Inversion of local waveform data

^ν Peter Suhadolc

THE REPORT OF A PARTIES AND A PARTIES OF A PARTIES.

- ^ν Department of Earth **Sciences**
- ^ν University of Trieste

Solution of an inverse problem is required to interpret any measurements that are **indirect** like inferences of the properties of the Earth's interior and of the seismic source.

The basic measurements of seismology are, in fact, arrival times and amplitudes of different phases, or better, time series of ground motion. These data are controlled by both the elastic and inelastic properties of the Earth, as well as the properties of the source exciting the Earth. Inversion is a formal way to make inferences about these properties.

ATTACHAMPARA PROPERTY AND ANNOYATION AND ANNOYATION

The zeroth-order requirement for solution of any inverse problem is that before one can hope to solve the inverse problem, one has to be able to solve the "forward problem". This means that one has to understand the physical processes that produced the observation well enough to make a reliable mathematical model of the process.

The forward problem can be written schematically as

 $d_i = F_i [m(r)]$

ARRANGEMENT WAS ARRANGEMENT OF A PARTIES OF A PARTIES OF A PARTIES.

where m(r) is a model describing some physical property of the Earth, d_i is the predicted value for datum i and F_i is a functional whose existence implies that if we know m exactly, we could predict the data perfectly.

This is the simplest class of inverse solutions, the **forward modelling**, involving an educated guess (or a trial and error procedure) to derive an m that fits all the observable data according to some defined measure of goodness of fit (e.g., a chi-square test, minimum fit according to some norm etc.).

The fundamental **weakness** of this procedure is that once a model is found that fits the data, one does not know how reliable that model is.

うくうとうそうとうとう ……とうござい ぶんごろう しゃくとうめん しょくじゅうだつ (Selence) かんしゃ しゅうてん (Selence) (Selence) (Selence)

The fundamental difference between the construction of an inverse procedure compared to forward modelling is that the data are used directly to construct a solution. We can write this formally as:

 $m(r) = F_i^{-1} [d_i]$

Every inverse problem should address the following aspects:

Existence: Does any model fit the data?

Uniqueness: Can the data uniquely constrain the model?

Construction: How can we find a solution?

THE ANTIFACT AND A PARTICULAR CONTRACTOR

Appraisal: How well do the data constrain the model.

Existence: Does any model fit the data? Uniqueness: Can the data uniquely constrain the model? Construction: How can we find a solution? Appraisal: How well do the data constrain the model.

Usually little attention is paid to the first two and much of the efforts go to the third aspect, the construction. Sometimes even the fourth aspect is neglected, which should be the most significant feature of a good inverse procedure. It answers the question of how good the solution one constructs really is.

In fact, finding a solution means nothing. The focus of a good analysis must lie with appraising the non-uniqueness of the solution.

γιατίας της διαδικής επιβασίας της προσειρής της προσειρής της προσειρής της προσειρής της προσειρής της προσει

Definition of some common terms used in inverse theory

STABILITY

Is defined as the property that a solution is insensitive to small random errors in the data

High Linkey we will now you were always using

Definition of some common terms used in inverse theory

ROBUSTNESS

Is the property that a solution is insensitive with respect to a small number of big errors (outliers) in the data

THE RESIDENCE OF A PARTIES OF A PARTY AND PROPERTY ASSESS

Definition of some common terms used in inverse theory

NON-UNIQUENESS

Is the property that more than one solution (almost) equally well-fitting the data exists

THE REPORT OF THE REPORT OF STATES OF STATES

Definition of some common terms used in inverse theory

GEOPHYSICS

In geophysics, the data itself contains noise and the models are themselves approximations

li Hill Lister proprietore program pro proprietore de la contextual de la

Introduction Definition of some common terms used in inverse theory UNSTABILITY

The inverse problem of obtaining the details of the rupture process from an anlaysis of recorded seismograms is an UNSTABLE problem

The American State of American Control State of State of American State of American

Introduction Definition of some common terms used in inverse theory UNSTABILITY

Note that the problem is unstable even in the imaginary case of a **continuous** distribution of seismic stations over the surface of the earth. From the computational point of view , the instability is equivalent to **non-uniqueness** of the solution.

THE REPORT OF A PARTIES OF A PARTY AND PARTY AND THE BEAT A

Definition of some common terms used in inverse theory

The **real** situation is even **worse** because the number of stations with appropriate records is very limited even today (5-10 in the local and regional case, 10-20 in the teleseismic case)

THE REPORT OF A PROTECTION OF A PROPERTY AND THE RE

Definition of some common terms used in inverse theory

Hence, one needs some **additional constraints** on the solution (i.e in addition to the requirement of fitting the seismograms). These constraints should be based on the **physics** of the earthquake faulting problem.

William American Science

Downhill simplex method

Local search method, performs well if local model is suitable

Nelder and Mead, 1965: Comput. J., 7, 308-313

ICTP 2004

 $\frac{1}{2}$, $\frac{1$

Simulated annealing

Uses an analogy with physical annealing in thermodynamic systems: for slowly cooling sysems, nature is able to find minimum energy states.

Throughout the process the non-zero probability of long jumps allows the method to escape from local minima. The method first searches widely (random walk) in model space (analog: high-temperature system), then the search is restricted and the algorithm freezes to the global minimum.

Metropolis et al., 1953: J. Chem. Phys., 21, 1087-1092. Kirkpatrick et al., 1983: Science, 220, 671-680

ATALLARS AND ARRANGEMENT AND ARRANGEMENT AND ARRANGEMENT AND ARRANGEMENT AND ARRANGEMENT AND ARRANGEMENT AND A

Hybrid global search algorithm

Simulated annealing algorithm initially searches widely to find an appropriate model that is not far from the global minimum, then the simplex algorithm moves to the global minimum itself.

Liu et al., 1995: JGR 122, 991-1000 Hartzell and Liu, 1995: BSSA 85, 516-524 Hartzell and Liu, 1996: PEPI, 95, 79-99 1992 Landers

ARRANGEMENT AND PROPERTY APPROXIMATION CONTINUES.

Genetic algorithms

Based on analogies with the process of biological evolution An initial population of models is selected at random and the GA seeks to improve the fitness of the population generation after generation. This is principally accomplished by the genetic processes of selection, crossover, and mutation.

Holland (1975) : Adaptation in Natural and Artificial Systems, Univ. Michigan Press. Goldberg (1989): Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley.

₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹

Linear programming with L1 norm minimization

Used with only weak causality constraints on rupture times. Can incorporate many physical constraints and thus stabilize the problem.

Das and Kostrov, 1990 1986 Andreanoff Isl. Das and Kostrov, 1994 1989 Macquarie Ridge

THE HIGH HIGH HAMPART WAS ARRANGEMENT OF A STATISTIC WAY AND A STATISTIC WAY

Das and Suhadolc, 1996 Synthetic cases - line source Sarao' et al., 1998 Synthetic cases - planar source

Able to find global minimum, can apply time-domain constraints.

Pointsource case

Two methods will be presented:

1. Inversion for a double-couple source

2. Inversion for a moment tensor

HIM Interpretation of the company of the c

Metho d

Mao et al., 1994

AND THE CONTRACT OF A STATE OF A

 $S_i = \frac{1}{2} (\frac{x_1}{x_2}, ..., x_n)$ Seismogram model parameters

Minimize

 $\Sigma_{\rm i}$ ($\sigma_{\rm i}$ – $S_{\rm i}$) = $\Sigma_{\rm i}$ $\sigma_{\rm i}^2$ = $\rm r^T \rm v$

linearizing one can show that the variations Sx to the model parameters are known to the mislit vector r by

 $\underline{A}\overline{\delta x} = r$

 00144

 $Aii = D\Phi i / Dx_i$

To determine δx we use the SVD with a doughing factor

 $S_{x} = E^{1}r = A^{1}r = V(\Sigma^{2} + \tilde{\theta}I)^{1}N\tilde{Q}^{T}r$

The value of varies at each step of the iteration process leading to the unimmum.

Source time function and seismic moment

^ν **M**0=µ**ûS**

それを受けることをしているということを

^ν Seismic moment vs time

^ν Parametrized with triangles

Linearized inversion: Taylor series expansion

ν We approximate a seismogram as a function of his partial derivatives

$$
s(p_1, \ldots, p_m, t) = s(p_{10}, \ldots, p_{m0}) + \frac{\partial}{\partial p_1} s(p_{10}, \ldots, p_{m0}) \Delta p_1 + \ldots
$$

$$
\ldots + \frac{\partial}{\partial p_m} s(p_{10}, \ldots, p_{m0}) \Delta p_m
$$

Hill Chipper to the University of American State

and we consider its variations with respect to an initial seismogram

Formalism

ν The inverse problem becomes

 $A \delta x = r$

- ${\bf A}$ partial derivatives matrix
- parameters increment $\delta {\bf x}$
	- residuals ${\bf r}$

William Street Association Control Association

Mao, W. J., Panza, G. F. e Suhadolc, P. (1994). Line and aveform inversion of local and near regional events for source mechanism and rupturing processes, Geophys. J. Int 116,784-798.

Matrix A

Singular values decomposition

^ν Method to invert a rectangular matrix, expressing it in the form

$$
\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{V}^T
$$

$$
\begin{bmatrix} 0 & \mathbf{A} \\ \mathbf{A}^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u}_i \\ \mathbf{v}_i \end{bmatrix} = \lambda_i \begin{bmatrix} \mathbf{u}_i \\ \mathbf{v}_i \end{bmatrix}
$$

– No unique solution

HAMPION ANTIQUE ANTIQUE EN CARACTER DE LA PROPIETA DE LA PROPIETA DE LA PROPIETA DE LA PROPIETA DE LA PROPIET

Menke, W. (1984). Geophysical data analysis: discrete inverse theory, Academic Press, Orlando.

Spectral component of seismogram mode summation method

$$
U = Ske^{-i3\pi/4} \chi(\theta, h) E \frac{e^{-ikr}}{r^{1/2}}
$$

$$
E_R = \epsilon_0 A_R k_r^{-1/2}
$$

$$
E_L = A_L k_L^{-1/2}
$$

 $\chi = d_0 + i(d_1 \sin \theta + d_2 \cos \theta) + d_3 \sin 2\theta + d_4 \cos 2\theta$

ARTISTS AND ARTISTS OF PARTIES OF PARTIES OF PARTIES

Harkrider, 1970; Panza, 1985.

Radiation pattern coefficients

HIMMANANANANANANANANANANANANANANAN

Eigenfunctions: stresses and velocities

$$
A(h) = -\frac{\dot{u}_s^*(h)}{\dot{w}_0}
$$

$$
B(h) = -\left(3 - 4\frac{\beta_s^2}{\alpha_s^2}\right) \frac{{\dot{u}_s}^*(h)}{{\dot{w}_0}} - \frac{2}{\rho_s \alpha_s^2} \frac{\sigma_{Rs}^*(h)}{\frac{{\dot{w}_0}}{c_R}}
$$

$$
C(h) = -\frac{1}{\mu_S} \left[\frac{\tau_{Rs}(h)}{\frac{\dot{w}_0}{c_R}} \right]
$$

$$
G(h) = \frac{1}{\mu_S} \left[\frac{\tau_{Ls}^*(h)}{\frac{\dot{v}_0}{c_L}} \right]
$$

THE REPORT OF A PARTIES OF A PARTY OF A PARTY AND THE BEAT A

$$
V(h) = \frac{\dot{v}_s(h)}{\dot{v}_0}
$$

Analytical differentiation: angles ^ν Rayleigh – Strike $\frac{\partial \chi}{\partial \theta} = i(-\cos \theta \sin \lambda \cos 2\delta C(h) + \sin \theta \cos \lambda \cos \delta C(h))$ $+2\cos 2\theta \cos \lambda \sin \delta A(h) + \sin 2\theta \sin \lambda \sin 2\delta A(h)$ – Dip $\frac{\partial \chi}{\partial \delta} = \sin \lambda \cos 2\delta B(h) + i(2 \sin \theta \sin \lambda \sin 2\delta C(h) + \cos \theta \cos \lambda \sin \delta C(h))$ $+\sin 2\theta \cos \lambda \cos \delta A(h) - \cos 2\theta \sin \lambda \cos 2\delta A(h)$ (2. – Rake $\frac{\partial \chi}{\partial \lambda} = \frac{1}{2} \cos \lambda \sin 2\delta B(h)$

 $\frac{1}{2}$, $\frac{1$

 $+ i(-\sin\theta\cos\lambda\cos 2\delta C(h) + \cos\theta\sin\lambda\cos\delta C(h))$ $-\sin 2\theta \sin \lambda \sin \delta A(h) - \frac{1}{2}\cos 2\theta \cos \lambda \sin 2\delta A(h)$

Analytical differentiation: angles ^ν Love

– Strike

 $\frac{\partial \chi}{\partial \theta} = i(\cos \theta \cos \lambda \cos \delta G(h) + \sin \theta \sin \lambda \cos 2\delta G(h))$ $+\cos 2\theta \sin \lambda \cos 2\delta V(h) - \sin 2\theta \cos \lambda \sin \delta V(h)$

$$
- Dip
$$

\n
$$
\frac{\partial \chi}{\partial \delta} = -i(\sin \theta \cos \lambda \sin \delta G(h) - 2 \cos \theta \sin \lambda \sin 2\delta G(h))
$$

\n
$$
- \sin 2\theta \sin \lambda \sin 2\delta V(h) - \cos 2\theta \cos \lambda \cos \delta V(h)
$$

– Rake

$$
\frac{\partial \chi}{\partial \lambda} = -i(\sin \theta \sin \lambda \cos \delta G(h) + \cos \theta \cos \lambda \cos 2\delta G(h))
$$

$$
+ \frac{1}{2} \sin 2\theta \cos \lambda \cos 2\delta V(h) - \cos 2\theta \sin \lambda \sin \delta V(h)
$$

Analytical differentiation: distance

^ν Rayleigh and Love

William Andrew William Processor

$$
\frac{\partial U}{\partial r} = \left(-ik + \frac{1}{2r}\right) Sk^m e^{-i(1+2m)\pi/4} \chi(\theta, h) E \frac{e^{-ikr}}{r^{1/2}}
$$

^ν From attenuation factors

 $e^{-\omega rC}$
Analytical differentiation: depth \vee Rayleigh

$$
\frac{\partial A(h)}{\partial h} = \frac{\partial}{\partial h} \left[-\frac{\dot{u}^*(h)}{\dot{w}_0} \right] = k_R \left\{ \left[\frac{\dot{w}_s(h)}{\dot{w}_0} \right] + \frac{1}{\mu_s} \left[\frac{\tau_{Rs}(h)}{\frac{\dot{w}_0}{c_R}} \right] \right\}
$$

$$
\frac{\partial B(h)}{\partial h} = -\frac{\partial}{\partial h} \left[\left(3 - 4 \frac{\beta_s^2}{\alpha_s^2} \right) \frac{\dot{u_s}^*(h)}{\dot{w_0}} + \frac{2}{\rho_s \alpha_s^2} \frac{\sigma_{Rs}^*(h)}{\frac{\dot{w_0}}{c_R}} \right]
$$

$$
= -\left[\left(3 - 4 \frac{\beta_s^2}{\alpha_s^2} \right) k_R \left[\frac{\dot{w}_s(h)}{\dot{w}_0} + \frac{1}{\mu_s} \frac{\tau_{Rs}(h)}{\frac{\dot{w}_0}{c_R}} \right] \right] +
$$

$$
\frac{2}{\rho_s \alpha_s^2} k_R \left\{ \rho_s c_R^2 \left[\frac{\dot{w}_s(h)}{\dot{w}_0} \right] + \left[\frac{\tau_{Rs}(h)}{\frac{\dot{w}_0}{c_R}} \right] \right\}
$$

A SAN A SAN A SAN A SAN AIREAN AIREAN AN AIREAN AN AIREANN AN AIREANN AN AIREANN AN AIREANN AN AIREANN AN AIRE

$$
\frac{\partial C(h)}{\partial h} = -\frac{\partial}{\partial h} \left\{ \frac{1}{\mu_s} \left[\frac{\tau_{Rs}(h)}{\frac{\dot{w}_0}{c_R}} \right] \right\}
$$

$$
= -\frac{-k_r}{\mu_s} \left\{ \frac{\lambda_s}{(\lambda_s + 2\mu_s)} \left[\frac{\sigma_{Rs}^*(h)}{\frac{\dot{w}_0}{c_R}} \right] + \left[\rho_s c_R^2 - \frac{4\mu_s(\lambda_s + \mu_s)}{(\lambda_s + 2\mu_s)} \right] \left[\frac{\dot{u}_s^*(h)}{\dot{w}_0} \right] \right\}
$$

Analytical differentiation: depth v Love $\frac{\partial G(h)}{\partial h} = -\frac{\partial}{\partial h} \left\{ \frac{1}{\mu_s} \left[\frac{\tau_r s^*(h)}{\frac{\dot{v_0}}{2}} \right] \right\} = \frac{k_L}{\mu_s} (\rho_s C_L^2 - \mu_s) \left[\frac{\dot{v}_s^*(h)}{\dot{v}_0} \right]$ $\frac{\partial V(h)}{\partial h} = \frac{\partial}{\partial h} \left[\frac{\dot{v}_s(h)}{\dot{v}_0} \right] = -\frac{k_L}{\mu_s} \left[\frac{\tau_L s^*(h)}{\frac{\dot{v}_0}{c^*}} \right]$ that is $\frac{\partial G(h)}{\partial h} = \frac{k_L}{\mu_s} (\rho_s C_L^2 - \mu_s) V(h)$

$$
\frac{\partial V(h)}{\partial h} = -k_L G(h)
$$

Slide

そうぞく そうきょうろんしき くまらせんず ぶつばつ くとうきょうちょうきょうきょうきょう まんてん アルバー

Local event

ATTACHTS AND AN ANTIQUES AND ANNOYATION AND ANNOYATION AND ANNOYATION AND ANNOYATION

45.640° N 14.240° E

William Andrew Milliam Area Andrew Architecture

Noise vs signal spectra

Noise vs signal spectra

Time windows for inversion

Results

seismo.ethz.ch

www.minterway.com

Best Fitting Double-Couple: $Mo = 7.89E + 21$ dyn cm $Mw = 3.90$ Plane Strike Rake Dip NP1 66 16 79 NP2 333 168 74

^ν We know:

ATTENDADE DE CONTENTION DE PROPERTIER DE LA PROPERTIER DE LA PROPERTIER DE LA PROPERTIER DE LA PROPERTIER DE

We need to compare signals for low frequencies.

Local recent seismicity

Seismotectonics and source mechanisms

Aoudia, A. (1998). Active Faulting and Seismological **Studies for Earthquake** Hazard Assessment, Tesi di dottorato di Ricerca in Geofisica della Litosfera e Geodinamica, Universit'a degli studi di Trieste.

Regional stress field

Bada, G., Horv'ath, F., Cloeting, S., Coblentz, D. D. e T'oth, T. (2001). Role of topography induced gravitational stresses in basin inversion: The case study of the Pannonian basin. Tectonics, 20, 343-363.

Sileny and Panza's method

(Sileny et al., GJI, 1992; 1996)

The method consists of two main steps:

1) unconstrained linear inversion to determine, from the recorded seismograms, the six moment rate functions;

 $u_{\mu}(t) = \mathbf{M}_{ij}(t) \otimes g_{\mu\nu}(t)$

where the $g_{ki,j}$ is the far field term of the space derivative of the Green function Once the Green functions are determined (Panza 1985), the MTRFs are obtained by using a parametrization of the moment rate functions by a series of triangles overlapping in their halfwidth (Nabelek, 1984).

2) constrained non-linear inversion where the moment rate functions determined in the first step are used as data to obtain the average mechanism and the source time function.

The mechanism and the source time function are obtained after factorization of the MTRFs

 $M_{ii}(t) \rightarrow M_{ii}m(t)$.

In other words, we look for a constant MT and a common source time function. The problem is solved iteratively by imposing constraints such as

• positivity of the source time function

• a mechanism consistent with clear readings of first arrival polarities (when these are available).

The predicted MTRFs are then matched to the observed MTRFs obtained as output of the first step.

Sileny et al. (1992) method

^ν We express displacements as

Altres de la característica de la característica de la característica de la característica de la característic

$$
u_k = \sum_{i,j=1}^{3} M_{ij}(t) * G_{ki,j}(t)
$$

^ν Changing variables and differentiating

 $6Nt$ $\sum w_p A_{kp}(t) = d_k(t)$ $n=1$

Sileny, J., Panza, G. F. e Campus, P. (1992). Waveform inversion for point source moment tensor retrieval with variable hypocentral depth and structural model, Geophys. J. Int. 109, 259-274.

Synthetic tests

DATA FIT - Normalized Correlation: 0.36

Mij' TIME VARIATION

Synthetic tests

Real data

CAMPI FLEGREI EVENT (Campus et al., 1993)

Propinsity of Second

M.R.C.

 2.0

BF

 2.0 CF

 2.0

DF

2.0

ЕF

 $T \upharpoonright M \upharpoonright E$ (s)

temporale di sorgente comune ai sei elementi del tensore T. D: funz, temporale di sorgente comune ai 6 elementi del tensore D. E: funz, temporale di sorgente comune ai 6 elementi del tensore isotrpoico V. F: (a) mece, medio e (f) dedotto dal primo picco significativo (·) del tensore T. G: (a) mece. medio e (f) dedotto dal primo pieco significativo (·) del tensore D. Sono sovrapposte le letture delle polarità: circoli pieni: compressioni, circoli vuoti; dilatazioni.

della sua parte deviatoria (D) (linee tratteggiate). C: funz.

Why do retrieve the seismic moment tensor?

The seismic moment tensor is retrieved by waveform inversion and does not require a priori constraints on the source approximation.

This means that ...

it is very suitable to study weak events which are typical of volcanic areas being, such approach, poorly affected by all those factors

(- low energy content,

The College of American College Ave

- improper force equivalent source approximation.

- noise contamination of the data -small number of recording stations).

which prevent the methodologies based on first arrivals polarities to get reliable results.

ICTP 2004

Fig. 1. Suggested models for a CLVD source: For a pure CLVD source particle motion is inward (outward) along one axis, and outward (inward) along the two normal axes, with no net volume change. This might occur, (a) if a phase change caused a spherical volume to become disk-shaped, with no net change in volume: (b) when fluid suddenly fills a tensile crack; and (c) if two double-couple earthquakes occur simultaneously. The resulting source is a pure CLVD if they have the same size, and if they have parallel P (or T) axes and perpendicular B axes. Here the focal mechanisms and faults are shown in map view.

re-de-sedere de deux de la década de la década

Fig. 2. The sum of pure double-couple subevents may produce a source which is a pure double couple, a pure CLVD, or any combination in between. Thus subevents with the same B-axes, as in (a) or (b), or subevents with the same slip vectors, as in (c), produce a pure double couple. However, subevents having the same P axes but perpendicular B axes add to form a pure CLVD event. Such a P_{edge} source pattern might occur at the edge of a
subducting lithospheric slab. In this figure the focal mechanisms are shown as back-hemisphere projections.

524

(from Sileny et al., 1996)

A PARTICULAR AND A PARTICULAR AND A PARTICULAR AND A PARTICULAR CONTINUES.

Marking

Advantages and limits of the method

Several tests have been performed to test the robustness of the Sileny and Panza method as well as comparisons with other source inversion procedures. We observed that

it is not necessary to fix the source model a priori

only 4 recording stations are enough to retrieve the moment tensor components

the method well copes with structural heterogeneities.

$BUT...$

What is the influence of the damping value on the results?

What is the reliability of the isotropic component?

What is the influence of heterogeneities in a volcanic enviroment on the inversion results?

What is the effect of the station distribution?

CONCLUSIONS

We show by synthetic tests that, by an appropriate error analysis of the results, false non-double couple due to

1) poor station coverage

2) mislocation of the hypocentre

3) noise contamination of the data

4) inadequate structural modeling

can be recognized in the moment tensor solution.

The analysis is even more robust when in the same region the evolution in time of the non-double couple components is investigated.

Since spurious non-double couple components can arise just because of the station configuration, when dealing with real data any inversion must be preceded by synthetic tests to define lower limits above which the non-double couple components found can be considered statistically significant at a certain confidence level.

The full moment tensor retrieval is a really suitable. approach to study volcanic seismicity.

The tests of robustness of the Sileny Panza method show up that:

- the method well copes with effects of structural heterogeneities or with effects due to the poor knowledge of the medium
- there is coincidence between the FPS computed by first arrivals and by our inversion when the mechanism has a very high percentage of Double Couple and a negligible Volumentric Component

AND AND PROPERTY ASSESSED ASSOCIATE

- the resolution for the isotropic component is quite reliable.
- All the above results have been confirmed by applying the method in tectonic environments (Vrancea, Friuli Venezia Giulia, Umbria-Marche) and geothermal regions (Larderello, Italy).
Waveform inversion Finite fault case

Problem of inverting recorded ground motion time series for the seismic source rupturing process on finite faults.

Given the time series of motion recorded at a certain number of station around the causative fault, find the temporal and space distribution of slip on the finite fault.

Past studies until some time ago have concentrated on deriving a model that fits the data, without assessing solution stability or resolution.

Using standard inverse methods it is not difficult to obtain a solution which fits the data acceptably well.

ARTISTS AND THE TIME TO A REAL PROPERTY AND ARTISTS A

Assumption

ARTICLE AND THE CONTRACT OF A STATE OF A ST

An earthquake starts at a point and grows outward with a **continuous rupture**, i.e. the rupture may not jump. This last condition may be relaxed at predetermined fault segments.

Forward problem

Displacement at a station is given by

$$
u_{k}(\mathbf{x}_{1}, t_{1}) = \int_{0}^{t_{1}} dt \int_{\Sigma} K_{ik}(\mathbf{x}_{1}, \mathbf{x} ; t_{1}, t) a_{i}(\mathbf{x}, t) dS
$$

where

- u_k = k-th component of displacement at (x_1, t_1)
- K_{ik} = impulse response of the medium
- $a_i(x,t) =$ $slip$ at (x, t) on fault
- $\Sigma =$ fault area

Forward problem

After some simple algebra (move derivative from K to a in convolution) we get:

$$
S_j(t_1) = \int_0^{t_1} dt \text{ } \iint_{\Sigma} W_j(\xi \ ; t_1 - t) \text{ } \hat{a}_i(\mathbf{x}, t) \text{ } dS
$$

Andrew States Comment of Antonio States of Antonio States of Antonio States of Antonio States of Antonio States

 $-\hat{a}$ (\mathbf{x},t) = slip rate at (\mathbf{x},t) on fault - UNKNOWN

Forward problem

- The fault is discretized. In each cell of size $\Delta x \Delta y$, å is a linear function
- Wj is discretized by integrating over cells

、そうきょうととも、そのような、だいはなくようときてきてきているのです。

- The source time function is discretized by taking a fixed time step Δt and assuming slip rate varies linearly with time.

Forward problem

Then, in discrete form we get the system of linear equations

 $A x = b$

 $A =$ discretized impulse response W_i

 $x =$ unknown slip rates \ddot{u}

www.asturday.ch.ch.ch.ch.ch.ch

 $b =$ data from seismograms

Number of equations $=$ (# of grids along x) x

(# of grids along y) x

(# of source time steps)

Set up matrix equation

うちょうすく ナシュミック うちょうきょう まさんごぎょご (立ち) フイヤマンタ アイマン ごうてき アイマン こうせん アイアン こうせん アイアン こうせん アイアン

Mahaalahada

Possible physical constraints

1. Limit on fracture propagation speed

THE REPORT OF A PROTECTION OF A PAPER OF A PAPER OF A PAPER OF

2. Direction of slip vector on fault is parallel to direction of the average stress drop

Leads to the "no back-slip" constraint

3. Max. slip rate on the fault can be constrained based on fracture mechanics results from laboratory experiments on rocks

Constraints

- 1. No back-slip, i.e. $x \ge 0$ always
- 2. Causality constraint: grids not allowed to slip until first wave from point of rupture initiation arrives STRONG CAUSALITY COSTRAINT
- 3. Seismic moment constraint

และเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่องเรื่อง

The seismic moment resulting from the solution must be consistent with that obtained from longperiod data (e.g. CMT solution)

$$
\Sigma \, \mathbf{C}_i \, \mathbf{X}_i = \mathbf{M}_0
$$

ICTP 2004 Summed over fault with c_i containing rigidity modulus etc.

Acceptable solutions

In order for a particular slip distribution to be an acceptable solution to the inverse problem it must satisfy the following three conditions:

1. The solution must explain the data

THE MANUFORWAY OF A PAPER OF A P

- 2. The solution must be physically reasonable
- 3. If more than one solution fits the data equally well, additional information must be supplied to uniquely define which solution is being obtained and **such constraints should be explicitly stated and not hidden in the method of inversion**.

Size of the cell

The rupture surface is subdivided into a grid work of small cells or subfaults.

They should be small enough in order for the solution to outline well the rupturing process, but on the other end as the number of cells increases, the stability of the problem decreases. The point-source spacing is such that the subfault synthetics look like a continuous rupture over the bandwidth of the inversion and not as a bunch of separate point-source releases. This is obviously related to the minimum wavelength one wants to resolve in the problem or equivalently to the maximum frequency involved.

Cells should be small enough in order for the time required to the rupture to traverse a subfault be significantly less than the predominant period content of the data.

However also the directivity effect is important and a good check is therefore to make forward models with smaller and smaller cells until the seismograms at the given stations are stable.

If the subfault synthetics are computed before the inversion process is initiated, the speed of inversion increases significantly.

THE MANAGEMENT OF THE STATE OF T

The ground motion for a unit amount of slip on each subfault is computed by a time-domain sum of point sources.

Rupture velocities: range from 2 km/s to 4 km/s.

Each subfault synthetic is lagged in time and scaled in amplitude according to the present model estimation.

Rise times:

CONTRACTORS AND PROPERTY ASSOCIATES AND PROPERTY ASSOCIATES

cannot resolve rise times smaller than minimum period contained in the data.

Synthetics for the subfault containing the hypocenter are aligned with the first significant arrival from the source region. Possible small time shifts to account for the unknown structural model (which does not take into account lateral inhomogeneities).

Objective function

 $\sum_i W_i \int [x_i(t) - u_i(t)]^2 dt = \text{minimum}$

with x_i (t) the synthetics, u_i (t) the data and W_i some weight given to the data.

This is the L2 norm, but also the L1 and other norms can be used.

Without weighting, close stations with larger seismogram amplitudes dominate the least-squares inversion (e.g. Frankel, 1992: BSSA, 82, 1511-1518).

ICTP 2004 Use several initial random models to verify that the solution is stable with respect to the starting model and inversion procedure. Important to understand what factors affect the solution.

Single-window vs. multi-window inversion

Single-window inversion --> Fukuyama and Irikura, 1986 Takeo, 1987, Beroza and Spudich, 1988: Hartzell and Iida, 1990

ICTP 2004 In the single-window method asumes that **each point ruptures only once, when the rupture front passes**. Rupture time variations are allowed by admitting perturbations to a constant-rupture-velocity model. The perturbations are found in a separate, nonlinear inversion. Rise time is assumed to be constant and optimized by finding the value which produces the best overall fit to the data.

Multi-time-window inversion --> Olson and Apsel, 1982 Hartzell and Langer, 1993 Hartzell et al. 1994

In these inversions each point on the fault is allowed to rupture multiple times.

The single-window method tends to recover the true seismic moment and the average rupture velocity. Linear inversions with multiple-time-window tend to overestimate the moment with respect to single-time-

window inversions.

 $\frac{1}{2}$, $\frac{1$

Neither can resolve temporal details of the rupture propagation, unless constraints are applied (e.g. from independent data, like geodesy) .

Instability and non-uniqueness

Increasing the model dimension results in a decrease of the solution uniqueness. To stabilize the problem external constraints need to be placed on the inversion.

The parametrization itself severely restricts the possible solutions and has a big stabilizing effect.

SALES AND STRAIGHT AND STR

Attention! A too restrictive parametrization can lead to the true solution lying outside the solution space of the model!

Need to parametrize the problem with sufficient flexibility to encompass realistic models of faulting:

---> **physical constraints serve to stabilize the inversion.**

Physical constraints

are desirable stabilizing tools because they can be unambiguously stated and easily adapted to reflect the current knowledge of the earthquake source physics.

Physical constraints

Positivity of slip

 $\frac{1}{2}$

Strong causality (limits on rupture velocity)

Weak causality (rupture velocity smaller than P-wave velocity)

Model fits observed surface offsets

Tapering of slip to zero at the bottom of the fault

Find least moment or predetermined moment model

ICTP 2004 Model which incorporates minimum and maximum limits on rupture velocity

Other constraints

Find spatially smoothest model Find minimum norm model

THE TABLES OF A STATE OF A STATE

Incorporated as limits to the current model or as linear functions appended to the calculation of the objective function.

Some techniques require the use of several initial random models to verify that the solution is stable with respect to the starting model and inversion procedure.

Waveform inversion **Resolution**

Absolute resolution is difficult to address, because one can evaluate the resolution only for the specific problem, not for the actual earthquake source.

Therefore, usual resolution matrices are of limited value and can give only relative estimates of error.

One way is to compare solutions that utilize different data sets, parametrizations, constraints, and inversion norms. In terms of fitting the data many solutions give an equally acceptable model. **The similarities of these different solutions are considered to be the aspects of the rupture model that are better resolved, in an absolute sense**.

ARTICLE IN THE REAL PROPERTY AND ARTICLE AND ARTICLE

Robustness

Use different methods --> the common features of these solutions point out robust characteristics of the slip distribution that are independent of the inversion parametrization.

One can use bootstrapping and jack-kniving techniques.

SALES AND ARRANGEMENT STATES AND ARRANGEMENT STATES AND STATES AND ARRANGEMENT STAT