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Continental tectonics?
Continental deformation?
Active tectonics?

Continental tectonics: aterm used to include the large-
scale motions, interactions and deformation of the continental
lithosphere. It is often used in contrast to “Plate tectonics”.

Continental deformation: aterm often used to emphasize
the contrast between deforming zones in the oceans and on the
continents.

Active tectonics: present-day tectonic movements or
tectonic movements expected to occur within a future time
span of concern to society.
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How to view Continental Tectonics?

Continental tectonics Is not plate tectonics...

Whereas deforming zones in the oceans are usually narrow
and confined, on continents they are often spread over wide
areas, requiring a different approach to their description and
analysis.

In oceans plate boundaries are effectively single faults on which the long-term rate and
direction of slip are entirely determined by the relative motion of the bounding
plates.

On the continents, earthquakes are usually distributed over zones hundreds or
thousands of kilometers wide.

As we shall see, what is happening in the Eastern
Mediterranean and in Italy is not predictable knowing just the
relative motion between Africa and Eurasia.
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Accommodation of SW movement of the southern Aegean relative
to Europe by faulting in central Greece (After Jackson, 2001)




Continental deformation framework

Velocity field for Continuous deformation:
GPS - SLR - VLBI

Faulting for Discontinuous deformation:
Seismology, GPS, DInSAR,
direct observations

Crucial to this framework is the knowledge of the structure
of the earth at the required length scale,

and an appreciation of the nature and scale of the
mechanical properties of the continental lithosphere.




Scaling and organisation of the strain field

Two length scales against which geological, geodetic and
seismological data should be compared:

thickness of the crust;
thickness of the lithosphere

Seismogenic zone

Transition zone

Lower crust




Tools and Techniques: The future..

Quality and abundance of Seismological, GPS and SAR data

Abilities of the analytical techniques that use such data to constrain the
geometry, segmentation and slip distribution on active faults

details of the faulting and rupture process that would have been
Impossible to see 10 years ago..

IS now focusing on differences between results obtained by
seismology, GPS surveying and SAR interferometry for the same
earthquake.

The three techniques are looking at different spatial and temporal
resolutions. But whether they actually do so, or whether the currently
observed differences are within the noise and resolution errors of the
various techniques,

enormous power of modern methods, particularly when used
In combination, to reveal details of the faulting in earthquakes.




GPS is cool...
but there are many layers to the onion...

Phase biases

Imperfect clocks

Indices of refraction
Satellite-Earth-GPS geometry
Other effects

Loading (tidal, hydrological, ...)

Electrical environment (satellite antennas, receiving
antennas)

Use of different antennas for the same monument

Dome...

More of this during the next IAG-IASPEI Joint Capacity
Building Workshop on Deformation Measurements and
Understanding Natural Hazards in Developing Countries,




Motivation: Kinematic matters

what is the velocity field that describes the average,
or long-wavelength deformation in the active
diffuse belts?

how is it achieved by faulting?

what Is the relation between the two?




Motivation: Rheology matters

Improved understanding of the rheology of the Earth's
crust and upper mantle and faults is fundamental
to studies of:

stress strain




Top Questions

Q1: what Is the appropriate model of deformation
below the seismogenic zone”?
two models of deformation:

deformation: creeping below mid-crust.
shear zones: “rigid” down to mantle.

Q2: what Is the rheology of the crust-upper mantle
rocks and constitutive properties of fault zones?




Changes in Crustal Conditions with Depth

Temperature
Overburden

Lithology




Q1

Distributed deformation

Mechanics of the earthquake cycle

transition from brittle to
“ductile” deformation at mid-
crustal depth

the earthquake cycle is
modeled as a system of
Interacting elastic and
viscoelastic layers

laboratory experiments suggest
non-linear environment and
lithology dependent rheology
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Conditions for flow In the continental crust

1. lgneous
underplating
and intrusion

Addition of
water-rich
fluids
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Heating by magmatism imposes a timing
constraint that will govern the time and
length scale of the flow
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Distributed vs. Localized deformation:
Mechanics of the earthquake cycle

transition from brittle to
“ductile” deformation at mid-
crustal depth

the earthquake cycle is
modeled as a system of
Interacting elastic and
viscoelastic layers

laboratory experiments suggest
non-linear environment-and-
lithology dependent rheology

localized

transition from stick slip (velocity
weakening) to stable (velocity
strengthening) sliding at mid-crustal
depth

the earthquake cycle is modeled as a
system of slipping fault patches
(dislocations)

laboratory experiments suggest
complex depth, -environment-,
scale- and material dependent rate-
and-state dependent rheology with
changes in strength and slip stability




From the laboratory ....

By necessity, rock and fault
mechanics lab experiments have
to be run on spatial and temporal
scales and under conditions far
from natural environment




.... to the Natural Laboratory

a large earthquake initiates a
lithosphere-scale rock
mechanics experiment

establish geometry, initial and
boundary conditions

take relevant deformation
measurments

use models to resolve fault/rock
constitutive properties

HER
AN ANDREAS

SOUTHERN
< SAM AMDRLCAS

SHEAR STRAIN RATE , wrad /a

80 a0 120 150
TIME SINCE LAST GREAT EARTHOUAKE , o




Q2 .... to the Natural Laboratory

Challenges

limited precision and space-time
density of measurements

limited modelling and
computational ressources

limited resolution and uniqueness
In determining source of
deformation

limited ability to resolve multiple
processes
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"= rebound
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fault
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non-unique models
some solutions

take geological reality into account

require models to be consistent with
deformation at all time scales, not just
single snapshot of the velocity field




GPS Geodesy:
ASI-Geodaf GPS-VLBI-SLR solution

Src: Devoti



General framework

Molasse Basin
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Structure of the lithosphere-asthenosphere system

Moho Depth (km) Thickness of the Lithosphere (km)
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Panza et al. 2003, Episodes




Structure of the lithosphere-asthenosphere system

12°F 16°F 20°F
S-Wave Velocity (km/s) Maximum S-Wave Velocity (kim/s) Minimum S-Wave Velocity (km/s) in the asthenosphere
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Recent Magmatism

Tuscany
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Central Italy
coexisting extension - contraction

EURO PE Sep. 26, 1997 Sep. 26, 1997 Mar. 26, 1998
h. 0.33 h. 9.39 h. 16.24

Tyrrhenian Sea '
r V.

20

40

—
€
=
<
=
=]
=3
o
[a]

60 Asthenospheric wedge

80

100

Models invoking external forces

Interactions along plate margins or at
the base of the lithosphere

Subduction processes:
slab roll-back,
slab pull,
slab break-off




What next?
Image the continental deformation over the widest possible
range of spatial and temporal scales

Scale of the
FAULT zone

Scale of the PLATE boundary: lithosphere-asthenosphere

knowledge of the structure of the earth
at the required length scale,

particular emphasis on detection of
transient deformation signals

rheology




GPS monitoring




how did we proceed?

Surface wave tomography,

Non-linear inversion for the earth structure retrieval with CROP
as a-priori data (resolution and lateral variations),

Surface wave and complete waveform inversion for the source
moment tensors

Post-seismic deformation following the Umbria-Marche 1997
earthquake sequence;

Postseismic deformation vs. geodynamics

finite element modeling of the lithosphere flow,
solve for a velocity and stress field




Data

Seismic waveforms: GNDT-OGS, SSN, VBB Stations;

Existing Velocity Models: Eurld (Du et al. PEPI-1998;
Pontevivo & Panza, PEPI-2002), Deep seismic
soundings: CROP and similar (e.g. Pialli et al. MSGI-
1998; Bally et al. MSGI-1986);

Active Faults (INGV-GNDT)

Gravimetry (Marson) and Heat flow data (Della
Vedova)




The Method

Event-Station Dispersion Curves
paths of

2D Maps of

Group Velocity

Group Velocity

TOMOGRAPHY and

Phase Velocity

Dispersion Curves
of

Phase Velocity

at different periods

3. REGI® IZATION

Determination of
a set of solutions
for every region

4. NON-LINEAR INVERSION
HEDGEHOG

Individuation of different regions, each with
a mean dispersion curve of Group Velocity
and
a mean dispersion curve of Phase Velocity




Synoptic view of all dispersion profiles considered and
observed
dispersion
measurements
compared with
the group and
phase velocity
values computed
for the accepted
S-wave solution
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Resolution and tomography maps
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Active faults In
Umbria-Marche

group velocity
variations, at
different periods,

from the average
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Shallow Velocity models beneath the
Umbria-Marche Apennines
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Section across the fault zone
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Fault plane
solutions
of the 1997

Umbria-

Marche
earthquake
sequence
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Umbria earthquake, 1997/09/26 00:33, M,=5.5, M.=5.6

Stations used for source parameters
determination from long period surface wave spectra (50s-80s)

The best double couple obtained
by joint inversion of surface wave
amplitude spectra and
first arrival polarities

Residual=0.269  Mo0=.39e+18N-m
P1:180°,45°, -45°, P2:305°60°, -125°

Residual as function of source depth
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//

0.398

/

6 12 18 24 30
Depth,km

Umbria earthquake, 1997/09/26 09:40, M,=5.7, M.=6.0

Stations used for source parameters
determination from long period surface wave spectra (60s-100s).

The best double couple obtained
by joint inversion of surface wave
amplitude spectra and
first arrival polarities

Residual=0.340  Mo=.11e+19N-m
P1:150°,45° -60°, P2:291°52°, -117°

Residual as function of source depth
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0.413 ///
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Velocity Models beneath North-
B Central Italy
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Umbria earthquake, 1998/03/26 16:24, M75.4, Mz4.8

Stations used for source parameters

Th e 1998 M ar C h 2 6 determination from long périod surface wave spectra (45s-80s)
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The best double couple obtained Residual as function of source depth
by jointinversion of surface wave
amplitude spectra and
first arrival polarities
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The March 26, 1998

Umbria ea

The best double couple obtained
by joint inversion of surface wave
amplitude spectra and
first arrival polarities
(under assumption that event is crustle)

Residual=0.262 Mo=.11e+18Nm
P1:124%77,°127, ° P2:231,39, 21°

(b)

The best double couple obtained
by joint inversion of surface wave
amplitude spectra and
first arrival polarities
(under assumption that event is mantle)
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Crust-upper mantle structure

< Extension Compression
Tyrrhenian Tuscan Magmatic Adriatic
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The juxtaposed contraction and extension observed in the crust
of the Italian Apennines and elsewhere has, for a long time,
attracted the attention of geoscientists and is a long-standing
enigmatic feature.

Several models, invoking mainly external forces, have been put
forward to explain the close association of these two end-
member deformation mechanisms clearly observed by
geophysical and geological investigations.

These models appeal to interactions along plate margins or at
the base of the lithosphere such as back-arc extension or
shear tractions from mantle flow or to subduction processes
such as slab pull, roll back or retreat and detachment.




Crust-upper mantle structure
beneath o
North-Central
Italy supports
delamination
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Density model
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Conclusions

The revisited crust and uppermost mantle Earth structure
beneath Central Italy supports delamination processes,

The rate and patterns of the modeled lithospheric flow:
IS in agreement with GPS data,;
explain the heat flux, the regional geology;
provide a new background for the genesis and age of the recent
Tuscan magmatism
The modeled stress in the lithosphere:
Is spatially correlated with gravitational potential energy patterns;

shows that internal buoyancy forces, solely, can explain the
coexisting regional contraction and extension and the unusual
Intermediate depth seismicity




Postseismic deformation

mainly modeled for large and deep earthquakes;

and In the
and are believed to be the
Important processes for explaining the increase of
rates of deformation;

complexity exhibited by large earthquake faults and
the deeper processes they involve during their
postseismic deformation




Postseismic deformation for moderate
Size earthquakes

relatively simple rupture process;

free from the influence of lower lithospheric viscous
flow;

excite noticeable postseismic signal that could be
detected by geodetic measurements.

good candidates to investigate the component of
the deformation driven by




Crustal
layering:
pattern and
scale of the
deformation

Elastic upper crust (UC)
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Source depth effects and mantle relaxation

Elastic upper crust (UC)

Vertical displacement (mm}

Vertical displacement (mm}
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Source
depth
effects

Depth by Depth Vertical Rates MOD1 Depth by Depth Vertical Rates MOD2
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We combine:

seismic strain mapping computed from early
aftershocks;

GPS measurements;

published leveling profiles (Basili and Meghraouli,
GRL 2001);

forward analytical modeling of viscoelastic
relaxation

In order to:

better constrain the faulting geometry and related
slip distribution;

get insight into the rheology of the Earth’s crust
below the Central Apennines;

show the feasibility of GPS monitoring of
postseismic transients, for the first time in Italy,
generated by shallow and moderate sources.




Postseismic deformation following the 1997 Umbria-
Marche normal faulting earthquakes
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Fault models for the 26 September 1997
earthquakes

Zollo et al. (GRL, 1999): Inversion of strong motion
data

Salvi et al. (JOSE,2001): Forward modeling of INSAR
and GPS data

Basili and Meghraoui (GRL, 2001): Zollo et al. fault
models readjusted with an up-dip extension to fit
leveling profiles performed soon after the largest
earthquakes




Vertical viscoelastic relaxation over
1 year for different fault models using
different viscosity models
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GPS (baseline length variations) vs.

model predictions for different

y % M fault models using the preferred rheological
S e | § model

| uplitt

Y 26 Sept. 1

997 )
largest events .% o® aton w1
=

O  Aftershocks
{Oct. 18 - Now. 3, 1987)

\ 26 Sept. 1997, 00:30 & 09:40

earthquake faults \ Aj e Basili—ZO]lO—FM
km 2000 13 .00 ' ' — Salvi-FM
Zollo

l GIPSY
IBernese

20uapIsqns

£
=
-
O
]
©
-
@
>
O
=
)
2]
©

1 Collecroce
TMontestinco




2000

T
2001

s : .
2002

2003

E
=
c
o
=
©
[ —
©
>
@
=
©
7}
©

GPS time series: baseline length
variations w.r.t Spello 1999-2003

~~7

CERE COLL

——r
10 15
Baseline len




Displacement w.r.t CGPS Camerino 2000-2003
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GPS w.r.t Eurasia 2000-2003
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postseismic strain rates:
heterogeneous model
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Riva et al., 2004




Postseismic deformation:
Vertical deformation

0

200 150 100  -50

Riva et al., 2004




Conclusions:

The faulting model requires a listric geometry with most of
the energy released in the lower half part of the elastic crust

The rheological model consists of an elastic thin upper
crust, a transition zone of about 1018 Pa s underlain by a
low-viscosity lower crust, ranging from 1017 to 1018 Pa s;

The postseismic deformation is, both distributed in the
transition zone - lower crust and confined to the fault zone:

0-1 year: 7% of viscoelastic deformation
2-3 year: 35 % of viscoelastic deformation

The agreement between the results of the Bernese and the
GIPSY analyses is remarkable.

The postseismic deformation may have relevant effects on
the ongoing geodynamics.




European Union -Alpine Space Interreg IlI-B Project

Alpine Integrated GPS Network:
Near Real-Time Monitoring and Master Model for

Continental Deformation and Earthquake Hazard
(ALPS-GPSQUAKENET)



ALPS-GPSQUAKENET

build-up a high-performance transnational space geodetic
network of GPS receivers in the Alpine Space

support the use of space based techniques: crustal deformation
for earthquake potential, meteorology, landslide monitoring,
agriculture, navigation, transportation, mapping, surveying,
recreation & sports...)

cross-training and interaction of scientists and environmental
officers

monitor and prevent natural risk, reduce economic losses,
and save lives



Project Partnership
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Jarmary 2004 — Decamber 2008
Mleasure 535: Cooperation in the field of nahiral risks
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Scientific
American

Panza et
al., 1980
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Sexinni verticali attraverso le Alpi orientali (a), cenfro-occidentali (b) e attraverso gli Appen-
nini (). Nella sezione o il massimo ispessimento del lid & spostato verso sud rispeito alle cadici
crostali. (La radice profonda & interpretata come un caddoppiamento litosferico consepuente la
collisione Europa-Africa.) E evidente la assoluta inadeguaiczea del concette di radici crostali
per le cotene moniuose, poiché le variazioni laterali in corrispondenza di zone orogeniche si -
estendono a profendith superiori ai 200 chilometri. Anche il concefto di isostasia crostale deve
essere rivisto perché sia possibile assegnare alle anomalie isostatiche on realistico significato
geadinamico. Nella sezione b, in corrispondenza della zona di massima deformazione, vi & una
porgione di mantello soffice che soveasta una radice litosferica caratterizzata da alti valor di
rigiditd, che interrompe il canale a bassa velocith. Anche PAppennine & caratterizzato (se-
ziome o) da una porzione di mantello soffice sovrastante vona radice litosferica con rigidita
elevata. Notevole & la differenza di spessore tra il lid dell’ Adriatico ¢ quello del Tirreno. Tuite
e ire le sexioni presentano forti varizzioni laterali nelle proprieth elastiche del sistema litosfera-
-astenosfera {la cui entith & stimata in base agli intervalli di varabilith delle velocith delle
onde di taglio riportate melle sezioni} che interessanc anchetla base del canale-astenosfera.




Scientific American

NO BASILEA

PROFOMDITA (CHILOMETRI)

A differenza di quanto mostrato nella figoea della paging a fronte, nelle
Alpi & possibile individuare delle radici crostali ben syiluppate. In
corrispondenza delle radici non ¢ possibile operare ona distinzione in
crosta superiore, media ¢ inferiore, ma i dati geofisici indicano che
fuests zon:a & carptterizzala da un méfange di materiali crostali distri-
buiti in modo ancora diserdinato. La cadice litosferica & spostata verso
sud-est rispetto alla radice crostale ed & rilevante la continuita esistente
tra la proiezione della linea insubrica ¢ il bordo settentrionale della

Panza et al., 1980
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litosfers in subduzione, al punto da far ritenere Ia linea insubrica una
faglia litosferica. E notevole la differenza tra la litosfern del blocco
enropeo (circa S50 chilometri, un teceo dei gquali di crosta inferiore ) e
quella del blocco africano {spessore litosferico di circa @0 chilometri nel
quale I crosta nella sua totalith costituisce un terze dello spessore lito-
sferico]. I numeri rappresentans Ia velocith di propagazione delle on-
de sismiche di compressione, mentre le cifiee tro pacentesi sone relative
alle onde di taglio, velocita sempre espresse in chilometri al secondo.

FROMNTALI ALPINI E SUDALRPIMI



GAIN - CGPS Network
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GAIN - CGPS Data Center
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GAIN - CGPS Network

more than 40 Continuous GPS (CGPS) across the Alps
plus campaign GPS in different test sites

Image the distributed continental deformation over the
widest possible range of spatial and temporal scales

two length scales against which the data should be compared.:
m thickness of the crust
m thickness of the lithosphere

particular emphasis on detection of transient
deformation signals in test sites



GPS can help with...

Earthquake response information

®m identify fault source, extent and amount of slip
m model finite fault source
m measure and model deformation field

= provide all above to emergency responders

Damage estimation
= provide data for use in shake maps

= support of remote sensing and positioning for accurate and timely
collection, reporting and control of other data that require accurate

position and/or timing
= monitor large engineered structure and lifeline systems

Early warning system
GPS fault slip sensors in real-time to detect fault slip at the surface
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Test site Grenoble- Belledonne Fault:

CGPS - Campaign GPS monitoring
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Test site Briangonnais:
CGPS - Campaign GPS monitoring
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Four subduction zones contributed to deform the area:

1 - ALPS (retrobelt)
2 - DINARIDES (forebelt)
3 - CARPATHIANS (western backarc)
4 - APENNINES (foreland flexure)

. —> 4
3 backarc extension frontal accretion

// L

- Independent geodynamic processes may coexist in one area

Source: Carlo Doglioni
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Digital elevation modeling




Digital elevation modeling




ing

Telp model'

e
qv]
>

2L
D

'©

o

To]

D




Digital elevation
models and
GI1S-based

analysis
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Geomorphology of the fault-bend fold







Geology of the Leading Edge

U. Miocene (Glauconitic Sandstones, Silty Clay, Marles)
Pliocene Molasse (Puddingstones, Sandstones, Oyster Conglomerates)

. Pleistocene Conglomerates
Slope Deposits
Sands and Gravels

. Frontal Till

Back-Arc Till




Cross-section: Topography & seismicity

Leading Tolmezzo
Edge Neogene basin

l

L 1976 Friuli
earthquake




Active deformation: Geometry of the structures

N340 \
4-5 mm/year




HGLP and GDSN stations
that recorded the 1976 Friuli
sequence
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Epicentral
locations
of the
1976

earthquake
sequence
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Finettiet al. (1979
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3 Lyon-Caen (1980)

Zonno and Kind (1984




The 1976 Friuli thrust fault and related
earthguake sequence




Fault-bend and fault-propagation folds reactivated
during the 1976 Friuli earthquake

Ground cracks

AGIP well / (Ambraseys, 1976) ¢ Mud

volcanoes

-wave focal
solution




The 1976 Friuli thrust faulting
Earthquake: Forward modeling
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y do "thrust faulting" earthquakes stop*

(O Fault bends (King & Nabalek, 1985)

(O  Shear strength j along the fault ends 1n

order to K, (Cowie & Scholz, 1992;
Rundle, 1996)

() Flexural-slip folding

Up-dip bedding planes Wide Shear
Along-strike bedding planes( Z£o0nes

from a single shear to a multiple shear







The 1998 Bovec earthquake seguence

\ Tolminka

‘spring
basin




The 1998 Bovec strike-slip faulting
Earthquake: Inverse modeling

of MOG Z
=sely ’

0 VALLE Z

R GEPF NS 10 -
r 0.5
" ' 0.0

- -0.5

GERC NS™* [
0.0 p/

-0. } | y -0.2

0= OG NS 0.2 I o
SN 0.1

s ' 0.0 fp |

yya 01
vfﬂNL VALLE NS

-0.2

Real data
Inversion results

WGEPF EW

. GERCEW

o VALLE EW

Hypocenter




""J{_Eorvec 1998 Bovec-Krn
‘ basin fault segment

Tolminka basin

Locked fault

gt SO segment?

basin

. . -
Ljubljana

0
o
(O]
>

o

-




Idrija fault
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Active deformation: Geometry of the structures

N340 \
4-5 mm/year
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A possible Kinematic Model of Deformation

PLATE B




Active deformation: Geometry of the structures
and GPS sites

N340 !\
4-5 mm/year




The recent Slovenia earthquake, July 12 2004

=0 MR
6.5.1976

1965

1975
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Alarmed area for M>5.4

by CN algorithm (Peresan et al., 2004)
(As on 1 July 2004)

Southeastern Alps — External Dinarides
INSAR - CGPS - Campaign GPS monitoring




2004 Western Slovenia earthquake:
Campaign GPS monitoring before - after the earthquake and modeling
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