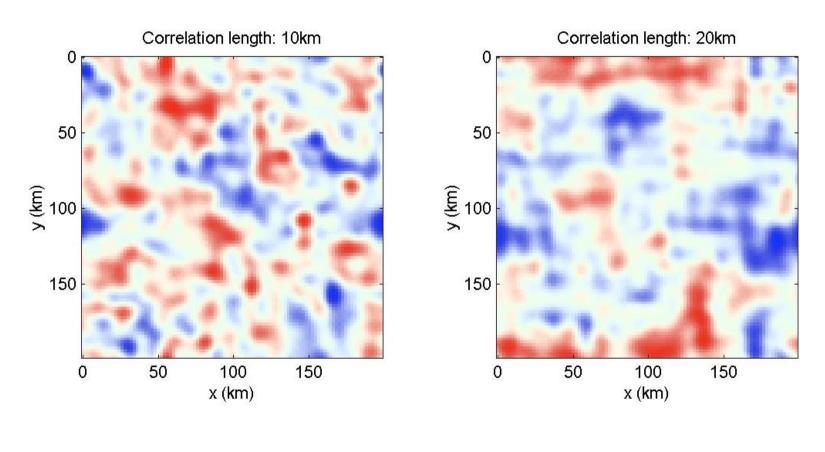
$$d = \frac{cl^{*}}{3} \quad l^{*} = \frac{1}{|-|'} \text{ (acoustic)}$$
$$d = \frac{1}{1+2K^{3}} \left| \frac{c_{p}l_{p}^{*}}{3} + 2K^{2}\frac{c_{s}l_{s}^{*}}{3} \right| \text{ (elastic)}$$

for non-preferential scattering l* coincides with energy mean free path, l for enhanced forward scattering l*>l

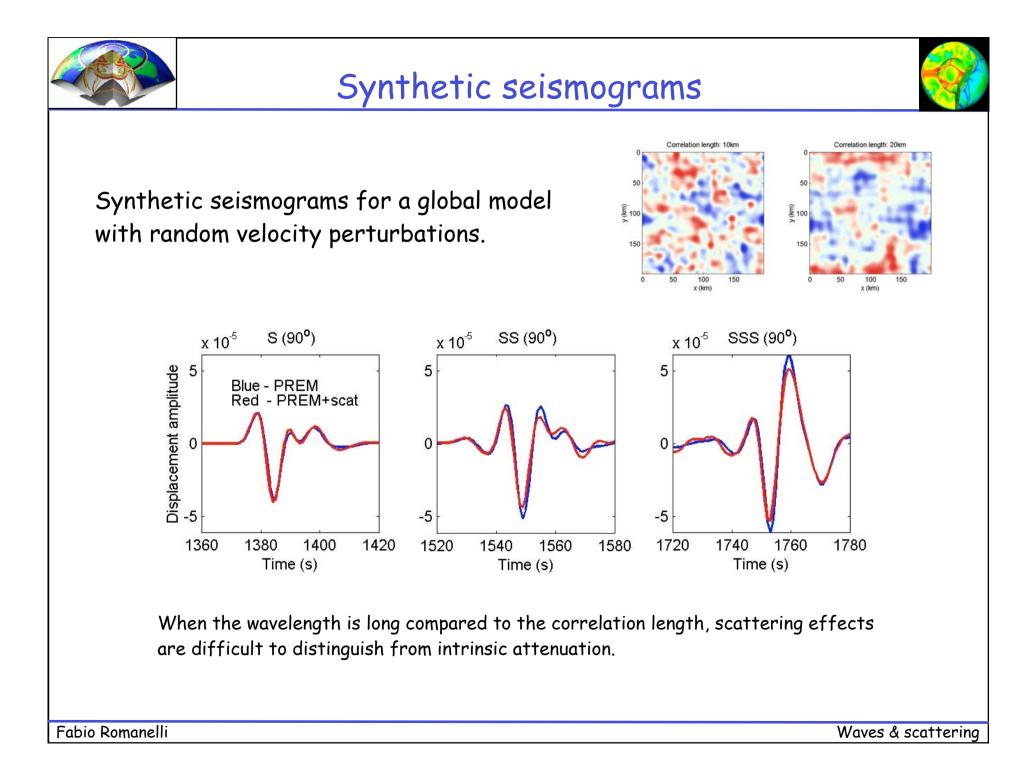
Experiments for ultrasound in materials can be applied to seismological problems...



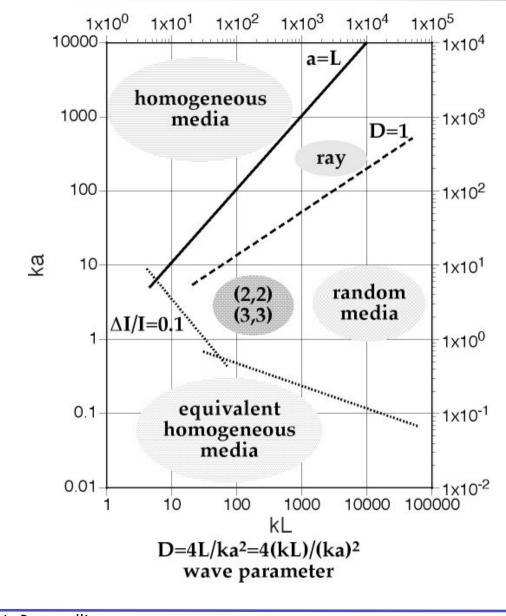
Scattering in random media



How is a propagating wavefield affected by random heterogeneities?



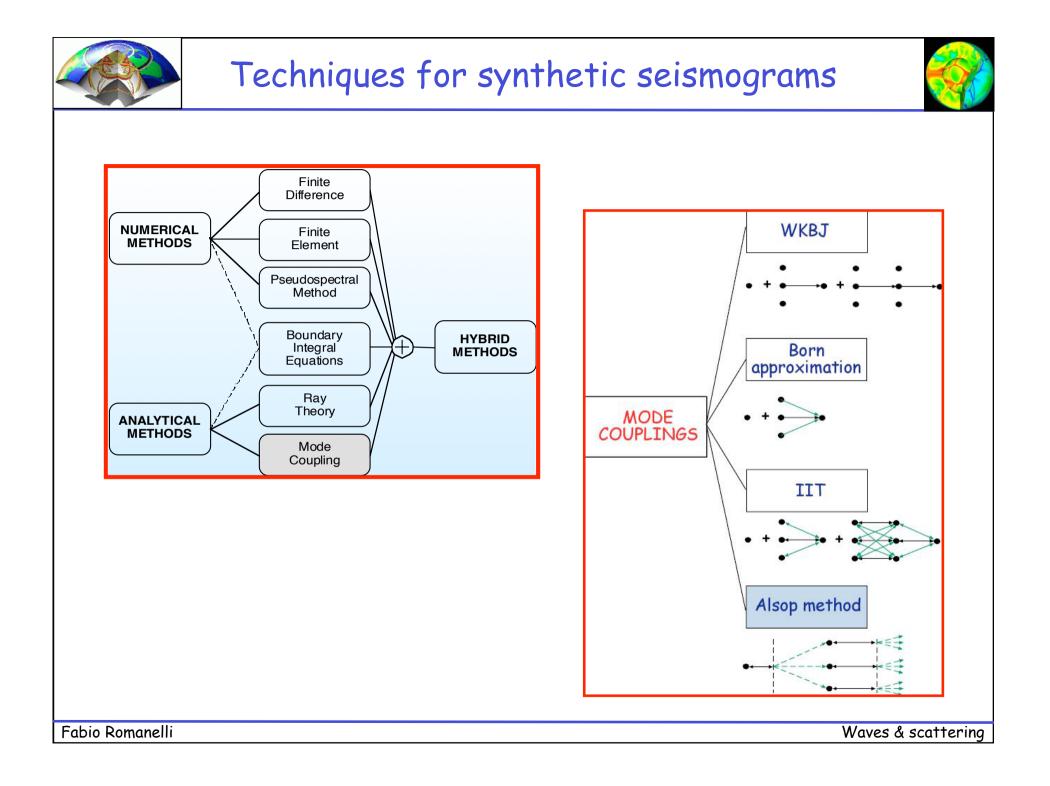
Seismic Scattering Classification



Wave propagation problems can be classified using the parameters just introduced.

This classification is crucial for the choice of technique to calculate synthetic seismograms

(Adapted from Aki and Richards, 1980)



- Aki, K. and Richards, P. G., 1980. Quantitative Seismology, Freeman & Co., San Francisco.
- Scales, J., and Snieder, R., 1999. What is a wave?, Nature, 401, 739-740.
- Snieder, R., 2002. General theory of elastic wave scattering , in Scattering and Inverse Scattering in Pure and Applied Science, Eds. Pike, R. and P. Sabatier, Academic Press, San Diego, 528 -542.

Snieder, R., 2002. Scattering of surface waves , in Scattering and Inverse Scattering in Pure and Applied Science, Eds. Pike, R. and P. Sabatier, Academic Press, San Diego, 562-577.
Turner, J. A., 1998. Scattering and Diffusion of Seismic Waves,

Bull. Seism. Soc. Am., 88, 1, 276-283.