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The questions we would like to address
are:

1. How close is the solution of this (unstable)
problem to the correct one?

2. How does poor knowledge of crustal
structure in the source region affect the

estimate of the rupture front location and
speed?
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3. Since such inversions are non-unique, what
methods can one use to choose the

“correct” solution from among the
multiplicity of solutions?

Since these questions cannot, in fact, be
answered when working with real data, we

set up a problem using artificial data
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Source model
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Forward model

1 x 1011 Nm of moment
are released at each

grid, which is allowed to
slip only once

Rupture speed = 0.7 β
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In the first set of cases, the inverse
problem is solved using the SAME
spatial and temporal grid sizes as

those used to generate the
synthetic (noise-free) data
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Inversion methods

First approach:
SVD, minimize L2 norm
Constrain moment value
Remove small eigenvalues
Solution with smallest first differences

Second approach:
Linear programming, minimize L1 norm
Use different physical constraints
Smallest second differences



 ICTP 2004

Case 1a - conclusions

Even if we constrain the rupture front in the
inversion to the true front, we are unable to

reproduce the final constant moment
distribution and the source time function,

when we use the SVD method: many small,
negative values of moment rates are

produced
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Case 1b - conclusions

When we constrain the moment rates to be
POSITIVE (using the linear programming

method) we are able to reproduce the final
constant moment distribution and the source

time function correctly!
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Case 1c - conclusions

When we constrain the rupture front to move
faster than the true one and also allow all

cells behind it to continue to slip, we are able
to reproduce the solution (moment-rate

history, final moment, source time function)
as long a sthe POSITIVITY constraint is used
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Case 1c
Rupture front

Forward model = 0.7 β
Inverse model = 0.5 β
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Case 1c - conclusions

If the rupture front is constrained
to move more slowly then the true
one, we are unable to reproduce

any aspect of the solution
correctly, even with the positivity

constraint. Constraining the
seismic moment to the true one
does not improve the solution.
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Case 2a
Wider fault

Same rupture
speed in

forward and
inverse
model
0.7 β
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Case 2a - conclusions

If we use a wider fault and the correct
rupture speed and allow cells to release
moment only once in the inversion, and

also impose the positivity constraint,
then the moment is only released at the

correct depth in the solution, even
though moment release at deeper parts

of the fault was permitted
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Case 2a
Wider fault

Inversion
results

The constant
moment

release is
reproduced

approximately
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Case 2b
Narrower

fault

Same rupture
speed 0.7 β
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Case 2b - conclusions

If we use a narrower fault than the true
one in the inversion, we obtain the

correct moment and centroids, but are
unable to reproduce the source time

function and the uniform moment
release at the rupture front

But we are able to fit the data!
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Case 2b
Narrower

fault

Strongly non-
uniform moment

distribution
(asperities!)
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Case 3a

Different
medium used

in forward
(M1,

continuous)
and inverse

model
(M2, dashed)
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Case 3a
Different medium
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Case 3a - conclusions

Incorrect source structure leads to poor
fitting of the data and the solution is not

reproduced.
Instead, this incorrect source structure
is transformed into ARTIFACTS of the

solution!

An illustration of the effect of model
noise
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Case 3a
Incorrect
source

structure

Appearance of
artifacts:

a GHOST front
Behind the main

rupture front
Region excluded by weak causality constraint
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CONCLUSIONS

In summary, if the Earth structure is
known, then we can determine the
rupture front location in time, as
long as we use a larger fault area
and larger rupture speed than the

true ones.
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CONCLUSIONS

All our negative conclusions, say
the fact that we are unable to

reproduce the correct solution
without the positivity constrant,

will hold for more complex cases
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CONCLUSIONS

On the other hand, our positive
conclusions, say the cases when

we can reproduce the rupture front
position correctly by using the

positivity constraint, is only
applicable to the simple forward

model studied here
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CONCLUSIONS

Larger faults (20 km x 5 km), top of
the fault located at 5 km depth. We

use 8 times larger spatial and 4
times larger temporal steps in the

inversion. Positivity of moment
rate enforced. Results compared

with forward model smoothed over
the larger grids. Similar
conslusions as before.
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CONCLUSIONS

This study demonstrates the
problems we encounter even for
the simple case of a Haskell-type

faulting model. Clearly more
realistic models, like crack models,
and models with larger variability

of rupture propagation speeds
would present even greater

difficulties.
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Slide
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Conf_1:
Stations on the

hanging wall
Conf_2:

Stations on the
footwall

Conf_3 & 6:
Stations in the

forward rupture
propagation

direction
Conf_4 & 5:

Stations in the
backward rupture

propagation
direction
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CONCLUSIONS

A distribution of stations on the
hanging wall and in the forward
rupture propagation direction
allows the source model to be

retrieved even in the presence of a
small number of stations.

A good azimuthal distribution is
more important than the number of

stations!
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Inversion of the
Bovec 1998 (W Slovenia)

 event
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1511 –
M=6.9

1348 –
M=6.4

1976 –
M=6.4

1201 –
M=6.1

1895 –
M=6.1

1976 –
M=6.1

1794 –
M=6.0

1998 –
M=5.7

Historical seismicity
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Active deformation and recent
seismicity Microseismicity 1977-1987 (Renner,

1995)
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The 1976 Friuli thrust fault and
related earthquake sequence
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The 1976 Friuli Thrust-faulting
Earthquake, Ms 6.5



 ICTP 2004

The The BovecBovec--Krn Krn (Slovenia) (Slovenia) April April 12, 1998 12, 1998 eventevent

On April 12, 1998 a magnitude
Ms=5.7 event has occured near
the city of Bovec (Slovenia), just

eastward of Friuli- Venezia
Giulia.
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The 1998 Bovec-Krn Strike-Slip
Earthquake, Ms 5.7

Maximum Horizontal
Velocities (cm/s)

Observed Intensities
(EMS-98)
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Bovec 1998 - Locations
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Bovec 1998 - Relocations
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Bovec 1998 - Relocation errors
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The 1998 Bovec earthquake sequence
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Filtering of data - max freq 1 Hz
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Which portion to invert?
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Model 1
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Model 1
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Model 2
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Model 2
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Model 3
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Model 3
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Results
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Final
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Active
faults

in
NE Italy

and
W

Slovenia

Aoudia(1999)
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Idrija Fault

Tolmin Fault

Kobarid Fault

Tolminka Fault

Bovec-Krn Fault

Tolminka Spirng
        Basin

Tolmin

1998, Ms 5.7

The Tolminka Fault
Input Fault Model:
L 35 km, W 10 km,
 M 6.6,
θ 320°, δ 80°, λ 176°

DEM 25 m
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The Tolminka Fault: Results – 1 Hz
Single
Asperity

Double
Asperity
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The Kobarid-Tolmin Fault

Torre R.

Soca R.

Natisone R.

Bovec

Tolmin

Kobarid

Cornappo R.

Kobarid Fault

Tolmin Fault

Input Fault Model: L 30 km, W 10.5 km, M 6.6, θ 290°, δ 70°, λ
146°

DEM 100 m
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The Kobarid-Tolmin Fault (1 Hz): Results
Uniform
Seismic
Moment
Distributio
n

Single
Asperity

Double
Asperity

Double
Asperity
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Coulomb stress change

After 1998 event modeled with
finite fault model of Bajc et al.

(2002)

After 1998 and 2004 events:
modeled with

finite fault models of Bajc et al.
(2002) and with uniform slip
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The Coulomb stress change would
thus favour an increased stress on

the Kobarid-Tolmin fault and a
reduced stress on the Tolminka fault

Which will be the next ruptured fault
depends however on the

accumulated stress level on the two
faults…

Which active fault will rupture next?




