

Third Workshop on

Distributed Laboratory Instrumentation

Systems

22 November - 17 December 2004

Abdus Salam ICTP - Trieste, Italy

 1594/1

Introduction to Java

Carlos Kavka
Universidad Nacional de San Luis

Argentina

Introduction to Java

C. Kavka††

† Departamento de Informática
Universidad Nacional de San Luis

Ejército de los Andes 950
D5700HHW — San Luis

Argentina.

Lecture given at the:
Third Workshop on

Distributed Laboratory Instrumentation Systems
Trieste, 22 November — 17 December 2004

LNS

†ckavka@unsl.edu.ar

Abstract

Keywords: Java. OOP. PACS numbers: 64.60.Ak, 64.60.Cn, 64.60.Ht, 05.40.+j

1 Introduction

Java is a very powerful language that has generated a lot of interest in the recent years.
It is a general purpose concurrent object oriented language, with a syntax similar to C
(and C++), but omitting features that are complex and unsafe.

Its main advantage is the fact that the compiled code is independent of the archi-
tecture of the computer. The world wide web has popularized the use of Java, because
programs written in this language can be transparently downloaded with the web pages
and executed in any computer with a Java capable browser.

However, Java is not limited to Web based applications. In fact, it has been used
extensively in other domains, including microcontroller applications.

A Java application is a standalone Java program that can be executed independently
of any web browser. A Java applet is a program designed to be executed under a Java
capable browser. In this introduction to Java, we will not cover applets.

Java was developed by Sun Microsystem in 1991, as part of a project that was de-
veloping software for electronic devices. Sun has released four versions of the language,
and provides the JDK (Java Development Kit) freely through its web site. This has cer-
tainly contributed to the popularity of the language.

These lecture notes assume that you have some familiarity with C. In fact, usually
Java can be learn easily than C or C++ due to the fact that most of the complex aspects
of C that can cause errors are not present in Java. We will not be covering all aspects of
Java, and in particular, we will not be covering applets and interface design.

All examples used in these notes are available for experimentation. In fact, it is a
good complement of this lecture notes, the time you can spend executing and modifying
the examples in order to fully understand the concepts involved.

35

2 The Java platform

Java programs are compiled to Java byte-codes, a kind of machine independent rep-
resentation. The compiled program is then executed by an interpreter called the Java
Virtual Machine (JVM). The Java Virtual Machine is an abstract computer in its own,
with its instruction set and memory areas. A Java compiled program can be executed in
any system that has a JVM.

The main advantage of this approach is, of course, portability, because the same
Java compiled program can be executed in any computer that has a JVM. The price to
pay is a slower execution.

In this way, Java byte codes help to make “write once, run everywhere” possible.

3 A first example

This section presents a small example, the usual Hello World application. The applica-
tion just prints the message “Hello World!”.

/**
* Hello World Application
* Our first example
*/

public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World!"); // display output

}
}

The application involves a lot of concepts. We will just be considering the main
aspects now. The details will be covered in the next sections.

The application consists of only one class. Its name is HelloWorld and it has to be
defined in the file HelloWorld.java, i. e., the name of the class must be the same as
the name of the file without the extension.

The class defines only one method, called main, that has to be defined exactly as
shown in the example:

public static void main(String[] args)

The method receives an array of strings as argument and returns nothing. This is
the place where the execution will begin.

The class System is defined in the Java API (Application Programming Interface) and
it is used to provide access to the system functionality. The class variable out is a
member of the class System and can be used to access the standard output stream.
The method println is called in order to print the string passed as an argument in the
standard output:

36 Introduction to Java

System.out.println("Hello World!");

There exists two types of standard comments for documenting programs, and they
are ignored by the compiler. Single line comments are introduced by the characters //
and multi-line comments are defined between the characters /* and */ like in C.

There exists a third class of comments that are used by the special documentation
utility javadoc. They are defined between the characters /** and */, like in the exam-
ple:

/**
* Hello World Application
* Our first example
*/

HTML and special commands can be defined in these comments, and they are inter-
preted by javadoc in order to automatically generate documentation that can be seen
with a web browser.

4 Development cycle for Java applications

To develop a Java application we have to follow three steps: creation of the source file,
compilation and execution. The following example is based on the use of Sun Microsys-
tems JDK.

Creation of the source file : This can be done with any text editor. The name of the
file must have the same name of the class that is going to be defined, with the
extension .java. The capitalization of the words will be recognized by the compiler.
One possibility is the use of the emacs editor:

emacs HelloWorld.java

Compilation : The Java compiler will translate the source file into a file containing
bytecodes that can be executed by a Java Virtual Machine:

javac HelloWorld.java

This will create a file with the same name and the extension .class:

ls
HelloWorld.java
HelloWorld.class

Execution : The application will be interpreted by the Java Virtual Machine. In order
to execute the application, we have to call the program java with the name of the
class as argument (without extension):

37

java HelloWorld
Hello World!

The javadoc utility can be used to generate automatically documentation for the
class, and for all of its components. The following command creates a set of HTML files
that describe the class HelloWorld.

javadoc HelloWorld

The main output file is HelloWorld.html and it is shown in figure 1.

Figure 1: Documentation generated by javadoc

5 Basic types

Java provides ten primitive types: four types of integers, two types of floating point
numbers, characters, booleans, the special type void and strings.

The following table presents for some types the minimum and maximum values and
the size of the objects of these types:

The type boolean consists of two values: true and false. There is no equivalence
with integer values like in C.

The type void is used as the return type of a method that returns nothing, like the
method main declared in the first example:

38 Introduction to Java

type size min value max value

byte 8 bits −128 127

short 16 bits −215 215 − 1

int 32 bits −231 231 − 1

long 64 bits −263 263 − 1

float 32 bits 1.4E − 45 3.45E38

double 64 bits 4.9E − 324 1.7E308

char 16 bits unicode 0 unicode 216 − 1

public static void main(String[] args)

The type String specifies sequences of characters, and it is not related to arrays like
in C.

The type character is 16 bits long, and allows to work with the standard set of ASCII
characters, plus an enormous amount of multilingual characters.

We will consider more details of the types in following sections.

6 Variables

The variables can be declared specifying its type and name. They can be initialized at the
point of declaration, or a value can be assigned later with the assignment expression, as
shown below:

int x;
double f = 0.33;
char c = ’a’;
String s = "abcd";

x = 55;

7 Literals

The integer values can be written in decimal, hexadecimal, octal and long forms, as
shown in the next example:

int x = 34; // decimal value
int y = 0x3ef; // hexadecimal
int z = 0772; // octal
long m = 240395922L; // long

The floating point values are of type double by default. In order to specify a float
value, we have to add the letter F at the end, as shown below:

double d = 6.28; // 6.28 is a double value
float f = 6.28F; // 6.28F is a float value

39

The character values are specified in the standard C notation, with the exception that
unicode values can be specified with \u:

char c = ’a’; // character lowercase a
char d = ’\n’; // newline
char e = ’\u2122’ // unicode character (TM)

The boolean values are true and false. They are the only values that can be as-
signed to boolean variables:

boolean ready = true; // boolean value true
boolean late = false; // boolean value false

8 Constants

The declaration for constants is very similar to the declaration of variables. It has to
include the word final in front. The specification of the initial value is compulsory, as
it is shown in the examples below:

final double pi = 3.1415; // constant PI
final int maxSize = 100; // integer constant
final char lastLetter = ’z’; // last lowercase letter
final String word = ‘‘Hello’’;

Of course, once declared, their values cannot be modified.

9 Expressions

Java provides a rich set of operators in order to use them in expressions. Expressions
can be classified as arithmetic, bit level, relational, logical, and specific for strings. They
are detailed in the following subsections.

9.1 Arithmetic operators

Java provides the usual set of arithmetic operators: addition (+), subtraction (-), divi-
sion (/), multiplication (*) and modulus (%). The following application provides some
examples.

/**
* Arithmetic Application
*/

class Arithmetic {

public static void main(String[] args) {
int x = 12;
int y = 2 * x;

40 Introduction to Java

System.out.println(y);
int z = (y - x) % 5;
System.out.println(z);
final float pi = 3.1415F;
float f = pi / 0.62F;
System.out.println(f);

}
}

The output produced by the execution of the application is:

24
2
5.0669355

The last section of this application shows that the variables can be declared at any
point in the body of a method. They can then be used to store a value from this point up
to the end of the block in which they were defined.

The shorthand operators composed of the assignment operator and a binary operator
are also present. The next application presents some examples:

/**
* Shorthand operators Application
*/

class ShortHand {

public static void main(String[] args) {
int x = 12;
x += 5; // x = x + 5
System.out.println(x);
x *= 2; // x = x * 2
System.out.println(x);

}
}

The output produced by the execution of the application is:

17
34

A usual operation is to increment or decrement the value of a variable. The operators
++ and −− are provided for that. There are two versions of these operators, called prefix
and postfix. For pre-increment and pre-decrement operators, the operation is performed
first, and then the value is returned. For post-increment and post-decrement operators,
the value is returned, and then the operation is performed.

The following application presents some examples:

41

/**
* Increment operator Application
*/

class Increment {

public static void main(String[] args) {
int x = 12,y = 12;

System.out.println(x++); // x is printed and then incremented
System.out.println(x);

System.out.println(++y); // y is incremented and then printed
System.out.println(y);
}

}

The output produced by the execution of the application is:

12
13
13
13

9.2 Relational operators

Java provides the standard set of relational operators: equivalent (==), not equivalent
(!=), less than (<), greater than (>), less than or equal (<=) and greater than or equal (>=).
The relational expressions always return a boolean value.

The following example shows the value returned by some relational expressions:

/**
* Boolean operator Application
*/

class Boolean {
public static void main(String[] args) {
int x = 12,y = 33;

System.out.println(x < y);
System.out.println(x != y - 21);

boolean test = x >= 10;
System.out.println(test);

}
}

The output of the program is:

42 Introduction to Java

true
false
true

9.3 Bit level operators

Java provides a set of operators that can manipulate bits directly. Some operators do
boolean algebra on bits: and (&), or (|) and not (˜), and others perform bits shifting: shift
left (<<), shift right with sign extension (>>) and shift right with zero extension (>>>).

The binary bitwise operator and (&) performs a boolean “and” operation between the
bits of the two arguments. The binary bitwise operator or (|) performs a boolean “or”
operation between the bits of the two arguments. The unary bitwise operator not (˜)
performs a boolean “not” operation in the bits of its argument.

The binary bitwise left-shift operator (<<) shifts the bits of the first argument as many
positions as indicated by the second argument inserting 0s from the lower bits side. The
binary bitwise right-shift operator (>>>) shifts the bits of the first argument as many
positions as indicated by the second argument inserting 0s from the higher bits side.
The binary bitwise right-shift operator with sign extension (>>) shifts the bits of the first
argument as many positions as indicated by the second argument inserting 0s or 1s
from the higher bits side, maintaining the sign of the first argument. This means that
0s are inserted if the number is positive, and 1s are inserted if the number is negative.

These operators operate on integral types. If the argument is a char, short or byte,
it is promoted to int and the result is an int.

The following example shows the value returned by some boolean algebra bit level
expressions:

/**
* Boolean algebra bit level operators Application
*/

class Bits {

public static void main(String[] args) {

int x = 0x16; // 00000000000000000000000000010110
int y = 0x33; // 00000000000000000000000000110011
System.out.println(x & y);// 00000000000000000000000000010010
System.out.println(x | y);// 00000000000000000000000000110111
System.out.println(˜x); // 11111111111111111111111111101001

x &= 0xf; // 00000000000000000000000000000110
System.out.println(x); // 00000000000000000000000000000110

short s = 7; // 0000000000000111
System.out.println(˜s); // 11111111111111111111111111111000
}

43

}

The example shows that shorthand operators are also available with the composition
of the assignment operator and the binary boolean operators (& and |). The comments
specify the binary representation of the values obtained in each sentence. The last two
sentences show that even if the value of the argument to “not” is a short, the result is
an int.

The following example shows the value returned by some bit level shift expressions:

/**
* Bit level operators Application
*/

class Bits2 {

public static void main(String[] args) {
int x = 0x16; //00000000000000000000000000010110
System.out.println(x << 3);//00000000000000000000000010110000

int y = 0xfe; //00000000000000000000000011111110
y >>= 4; //00000000000000000000000000001111
System.out.println(y); //00000000000000000000000000001111

x = 9; //00000000000000000000000000001001
System.out.println(x >> 3);//00000000000000000000000000000001
System.out.println(x >>>3);//00000000000000000000000000000001

x = -9; //11111111111111111111111111110111
System.out.println(x >> 3);//11111111111111111111111111111110
System.out.println(x >>>3);//00011111111111111111111111111110
}

}

9.4 Logical operators

Java provides the logical operators: and (&&), or (||) and not (!). The logical operators
can only be applied to boolean expressions and return a boolean value.

The following example shows the value returned by some logical expressions:

/**
* Logical operators Application
*/

class Logical {

public static void main(String[] args) {
int x = 12,y = 33;
double d = 2.45,e = 4.54;

44 Introduction to Java

System.out.println(x < y && d < e);
System.out.println(!(x < y));

boolean test = ’a’ > ’z’;
System.out.println(test || d - 2.1 > 0);

}
}

The output produced by the execution of the application is:

true
false
true

9.5 String operators

Java provides a complete set of operations on Strings. We will leave most of them for a
later section, and we will now consider just the concatenation operator (+). This operator
combines two strings, and produces a new one with the characters from both arguments.

A nice behavior happens when an expression begins with a String and uses the +
operator. In this case, the next argument is converted to String.

The next program shows some examples:

/**
* Strings operators Application
*/

class Strings {

public static void main(String[] args) {

String s1 = "Hello" + "World!";
System.out.println(s1);

int i = 35,j = 44;
System.out.println("The value of i is " + i +

" and the value of j is " + j);
}

}

The output produced by the execution of the application is:

Hello World!
The value of i is 35 and the value of j is 44

Due to the fact that the expression between parenthesis starts with a String and the
operator + is used, the values of i and j are converted into strings, and then concate-
nated:

45

System.out.println("The value of i is " + i +
" and the value of j is " + j);

9.6 Casting

Java performs a automatic type conversion in the values when there is no risk for data
to be lost. This is the usual case for widening conversions, as the following example
shows:

/**
* Test Widening conversions Application
*/

class TestWide {

public static void main(String[] args) {
int a = ’x’; // ’x’ is a character
long b = 34; // 34 is an int
float c = 1002; // 1002 is an int
double d = 3.45F; // 3.45F is a float

}
}

In order to specify conversions where data can be lost (narrowing conversions) it is
necessary to use the cast operator. It consists of just the name of the type we want to
convert to, between parenthesis, as the following example shows:

/**
* Test Narrowing conversions Application
*/

class TestNarrow {

public static void main(String[] args) {
long a = 34;
int b = (int)a; // a is a long
double d = 3.45;
float f = (float)d; // d is a double

}
}

This conversions must only be used when we are certain that no data would be lost.

10 Control structures

Java provides the same set of control structures as in C. The main difference is that the
value used in the conditional expressions must be a boolean value, and cannot be an
integer. The structures are detailed in the next subsections.

46 Introduction to Java

10.1 The if control statement

The basic selection mechanism is the statement if, which decides based on the value of
a boolean expression, the statement that has to be executed. It has two forms:

if (boolean-expression)
statement

and:

if (boolean-expression)
statement

else
statement

A statement can be replaced by one sentence or by a compound statement consisting
of a set of sentences surrounded by curly braces.

The following application presents an example of the use of the if selection. The
application prints the words “letter”, “digit” or “other character” depending on the value
of the variable c:

/**
* If control statement Application
*/

class If {

public static void main(String[] args) {

char c = ’x’;

if ((c >= ’a’ && c <= ’z’) || (c >= ’A’ && c <= ’Z’))
System.out.println("letter: " + c);

else if (c >= ’0’ && c <= ’9’)
System.out.println("digit: " + c);

else {
System.out.println("the character is: " + c);
System.out.println("it is not a letter");
System.out.println("and it is not a digit");

}
}

}

The output produced by the execution of the application is:

letter: x

47

10.2 Iteration control statements

Java provides the standard while and do-while iteration control statements. They
allow the repetition of a statement (or compound statement) while a boolean expression
evaluates to true. Their forms are:

while (boolean-expression)
statement

and:

do
statement

while (boolean-expression);

Note that the while structure can execute the statement zero or more times, and
the do-while structure can execute the statement one or more times, depending on the
value of the boolean expression.

The following example prints the number of times it is necessary to increment a
variable in a certain step from an initial value till it goes over a limit:

/**
* While control statement Application
*/

class While {

public static void main(String[] args) {
final float initialValue = 2.34F;
final float step = 0.11F;
final float limit = 4.69F;

float var = initialValue;
int counter = 0;

while (var < limit) {
var += step;
counter++;

}
System.out.println("It is necessary to increment it "

+ counter + " times");
}

}

The output produced by the execution of the application is:

It is necessary to increment it 22 times

48 Introduction to Java

Java provides a third type of iteration: the for loop. Its form is:

for(initialization;boolean-expression;step)
statement;

The initialization expression is executed first, and then the statement is executed
while the boolean expression evaluates to true. Before the evaluation of the boolean
expression, the step expression is evaluated.

The next example does the same as the previous one, but using the for loop:

/**
* For control statement Application
*/

class For {

public static void main(String[] args) {
final float initialValue = 2.34F;
final float step = 0.11F;
final float limit = 4.69F;

int counter = 0;

for (float var = initialValue;var < limit;var += step)
counter++;

System.out.println("It is necessary to increment it "
+ counter + " times");

}
}

The scope of the variable var defined in the first expression of the for loop, is the
body of the loop, the boolean expression and the step expression. The output of the
application is, of course, the same as the output of the previous example.

10.3 break and continue

The statements break and continue provides control inside loops. break quits the loop,
and continue starts a new iteration, by evaluating the boolean expression again. In the
case of the for loop, the step expression is executed before.

The next example uses break and continue:

/**
* Break and Continue control statement Application
*/

class BreakContinue {

49

public static void main(String[] args) {
int counter = 0;

for (counter = 0;counter < 10;counter++) {

// start a new iteration if the counter is odd
if (counter % 2 == 1) continue;

// abandon the loop if the counter is equal to 8
if (counter == 8) break;

// print the value
System.out.println(counter);

}
System.out.println("done.");

}
}

The output produced by the execution of the application is:

0
2
3
6
done.

Note that the boolean expression of the first if statement evaluates to true when
the value of the counter is odd. In this case, the continue statement finishes the
current execution of the body of the loop, executing the step expression (counter++), and
evaluating again the boolean expression (counter < 10). If this expression evaluates to
true, the body of the loop is executed again.

The break statement breaks out the execution of the loop when the counter reaches
the value 8, causing the control to be transfered to the last sentence of the program.

break and continue can be used combined with a label, but we will not be covering
this use in this lecture notes.

10.4 Switch control statement

The switch control structure selects pieces of code to be executed based on the value of
an integral expression. Its form follows:

switch (integral-expression) {

case integral-value: statement; [break;]
case integral-value: statement; [break;]
case integral-value: statement; [break;]

50 Introduction to Java

[default: statement;]
}

The square brackets surrounds optional statements. The integral expression is eval-
uated and the statement that has a value that matches the value of the expression is
executed. If the break statement is present, the switch statement is abandoned. if
not, the next statements are executed independently of their integral value, till a break
statement is found, or the end of the switch body is reached.

The integral expression can be any expression that returns a value convertible to int.
This means that it can be char, short, byte or int.

The following example counts the number of days in a year. Note that the answer
would be completely different if break statements are removed.

/**
* Switch control statement Application
*/

class Switch {

public static void main(String[] args) {
boolean leapYear = true;
int days = 0;

for(int month = 1;month <= 12;month++) {

switch(month) {
case 1: // months with 31 days
case 3:
case 5:
case 7:
case 8:
case 10:

case 12:
days += 31;
break;

case 2: // February is a special case
if (leapYear)

days += 29;
else

days += 28;
break;

51

default: // it must be a month with 30 days
days += 30;
break;

}
}
System.out.println("number of days: " + days);

}
}

The output produced by the execution of the application is:

number of days: 366

11 Arrays

In Java it is possible to declare arrays that can be used to store a number of elements of
the same type. The following are some examples of declarations of arrays:

int[] a; // an unitialized array of integers
float[] b; // an unitialized array of floats
String[] c; // an unitialized array of Strings

The declaration does not specify a size for the arrays. In fact, the declaration does
not even allocate space for them.

The size can be specified by initializing the arrays in the declaration:

int[] a = {13,56,2034,4,55}; // size: 5
float[] b = {1.23F,2.1F}; // size: 2
String[] c = {"Java","is","great"}; // size: 3

Other possibility to allocate space for arrays consists of the use of the operator new.
In this case, the size of the array can be computed even at execution time:

int i = 3,j = 5;
double[] d; // unitialized array of doubles

d = new double[i+j]; // array of 8 doubles

When the new operator is used, the memory is assigned dynamically. The components
of the array are initialized with default values: 0 for numeric type elements, ’\0’ for
characters and null for references (more about that later).

The array can be accessed by using an integer index that can take values from 0 to
the size of the array minus 1. For example, it is possible to modify the third element (the
one with index 2) of the first array in this section with the following assignment:

a[2] = 1000; // modify the third element of a

52 Introduction to Java

Every array has a member called length that can be used to get the length of the
arrays. The next application shows examples on the use of arrays:

/**
* Arrays Application
*/

class Arrays {

public static void main(String[] args) {
int[] a = {2,4,3,1};

// compute the summation of the elements of a
int sum = 0;
for(int i = 0;i < a.length;i++)
sum += a[i];

// create an array of floats with this size
float[] d = new float[sum];

// assign some values
for(int i = 0;i < d.length;i++)
d[i] = 1.0F / i;

// print the values in odd positions
for(int i = 1;i < d.length;i += 2)
System.out.println("d[" + i + "]=" + d[i]);

}
}

The output produced by the execution of the application is:

d[1]=1.0
d[3]=0.33333334
d[5]=0.2
d[7]=0.14285715
d[9]=0.11111111

It is also possible to declare multidimensional arrays with a similar approach. As an
example, the following line declares a matrix of integers that can be used to store 50
elements, organized in 10 rows of 5 columns.

int[][] a = new int[10][5];

53

12 Command line arguments

We have seen that the method main has to be defined as follows:

public static void main(String[] args)

It takes one argument that is defined as an array of strings. Through this array, the
program can get the command line arguments, typed when the program is submitted
to the java virtual machine for execution. The following application prints all of its
command line arguments:

/**
* Command Line Arguments Application
*/

class CommandArguments {

public static void main(String[] args) {

for(int i = 0;i < args.length;i++)
System.out.println(args[i]l);

}
}

Sample executions of the application follows:

java CommandArguments Hello World
Hello
World
java CommandArguments
java CommandArguments I have 25 cents
I
have
25
cents

Even if, in the last example, the argument 25 is an integer, it is considered as the
string “25”, which is stored in args[2]. It is possible to convert a string that contains a
valid integer into an int value by using the class method parseInt that belongs to the
class Integer (more details on that later).

The following application accepts two arguments in the command line. They must be
integers. The application prints the result of the addition of the two arguments.

/**
* Add Application
*/

54 Introduction to Java

class Add {

public static void main(String[] args) {

if (args.length != 2) {
System.out.println("Error");
System.exit(0);

}
int arg1 = Integer.parseInt(args[0]);
int arg2 = Integer.parseInt(args[1]);

System.out.println(arg1 + arg2);
}

}

Sample executions of the application follows:

java Add 2 4
6
java Add 4
Error
java Add 33 22
55

Note the use of the method exit that belongs to the class System. It can be used to
terminate the execution of the application.

13 Classes

A class is defined in Java by using the class keyword and specifying a name for it. For
example, the sentence:

class Book {

}

declares a class called Book. New instances of the class can be created with new, as
follows:

Book b1 = new Book();
Book b2 = new Book();

or in two steps, with exactly the same meaning:

Book b3;

b3 = new Book();

55

As you can imagine, this class is not very useful since it contains nothing.
Inside a class it is possible to define data members, usually called fields, and member

functions, usually called methods. The fields are used to store information and the
methods are used to communicate with the instances of the classes.

Let’s suppose we want to use instances of the class Book to store information on the
books we have, and particularly, we are interested in storing the title, the author and
the number of pages of each book. We can then add three fields to the class as follows:

class Book {
String title;
String author;
int numberOfPages;

}

Now, each instance of this class will contain three fields. The fields can be accessed
with the dot notation, which consists of the use of a dot (.) between the name of the
instance and the name of the field we want to access.

The next application shows how to create an instance and how to access these fields:

/**
* Example with books Application
*/

class Book {
String title;
String author;
int numberOfPages;

}

class ExampleBooks {

public static void main(String[] args) {
Book b;

b = new Book();
b.title = "Thinking in Java";
b.author = "Bruce Eckel";
b.numberOfPages = 1129;

System.out.println(b.title + " : " + b.author +
" : " + b.numberOfPages);

}
}

The output produced by the execution of the application is:

Thinking in Java : Bruce Eckel : 1129

56 Introduction to Java

13.1 Constructors

The constructors allow the creation of instances that are properly initialized. A construc-
tor is a method that has the same name as the name of the class to which it belongs,
and has no specification for the return value, since it returns nothing.

The next application provides a constructor called Book (there is no other option) that
initialize all fields of an instance of Book with the values passed as arguments:

/**
* Example with books Application (version 2)
*/

class Book {
String title;
String author;
int numberOfPages;

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;

}
}

class ExampleBooks2 {

public static void main(String[] args) {
Book b;

b = new Book("Thinking in Java","Bruce Eckel",1129);

System.out.println(b.title + " : " + b.author +
" : " + b.numberOfPages);

}
}

The constructor is called when the instance is created. The output produced by the
execution of this application is:

Thinking in Java : Bruce Eckel : 1129

Java provides a default constructor for the classes. This is the one it was called in
the example ExampleBooks before, without arguments:

b = new Book();

This default constructor is only available when no constructors are defined in the
class. This means, that in the last example ExampleBooks2 it is not possible to create
instances of books by using the default constructor.

57

It is possible to define more than one constructor for a single class, only if they have
different number of arguments or different types for the arguments. In this way, the
compiler is able to identify which constructor is called when instances are created.

The next application adds one extra field for books: the ISBN number. The previously
defined constructor is modified in order to assign a proper value to this field. A new
constructor is added in order to initialize all the fields with supplied values. Note that
there is no problem to identify which constructor is called when instances are created:

/**
* Example with books Application (version 3)
*/

class Book {
String title;
String author;
int numberOfPages;
String ISBN;

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}

Book(String tit,String aut,int num,String isbn) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = isbn;

}
}

class ExampleBooks3 {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
System.out.println(b1.title + " : " + b1.author +

" : " + b1.numberOfPages + " : " + b1.ISBN);

b2 = new Book("Thinking in Java","Bruce Eckel",1129,
"0-13-027363-5");

System.out.println(b2.title + " : " + b2.author +

58 Introduction to Java

" : " + b2.numberOfPages + " : " + b2.ISBN);
}

}

The output of the execution of the application is:

Thinking in Java : Bruce Eckel : 1129 : unknown
Thinking in Java : Bruce Eckel : 1129 : 0-13-027362-5

13.2 Methods

A method is used to implement the messages that an instance (or a class) can receive.
It is implemented as a function, specifying arguments and type of the return value. It is
called by using the dot notation also.

The following is the same application as the one defined before, but with a method
used to get the initials of the author’s name of an instance of a Book:

/**
* Example with books Application (version 4)
*/

class Book {
String title;
String author;
int numberOfPages;
String ISBN;

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}

Book(String tit,String aut,int num,String isbn) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = isbn;

}

public String getInitials() {
String initials = "";

for(int i = 0;i < author.length();i ++) {
char currentChar = author.charAt(i);

59

if (currentChar >= ’A’ && currentChar <=’Z’) {
initials = initials + currentChar + ’.’;

}
}
return initials;

}
}

class ExampleBooks4 {

public static void main(String[] args) {
Book b;

b = new Book("Thinking in Java","Bruce Eckel",1129);
System.out.println("Initials: " + b.getInitials());

}
}

The output of the execution of the application is:

Initials: B.E.

The prototype of the method getInitials() is:

public String getInitials()

The method is defined public so it can be called from other classes (more details on
that later). It takes no arguments and returns a String.

It is called by using the dot notation:

System.out.println("Initials: " + b.getInitials());

Note that no arguments are passed. In object oriented terminology, we must say that
the message “getInitials” is sent to the object “b”. The object “b” is the receptor of the
message.

The method is implemented as follows:

public String getInitials() {
String initials = "";

for(int i = 0;i < author.length();i ++) {
char currentChar = author.charAt(i);
if (currentChar >= ’A’ && currentChar <=’Z’) {
initials = initials + currentChar + ’.’;

}
}
return initials;

}

60 Introduction to Java

All references to author correspond to references to the field called author in the
receptor of the message, in this case, the instance b.

The method creates an empty string in the variable initials, and traverses the field
author searching for uppercase letters. If an uppercase letter is found, it is added to the
string initials together with a dot.

Note the use of the methods length and charAt(int), that can be used to get the
length of a string, and the character in a specified position into the string.

The next example defines an array of books, and initializes it with data from three
real books. After that, the method getInitials is called on the three instances. This
should clarify the fact that even if the method getInitials processes data stored in
author, it corresponds to the specific field of the receptor of the message.

class ExampleBooks5 {

public static void main(String[] args) {
Book[] a;

a = new Book[3];
a[0] = new Book("Thinking in Java","Bruce Eckel",1129);
a[1] = new Book("Java in a nutshell","David Flanagan",353);
a[2] = new Book("Java network programming",

"Elliotte Rusty Harold",649);

for(int i = 0;i < a.length;i++)
System.out.println("Initials: " + a[i].getInitials());

}
}

The output of the execution of the application is:

Initials: B.E.
Initials: D.F.
Initials: E.R.H.

13.3 Equality and equivalence

The usual operator for testing equality (==) can be a bit confusing when it is used to
compare objects. The next application defines two books with the same values and then
compares them:

class ExampleBooks6 {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = new Book("Thinking in Java","Bruce Eckel",1129);

61

if (b1 == b2)
System.out.println("The two books are the same");

else
System.out.println("The two books are different");

}
}

The output of the execution of the application is:

The two books are different

The fact is that the equivalent operator (==) checks if the two objects passed as ar-
guments are the same object, and not if they have the same values. Things are different
if we write the application as follows:

class ExampleBooks6a {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = b1;

if (b1 == b2)
System.out.println("The two books are the same");

else
System.out.println("The two books are different");

}
}

The output of the execution of the application is:

The two books are the same

Now, b1 and b2 are references to the same object. The expression b1 == b2 returns
true, because both variables refer to the same object.

In order to have the possibility to test for equality in the sense that two objects are
equal if both have the same values, it is necessary to define a method. It is usual practice
to call it equals. It can be defined inside the class Book as follows:

public boolean equals(Book b) {
return (title.equals(b.title) && author.equals(b.author) &&

numberOfPages == b.numberOfPages &&
ISBN.equals(b.ISBN));

}

62 Introduction to Java

The method equals receives one reference to Book as an argument and returns a
boolean value. This value is computed as the result of an expression that compares
each field individually.

The next application tests equality of books:

class ExampleBooks7 {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = new Book("Thinking in Java","Bruce Eckel",1129);

if (b1.equals(b2))
System.out.println("The two books are the same");

else
System.out.println("The two books are different");

}
}

The output of the execution of the application is:

The two books are the same

13.4 Static data members

The class is used as a model to create instances. Every instance of a Book has four data
members (title, author, numberOfPages and ISBN), and they can be used to store
values in one instance independently of the values stored in other instances.

Static data members (or class variables) are fields that belong to the class and do not
exist in each instance. It means that there is always only one copy of this data member,
independent of the number of the instances that were created.

The next example defines a static data member called owner that will be used to store
the name of the owner of the books. We assume that all the books that we are going to
define in an application will belong to the same person. In this case, it is not necessary
to have one data member in each instance (book) to store the name, because it must be
the same in all of them. The example also defines two methods: setOwner and getOwner
that will be used to set and get the owner of all books respectively:

/**
* Example with books Application (version 8)
*/

class Book {
String title;
String author;
int numberOfPages;

63

String ISBN;
static String owner;

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}

Book(String tit,String aut,int num,String isbn) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = isbn;

}

public String getInitials() {
String initials = "";

for(int i = 0;i < author.length();i ++) {
char currentChar = author.charAt(i);
if (currentChar >= ’A’ && currentChar <=’Z’) {
initials = initials + currentChar + ’.’;

}
}
return initials;

}

public boolean equals(Book b) {
return (title.equals(b.title) && author.equals(b.author) &&

numberOfPages == b.numberOfPages &&
ISBN.equals(b.ISBN));

}

public void setOwner(String name) {
owner = name;

}

public String getOwner() {
return owner;

}
}

class ExampleBooks8 {

64 Introduction to Java

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = new Book("Java in a nutshell","David Flanagan",353);
b1.setOwner("Carlos Kavka");

System.out.println("Owner of book b1: " + b1.getOwner());
System.out.println("Owner of book b2: " + b2.getOwner());

}
}

The main application creates two books, and then set the owner by sending the
message setOwner to the object b1. After that it prints the owner of both books. The
output of the execution of the application is:

Carlos Kavka
Carlos Kavka

It can be seen that even if the owner was set by sending a message to the object b1,
the owner of b2 was modified. In fact, there is only one data member called owner that
can be accessed with the methods through all instances of Books.

Static data members can be used for communication between different instances of
the same class, or to store a global value at the class level.

13.5 Static methods

With the same idea of the static data members, it is possible to define class methods or
static methods. These methods do not work directly with instances but with the class.
As an example, we want to define a method called description to provide information
about the class Book. In this sense, the information returned by this method must be
the same, independent of the instance. The method can be defined inside the class Book
in this way:

public static String description() {
return "Book instances can store information on books";

}

Note the word static before the specification of the return value. The application can
then call the method as follows:

class ExampleBooks9 {

public static void main(String[] args) {

Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);

65

System.out.println(b1.description());
System.out.println(Book.description());

}
}

The output of the execution of the application is:

Book instances can store information on books
Book instances can store information on books

A static method can be called by sending the message to the class, or by sending the
message to any instance.

This method can only access static variables. In this case, the only variable that can
be accessed from the method description is the variable owner.

13.6 A static application

All the examples we have seen till now define a class that contains a static method called
main, where usually instances from other classes are created.

It is possible to define a class with only static methods and static data members, as
the following example shows:

/**
* All static class Application
*/

import java.io.*;

class AllStatic {
static int x;
static String s;

public static String asString(int aNumber) {
return "" + aNumber;

}

public static void main(String[] args) {

x = 165;
s = asString(x);
System.out.println(s);

}
}

This application defines two static fields x and s. It also contains two static methods
asString and main.

66 Introduction to Java

The method main calls the method asString. This can be done since both of them
are static, and they operate only on static fields. There is no need to create an instance
of this class in order to send the messages.

In some sense, when only static fields and methods are defined, the class looks like
a standard C program, with functions and global data.

It is interesting to note the way in which the function asString converts an integer
value to a string. It uses the operator + and the property that when the first argument
is a string, the next one is converted to string.

13.7 Data members initialization

All data members in an object are guaranteed to have an initial value. There exists a
default value for all primitive types, which is defined in the following table:

type default value

byte 0
short 0
int 0
long 0
float 0.0F
double 0.0
char ’\0’
boolean false

All references to objects gets an initial value of null. The following application shows
an example:

/**
* InitialValues Application
*/

class Values {
int x;
float f;
String s;
Book b;

}

class InitialValues {

public static void main(String[] args) {

Values v = new Values();

System.out.println(v.x);
System.out.println(v.f);

67

System.out.println(v.s);
System.out.println(v.b);

}
}

The output of the execution of the application is:

0
0.0
null
null

The values can be initialized also in the constructor, or even by calling methods in
the declaration point, as the following example shows:

/**
* InitialValues Application (version 2)
*/

class Values {
int x = 2;
float f = inverse(x);
String s;
Book b;

Values(String str) {
s = str;

}

public float inverse(int value) {
return 1.0F / value;

}
}

class InitialValues2 {

public static void main(String[] args) {

Values v = new Values("hello");

System.out.println(v.x);
System.out.println(v.f);
System.out.println(v.s);
System.out.println(v.b);

}
}

68 Introduction to Java

The output of the execution of the application is:

2
0.5
hello
null

14 The keyword “this”

The keyword this, when used inside a method, refers to the receiver object. It has two
main uses: it can be used to return a reference to the receiver object from a method and
it can be used to call constructors from other constructors.

For example, the method setOwner in the previous Book class could have been de-
fined as follows:

public Book setOwner(String name) {
owner = name;
return this;

}

The method returns a reference to Book, and the value returned is a reference to the
receiver object. With this definition of the method, it can be used as follows:

Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);
System.out.println(b1.setOwner("Carlos Kavka").getInitials());
System.out.println(b1.getOwner());

The message setOwner is sent to b1. The method returns a reference to the receptor
object, which is b1. Then the message getInitials is sent to b1.

The output of the execution of this example is:

B.E.
Carlos Kavka

The other use of this is to call from one constructor another constructor. For exam-
ple, in the definition of the class Book there were two constructors:

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}

Book(String tit,String aut,int num,String isbn) {

69

title = tit;
author = aut;
numberOfPages = num;
ISBN = isbn;

}

The second one can be defined in a shorter way by calling the first constructor. This
can be done as follows:

Book(String tit,String aut,int num,String isbn) {
this(tit,aut,num);
ISBN = isbn;

}

The effect is exactly the same. The first constructor is called, and then the value in
isbn is assigned to the data member ISBN.

When this is used in this way, it must be called as the first action of the constructor.
The complete implementation of the Book class, with even more methods is included

in section A.

15 An example: the complex number class

Let’s suppose we want to define a complex number class that allows to work with com-
plex numbers in our applications. The following application shows an example of the
use of this Complex class, that we want to define:

/**
* Test Complex class Application
*/

class TestComplex {

public static void main(String[] args) {

Complex a = new Complex(1.33,4.64);
Complex b = new Complex(3.18,2.74);

Complex c = a.add(b);
System.out.println("a+b = " + c.getReal() + " " +

c.getImaginary());

Complex d = c.sub(a);
System.out.println("c+d = " + d.getReal() + " " +

d.getImaginary());

}
}

70 Introduction to Java

This application creates two complex number a and b with some initial values in their
real and imaginary parts. A complex number c is created as the addition of a and b, and
then its real and imaginary parts are printed. After that, a complex number d is created
as the subtraction of a from c. This number is printed also.

The output of the execution of this application should be something like:

a+b 4.51 7.38
c+d 3.18 2.74

The class complex should have two data members to store the real and the imaginary
parts of the complex numbers. We have to define a constructor that can initialize both
parts from the arguments, and methods to get the real and imaginary part of the number.
This can be done as follows:

/**
* Complex Number class
*/

public class Complex {
double real; // real part
double im; // imaginary part

/** This constructor creates a complex number from its real
* and imaginary part.
*/

Complex(double r,double i) {
real = r;
im = i;

}

/** This method returns the real part
*/

public double getReal() {
return real;

}

/** This method returns the imaginary part
*/

public double getImaginary() {
return im;

}
}

We have to define two specific methods in order to implement the addition and sub-
traction of complex numbers. From the example, we can see that both methods must

71

take one argument: the complex number to be added to or subtracted from the number
that is the receptor of the message. For example, in the following expression, the method
sub must subtract from the complex number c the complex number a:

Complex d = c.sub(a);

Note that the methods have to create a new complex number and return it as a result.
They do not have to modify the receptor or the complex number passed as argument.
They can be implemented as follows:

/** This method returns a new complex number which is
* the result of the addition of the receptor and the
* complex number passed as argument
*/

public Complex add(Complex c) {
return new Complex(real + c.real,im + c.im);

}

/** This method returns a new complex number wich is
* the result of the substraction of the receptor and the
* complex number passed as argument
*/

public Complex sub(Complex c) {
return new Complex(real - c.real,im - c.im);

}

Note that we use new in order to create a new instance of a complex number. It is
initialized by calling the constructor, and then it is returned.

Let’s suppose we want to define a method addReal that increments just the real part
of the receptor of the message with the value passed as argument. Note that this method
must modify the receptor, something that add and sub were not doing. An example of
its use could be:

a.addReal(2.0);

By considering our previous example, we should get the values 3.33 and 4.64 as the
real and imaginary parts of a after the execution of the method. Imagine that we would
like to be able to use it also in this way:

a.addReal(2.0).addReal(3.23);

In this case we want to add first 2.0 to the real part of a, and then 3.23. In this case,
we need that the method addReal returns a reference to the receptor object (or current
object), so the next call to addReal can operate on the same complex number.

As this is a reference to the receptor object when it is used in a method, this can be
done as follows:

72 Introduction to Java

/** This method increments the real part by a value
* passed as argument. Note that the method modifies
* the receptor
*/

public Complex addReal(double c) {
real += c;
return this;

}

We must be careful if we want to create one complex number as a copy of the other,
since the next assignment expression will not do it:

Complex e = a;

This will make just e to be a reference to the same object referenced by a (see sec-
tion 13.3). This means that if we increment e, then a will be incremented also.

In order to create a new complex number, we should use a constructor, as follows:

Complex e = new Complex(a);

It is necessary then to define a constructor that takes one complex number as argu-
ment. An interesting way to define it follows:

/** This constructor creates a complex number as a copy
* of the complex number passed as argument
*/

Complex(Complex c) {
this(c.real,c.im);

}

Note that this constructor takes a complex number as argument, and calls (through
this) the constructor defined previously.

The complete implementation of the Complex class, with even more methods is in-
cluded in section C.

16 Inheritance

Inheritance allows to define new classes by reusing other classes. It is possible to define
a new class (called subclass) by saying that the class must be “like” other class (called
base class) by using the word extends followed by the name of the base class. The
definition of the new class specifies the differences with the base class.

Let’s suppose we want to extend the definition of the class Book we have defined be-
fore to be useful to store information on scientific books. We can add two data members
to the definition of the class Book in order to store the area of science they cover and a
boolean data member to identify proceedings from normal scientific books:

73

class ScientificBook extends Book {
String area;
boolean proceeding = false;

}

The instances of ScientificBook will have six data members, the four inherited
from the base class Book and the two new defined data members: title, author,
numberOfPages, ISBN, area and proceeding. Note that by default a scientific book
is not a proceeding.

16.1 Constructors

We can define a constructor for the class as follows:

ScientificBook(String tit,String aut,int num,String isbn,
String a) {

super(tit,aut,num,isbn);
area = a;

}

The constructor defined above has the same parameters as the constructor of the
class Book plus one parameter for the area. As there is one constructor that can be used
to initialize the first four data member in the base class Book, it is not necessary to do it
again here. The constructor of the base class can be called through super.

By using this constructor, a scientific book can be defined as follows:

ScientificBook sb;

sb = new ScientificBook("Neural Networks, A Comprehensive
Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

The method super must be the first instruction in the body of the constructor. If it is
not used, then the Java compiler inserts a call to super without parameters. If there is
no such constructor, the compiler will indicate an error.

By extending classes it is possible to define a complete hierarchy of classes. Every
class can add some data members and methods.

16.2 Methods

New methods can be defined in the subclass to specify the behavior of the objects of this
class. However, methods defined above in this hierarchy can also be called.

When a message is sent to an object, the method is searched for in the class of the
receptor object. If it is not found then it is searched for higher up in the hierarchy of
classes till it is found.

The inheritance can then be used to reuse the code defined in other related classes.
In some cases, the behavior of a method has to be changed. In this case, the method can

74 Introduction to Java

be redefined. As the search of a method starts from the receptor class, the most specific
method is always selected.

In our example, we can certainly reuse the method getInitials from the class
ScientificBook, since it works over the data member author, which is common to
instances from both classes.

Without defining it for scientific books, we can do something like:

System.out.println(sb.getInitials());

where sb is the instance of ScientificBook defined before.
We cannot use the method equals since in order to check if two scientific books are

equal we have to consider now two more data members. However, we can reuse the
checking of the four data members from the class Book and just write the comparison
for the new data members as follows:

public boolean equals(ScientificBook b) {
return super.equals(b) && area.equals(b.area) &&

proceeding == b.proceeding;
}

The method equals compares the data members area and proceeding. The com-
parison of the other four data members is done by calling the method equals defined in
the base class by using super.

In this way, this method equals redefine the method with the same name defined in
the base class. However, the method equals defined in the base class is called as part
of the definition of this method. When super is used to call base class methods, it can
be used in any place of the body of the method.

It should be clear that the method could have been defined in the following way since
all data members are accessible from this method:

public boolean equals(ScientificBook b) {
return (title.equals(b.title) && author.equals(b.author) &&

numberOfPages == b.numberOfPages &&
ISBN.equals(b.ISBN) && area.equals(b.area) &&
proceeding == b.proceeding;

}

Of course, the previous version reuses code defined before.
It is not necessary to call redefined method from the subclass. For example, a method

description can be defined to return a value independently of the value returned by
the method with the same name in the base class. It can be defined as:

public static String description() {
return "ScientificBook instances can store information" +

" on scientific books";
}

75

New methods can be defined. For example, we can define methods to set the pro-
ceeding condition and to check it, as follows:

public void setProceeding() {
proceeding = true;

}

public boolean isProceeding() {
return proceeding;

}

Note that it is possible to send a message setProceeding to an instance of the class
ScientificBook but it is not possible to send it to an instance of Book.

The next application is an example of the use of scientific books:

/**
* Test Scientific Book Class
*/

class TestScientificBooks {
public static void main(String[] args) {

ScientificBook sb1,sb2;

sb1 = new ScientificBook("Neural Networks, A Comprehensive"+
" Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

sb2 = new ScientificBook("Neural Networks, A Comprehensive"+
" Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

sb2.setProceeding();

System.out.println(sb1.getInitials());
System.out.println(sb1.equals(sb2));
System.out.println(sb2.description());

}
}

The output of the execution of the application is:

S.H.
false
ScientificBook instances can store information on
scientific books

The complete ScientificBook class is provided in section B.

76 Introduction to Java

16.3 Instanceof and getClass methods

The method instanceof returns a boolean value indicating if an object is an instance of
a specified class. The method getClass returns a string that contains the name of the
class the object is instance of.

As an example, the following application shows an interesting result in the context of
inheritance:

/**
* Test Class Application
*/

class TestClass {

public static void main(String[] args) {
Book b1;
ScientificBook sb1;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);

sb1 = new ScientificBook("Neural Networks, A Comprehensive"+
" Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

System.out.println(b1.getClass());
System.out.println(sb1.getClass());
System.out.println(b1 instanceof Book);
System.out.println(sb1 instanceof Book);
System.out.println(b1 instanceof ScientificBook);
System.out.println(sb1 instanceof ScientificBook);

}
}

The output of the execution of the application is:

class Book
class ScientificBook
true
true
false
true

The two calls to getClass return the name of the class the receptor objects are
instances of. When calling instanceof, it is true that b1 is an instance of Book and not
an instance of a ScientificBook, and that sb1 is an instance of ScientificBook.

It is interesting to note that sb1 is also an instance of Book. In fact, every object is
an instance of its class, and an instance of all classes that are higher up in the class

77

hierarchy. This is what allows instances of scientific books to accept messages that
corresponds to methods defined for books.

17 Packages

A package is a structure in which classes can be organized. A package can contain any
number of classes, usually related by purpose or by inheritance.

The standard classes in the system are organized in packages. For example, Java
provides a class Date that can be used to work with dates in our classes. It is defined in
the package java.util. In order to specify to the Java compiler that we are interested
in the use of this class, we have to use the import statement:

import java.util.Date;

It is usual to specify just the name of the package, and not the name of the class, in
order to tell the compiler that we are interested in the use of some classes defined in the
package:

import java.util.*;

An application that prints the current date is the following:

/**
* Test Date Class
*/

import java.util.*;

class TestDate {

public static void main(String[] args) {

System.out.println(new Date());
}

}

The output of the application (when I was executing it) was:

Thu Nov 08 19:14:18 GMT-02:00 2001

New packages can be defined by using the statement package with the name of the
package we are going to define as argument:

package mypackage;

This must be the first non commented statement in our file. The classes defined in
this file will belong to the package mypackage. There can also be other files that define
classes for the same package. They can be imported by other classes with the import
statement.

There is a name convention, that we will not be covering here, in order to define
packages that can be shared with the Java community.

78 Introduction to Java

18 Access control

It is possible to control the access to methods and variables from other classes with
three so called modifiers: public, private and protected. There exists a default
access which is the one we have been using in most examples, that allows full access
from all classes that belong to the same package.

Full access means that it is possible to access data members and methods from
another class. For example, it is possible to set the proceeding condition of a scientific
book from the class TestScientificBook as follows:

sb1.setProceeding();

or by just accessing the data member:

sb1.proceeding = true;

Usually we do not want direct access to a data member in order to guarantee encap-
sulation. In this case we can use the modifier private. This modifier guarantees that
the data member can be accessed only from methods that belong to this class.

For example, the class ScientificBook can be defined in this way:

class ScientificBook extends Book {
private String area;
private boolean proceeding = false;

}

In this case, the direct access to the data member proceeding is not allowed from
other classes, and the condition of a scientific book to be a proceeding can only be
asserted by sending the message setProceeding.

The same applies to methods: A private method can only be called from other meth-
ods in its own class.

Usually most of the data members are defined private, and they can only be modified
by the methods. This is in fact the important property of the abstract data types (ADT)
called encapsulation.

The public modifier allows full access from all other classes without restrictions.
This is the usual way in which methods are defined so the messages they implement can
be sent to objects of its class from all other classes.

The protectedmodifier allows access to data members and methods from subclasses
and from all classes in the same package.

19 final and abstract

Two other modifiers can be used to define the methods and the classes: final and
abstract.

A final method cannot be redefined in a subclass. It means that when a method is
defined final, it is not possible for the subclasses to redefine its meaning.

79

A final class does not allow subclassing. It means that it is not possible to define
subclasses of a final class.

An abstract method has no body, and it must be redefined in a subclass. It means
that it is possible to define classes that force subclasses to define a specific method.

An abstract class is a class that cannot be instantiated. It means that it is not
possible to define instances of this class. However, as subclassing is possible, instances
can be created of subclasses of abstract classes.

We will see now an example that uses these concepts. Let’s suppose we want to use
in our application different types of input output boards. In particular, we have a serial
board and an Ethernet network board. We have to define two classes, one for each type
of board.

However, we can see that there are some data that is common to all input output
boards: system name, counter for errors, etc. and some operations that are the same:
initialization, reading, writing, close, etc.

A good design option is to define a class called IOBoard that contains data members
and methods that are common to all types of input output boards. Then subclasses can
be defined in order to implement the specific input output boards.

This IOBoard class must be abstract, in the sense, that we will not be creating in-
stances of this general input output board, but instances of its subclasses.

It is important to note that it is not possible to define the real code for communica-
tion in the abstract class IOBOard since it is general, and we cannot assume a specific
hardware. The implementation dependent code must be defined in the subclasses.

In order to force all subclasses to define methods for the required behavior of an input
output board, these methods have to be defined as abstract methods.

The method used to increment the counter of errors in the abstract class IOBoard
can be defined final, since no subclass must modify its behavior.

The next is the code of the class IOBoard defined as it was discussed above:

/**
* IO board Class
*/

abstract class IOBoard {
String name;
int numErrors = 0;

IOBoard(String s) {
System.out.println("IOBoard constructor");
name = s;

}

final public void anotherError() {
numErrors++;

}

final public int getNumErrors() {

80 Introduction to Java

return numErrors;
}
abstract public void initialize();
abstract public void read();
abstract public void write();
abstract public void close();

}

A subclass of IOBoard cannot redefine the method anotherError since it was de-
clared final. It is not possible to create an instance of IOBoard since it was declared
abstract. This means that it is not possible to do something like:

IOBoard b = new IOBoard("my board"); // wrong !!!!

The subclass serial board can be defined as follows:

/**
* IO serial board Class
*/

class IOSerialBoard extends IOBoard {
int port;

IOSerialBoard(String s,int p) {
super(s);
port = p;
System.out.println("IOSerialBoard constructor");

}

public void initialize() {
System.out.println("initialize method in IOSerialBoard");
// specific code to initialize a serial board

}

public void read() {
System.out.println("read method in IOSerialBoard");
// specific code to read from a serial board

}

public void write() {
System.out.println("write method in IOSerialBoard");
// specific code to write to a serial board

}

public void close() {
System.out.println("close method in IOSerialBoard");
// specific code to close a serial board

81

}
}

This class defines a constructor that takes the name of the board, and a port as
arguments. The port corresponds to a data member defined in this class, the name is
the value to be stored in the field defined in the base class. Note that the constructor
calls the constructor of the base class through super.

The methods just print a message identifying themselves, and return, since we are
not going to define communication code in this example.

The subclass IOEthernetBoard can be defined as follows:

/**
* IOEthernetBoard Class
*/

class IOEthernetBoard extends IOBoard {
long networkAddress;

IOEthernetBoard(String s,long netAdd) {
super(s);
networkAddress = netAdd;
System.out.println("IOEthernetBoard constructor");

}

public void initialize() {
System.out.println("initialize method in IOEthernetBoard");
// specific code to initialize an ethernet board

}

public void read() {
System.out.println("read method in IOEthernetBoard");
// specific code to read from an ethernet board

}

public void write() {
System.out.println("write method in IOEthernetBoard");
// specific code to write to an ethernet board

}

public void close() {
System.out.println("close method in IOEthernetBoard");
// specific code to close an ethernet board

82 Introduction to Java

}
}

This class defines a constructor that takes the name of the board, and a network
address as arguments. The network address corresponds to a data member defined in
this class, the name is the value to be stored in the field defined in the base class. Note
that the constructor calls the constructor of the base class through super.

The next application presents an example of their use:

/**
* Test Boards1 class Application
*/

class TestBoards1 {
public static void main(String[] args) {

IOSerialBoard serial = new IOSerialBoard("my first port",
0x2f8);

serial.initialize();
serial.read();
serial.close();

}
}

The output of the execution of this application is:

IOBoard constructor
IOSerialBoard constructor
initialize method in IOSerialBoard
read method in IOSerialBoard
close method in IOSerialBoard

Note the order in which the constructors are executed. Note also that the methods
defined in the subclass are executed, and the methods defined in the base class are
ignored.

20 Polymorphism

Polymorphism is an important property that our programs should have. We can say
that there exists polymorphism when different objects can answer to the same kind of
messages. In this way, we can operate with these objects by using the same interface.

In the last example, we can see that instances of the class IOSerialBoard and in-
stances of the class IOEthernetBoard can answer to the same set of messages. We can
say then that there exists polymorphism. This property allows to work with instances of
both classes in the same way, as the next example shows:

83

/**
* Test Boards2 class Application
*/

class TestBoards2 {

public static void main(String[] args) {

IOBoard[] board = new IOBoard[3];

board[0] = new IOSerialBoard("my first port",0x2f8);
board[1] = new IOEthernetBoard("my second port",0x3ef8dda8);
board[2] = new IOEthernetBoard("my third port",0x3ef8dda9);

for(int i = 0;i < 3;i++)
board[i].initialize();

for(int i = 0;i < 3;i++)
board[i].read();

for(int i = 0;i < 3;i++)
board[i].close();

}
}

In this application an array of three IOBoard instances is defined. A problem that
seems to appear is the fact that it is not possible to define instances of this class, since
it was declared abstract.

However, as we have seen before, instances of subclasses of IOBoard are also in-
stances of IOBoard (see section 16.3). So, it is possible to make the assignments
shown in the example, that assign one instance of a Serial board, and two instances of
IOEthernetBoard boards to the array.

In order to work with the boards, we have to initialize, read and close them. As
the interface is the same, we can just operate with the input output board instances
stored in the array just by sending the corresponding messages, without considering the
specific type of board. This is possible due to the polymorphism property.

21 Interfaces

In our last example we have defined an abstract class in order to define the common
data and methods we want all input output boards to have and implement.

It is possible to extend this idea with the use of interfaces. An interface looks like a
class definition, where all fields are static and final, and all methods have no body
and are public. No instances can be created from interfaces.

The fields can just represent constant values (being final and static), and the methods
can just define a behavior, or exactly as the name says: an interface.

84 Introduction to Java

The word implements can be used to define classes that implements an interface. Or
in other words, classes that provide at least an implementation for all methods defined
in the interface.

In our example, if we are not interested in having a name for the boards, and a error
counter, we could have defined IOboard as an interface as follows:

/**
* IO board interface
*/

interface IOBoardInterface {

public void initialize();
public void read();
public void write();
public void close();

}

The class IOSerialBoard can then be defined as a class that implements this inter-
face, and not as a subclass of other class:

/**
* IO serial board Class (second version)
*/

class IOSerialBoard2 implements IOBoardInterface {
int port;

IOSerialBoard2(int p) {
port = p;
System.out.println("IOSerialBoard constructor");

}

public void initialize() {
System.out.println("initialize method in IOSerialBoard");
// specific code to initialize a serial board

}

public void read() {
System.out.println("read method in IOSerialBoard");
// specific code to read from a serial board

}

public void write() {
System.out.println("write method in IOSerialBoard");
// specific code to write to a serial board

}

85

public void close() {
System.out.println("close method in IOSerialBoard");
// specific code to close a serial board

}
}

The next application shows an example of the use of this class:

/**
* Test Boards3 class Application
*/

class TestBoards3 {

public static void main(String[] args) {

IOSerialBoard2 serial = new IOSerialBoard2(0x2f8);

serial.initialize();
serial.read();
serial.close();

}
}

A class can implement more than one interface. For example, let’s suppose we want
to define an interface called niceBehaviour that defines methods we consider that all
nice classes should implement:

/**
* Nice behavior interface
*/

interface NiceBehavior {

public String getName();
public String getGreeting();
public void sayGoodBye();

}

If we are interested in forcing the serial board class to implement all methods in
IOBoardInterface and all methods in NiceBehavior, we can define the serial board
class as follows:

/**

86 Introduction to Java

* IO serial board Class (third version)
*/

class IOSerialBoard3 implements IOBoardInterface,
NiceBehavior {

...
}

The Java compiler will accept this class definition, only if all methods defined in both
interfaces are defined in this class.

We can see that we can get a similar effect with abstract classes and with interfaces.
In some sense, both of them force other classes to define a specific behavior. However, a
class can implement more than one interface, but a subclass cannot inherit from more
than one class. Interfacing allows to implement a kind of multiple inheritance. An
abstract class should be defined when there is data and/or methods to be defined in the
class, and shared by all subclasses.

22 Exceptions

The usual behavior when there is a runtime error in an application is to abort the exe-
cution. For example:

/**
* Test Exceptions class Application
*/

class TestExceptions1 {

public static void main(String[] args) {

String s = "Hello";

System.out.print(s.charAt(10));
}

}

As the string s has no character in position 10, the execution stops with the following
message:

Exception in thread "main"
java.lang.StringIndexOutOfBoundsException:
String index out of range: 10
at java.lang.String.charAt(String.java:499)
at TestExceptions1.main(TestExceptions1.java:11)

This error, or exception in Java terminology, can be caught and some processing can
be done, by using the try and catch statements as the following example shows:

87

/**
* Test Exceptions class Application (version 2)
*/

class TestExceptions2 {
public static void main(String[] args) {

String s = "Hello";

try {
System.out.println(s.charAt(10));

} catch (Exception e) {
System.out.println("No such position");

}
}

}

The output of the execution of the application is:

No such position

When an exception happens inside the block defined by try, the control is transfered
to the block defined by catch. This block will process all kinds of exceptions. If we are
interested just in process the exception for index out of bounds for strings, we can do it
in this way:

/**
* Test Exceptions class Application (version 3)
*/

class TestExceptions3 {

public static void main(String[] args) {

String s = "Hello";

try {
System.out.println(s.charAt(10));

} catch (StringIndexOutOfBoundsException e) {
System.out.println("No such position");

}
}

}

There exists messages that can be sent to an exception object. For example, the next
application sends the message toString to the exception object e:

/**

88 Introduction to Java

* Test Exceptions class Application (version 4)
*/

class TestExceptions4 {

public static void main(String[] args) {

String s = "Hello";

try {
System.out.println(s.charAt(10));

} catch (StringIndexOutOfBoundsException e) {
System.out.println("No such position");
System.out.println(e.toString());

}
}

}

The output of the execution of the application is:

No such position
java.lang.StringIndexOutOfBoundsException:

String index out of range: 10

There exists a set of predefined exceptions that can be caught. In some cases it is
compulsory to catch exceptions. It is also possible to express the interest to not to catch
even compulsory exceptions. We will see more examples in sections to follow.

23 Input Output

The input output system in Java is rather complicated. Unfortunately, there are plenty
of classes that have to be used in order to read or write data. One advantage is the fact
that input output from files, devices, memory or web sites is performed in the same way.

The Java input output system is implemented in the package java.io. It is based
on the idea of streams. A input stream is a data source that can be accessed in order to
get data. An output stream is a data sink, where data can be written.

The streams are divided in byte streams and character streams. Byte streams can be
used to read or write data in small pieces, like bytes, integers, etc. Character streams
can be used to read or write characters.

Java also allows to write and read complete objects (property known as serialization),
but we will not be covering it here.

The next subsections introduce the way in which it is possible to work with streams
depending on the kind of data we want to work with.

89

23.1 Byte oriented streams

There exists two classes that can be used for processing byte oriented streams: the
class FileOutputStream than can be used to write bytes into a stream, and the class
FileInputStream that can be used to read bytes from a stream.

The next application writes 5 bytes into a file called file1.data:

/**
* Write bytes class Application
*/

import java.io.*;

class WriteBytes {

public static void main(String[] args) {

int data[] = { 10,20,30,40,255 };

FileOutputStream f;

try {
f = new FileOutputStream("file1.data");

for(int i = 0;i < data.length;i++)
f.write(data[i]);

f.close();
} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

The application defines a reference to a FileOutputStream. An instance of this class
is created with new by passing a file name as argument. The effect of this operation is
to relate the internal object f with the file, in such a way that when a write operation is
performed on f, the data is written into the file.

In this example, all the components of the array are written into the file with the
message write. The file is closed at the end with the message close.

Note that all the operations with the stream are included into a try and catch block.
This is in fact compulsory, and the compiler will complain if it is not done, due to the
fact that an IOException can be generated and it must be trapped.

The next example reads data from a file called file1.data:

/**
* Read bytes class Application
*/

90 Introduction to Java

import java.io.*;

class ReadBytes {

public static void main(String[] args) {

FileInputStream f;

try {
f = new FileInputStream("file1.data");

int data;
while((data = f.read()) != -1)
System.out.println(data);

f.close();
} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

In this example, an instance of FileInputStream is created relating to the file
file1.data. The bytes are read with the message read one after the other. This mes-
sage returns the byte read or -1 when the end of the file is reached. The stream is
closed with the message close. Note also that in this example the IOException should
be trapped.

The output of the execution of the application is:

10
20
30
40
255

There exists a message write that can be used to store a complete array of bytes
into a file. The next example is similar to the class WriteBytes, but it writes all the
components of a byte array at once:

/**
* Write bytes class Application
*/

import java.io.*;

class WriteArrayBytes {
public static void main(String[] args) {

91

byte data[] = { 10,20,30,40,50 };
FileOutputStream f;

try {
f = new FileOutputStream("file1.data");

f.write(data,0,data.length);

f.close();
} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

The message write receives as arguments the array of bytes, the index of the first
component, and the number of components to be written. Even if it is written in this way,
it can be read without problems with the previous example ReadBytes. An equivalent
message exists for reading an array of bytes at once.

Something that is important to note is the fact that the message write expects an
integer as argument, and the method read returns an integer, instead of a byte. This
is due to the fact that a normal byte can take values from -128 to 127, and the bytes
written or read from a file must be in the range 0 to 255. However, the methods that
reads or writes a complete array work with bytes.

23.2 Buffered byte oriented streams

In order to minimize the communication overhead, it is usual practice to use buffers.
Byte oriented buffered streams can be defined and used with the classes BufferedOutputStream
and BufferedInputStream. It is still necessary to create the streams as it was explained
in the previous section. The available messages are the same.

The next application shows how to write using buffered streams:

/**
* Write buffered bytes class Application
*/

import java.io.*;

class WriteBufferedBytes {

public static void main(String[] args) {

int data[] = { 10,20,30,40,255 };
FileOutputStream f;
BufferedOutputStream bf;

try {

92 Introduction to Java

f = new FileOutputStream("file1.data");
bf = new BufferedOutputStream(f);

for(int i = 0;i < data.length;i++)
bf.write(data[i]);

bf.close();
} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

A buffered output stream is created by passing the output stream as argument. In
this way, we are expressing our interest in buffering the output stream.

The same applies to reading:

/**
* Read buffered bytes class Application
*/

import java.io.*;

class ReadBufferedBytes {

public static void main(String[] args) {

FileInputStream f;
BufferedInputStream bf;

try {
f = new FileInputStream("file1.data");
bf = new BufferedInputStream(f);

int data;
while((data = f.read()) != -1)
System.out.println(data);

bf.close();
} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

The output of the execution of the application is:

10

93

20
30
40
255

23.3 Data buffered byte oriented streams

A data buffered byte oriented stream can be used to work with data in small pieces
corresponding to the primitive types. The following messages can be used to read and
write data:

read message write message

readBoolean() writeBoolean(boolean)
readByte () writeByte(byte)
readShort() writeShort(short)
readInt() writeInt(int)
readLong() writeLong(long)
readFloat() writeFloat(float)
readDouble() writeDouble(double)

The next application stores into a data buffered byte oriented stream an integer that
corresponds to the size of an array of doubles, then the components of the array of
doubles, and finally a boolean value:

/**
* Write data class Application
*/

import java.io.*;

class WriteData {

public static void main(String[] args) {
double data[] = { 10.3,20.65,8.45,-4.12 };

FileOutputStream f;
BufferedOutputStream bf;
DataOutputStream ds;

try {
f = new FileOutputStream("file1.data");
bf = new BufferedOutputStream(f);
ds = new DataOutputStream(bf);

ds.writeInt(data.length);
for(int i = 0;i < data.length;i++)

94 Introduction to Java

ds.writeDouble(data[i]);

ds.writeBoolean(true);

ds.close();
} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

Note that a data buffered byte oriented stream is created in three steps: first the file
output stream is created, then it is buffered, and finally the data stream is created.

The next application reads data from a data stream:

/**
* Read data class Application
*/

import java.io.*;

class ReadData {

public static void main(String[] args) {

FileInputStream f;
BufferedInputStream bf;
DataInputStream ds;

try {
f = new FileInputStream("file1.data");
bf = new BufferedInputStream(f);
ds = new DataInputStream(bf);

int length = ds.readInt();
for(int i = 0;i < length;i++)
System.out.println(ds.readDouble());

System.out.println(ds.readBoolean());

ds.close();
} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

95

The output of the execution of the application is:

10.3
20.65
8.45
-4.12
true

23.4 Character oriented streams

The character oriented streams can be used to read and write characters. In order to
create an output text stream it is necessary to create an instance of a FileWriter and
then an instance of a BufferedWriter. There exists three methods that can be used to
write data into this kind of streams:

message

write(String,int,int)
write(char[],int,int)
newLine()

The first message can be used to write characters from a string from the position
indicated by the first integer, as many as indicated by the second integer. The second
message is similar, but the characters are written from an array of characters. The mes-
sage newLine generates a newline in the output stream independently of the convention
used in the current operating system.

The next application writes some characters of two strings into an character oriented
output stream:

/**
* Write text class Application
*/

import java.io.*;

class WriteText {
public static void main(String[] args) {
FileWriter f;
BufferedWriter bf;

try {
f = new FileWriter("file1.text");
bf = new BufferedWriter(f);

String s = "Hello World!";
bf.write(s,0,s.length());
bf.newLine();
bf.write("Java is nice!!!",8,5);

96 Introduction to Java

bf.newLine();

bf.close(); }
catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

In order to read from a text oriented stream it is necessary to create an instance of
a file reader, and then an instance of a buffered reader. The message readLine can
be used to read complete lines from the text file. It returns an instance of a String
containing the line, or the null reference at end of file.

The next application reads lines from a buffered text oriented stream:

/**
* Read text class Application
*/

import java.io.*;

class ReadText {

public static void main(String[] args) {

FileReader f;
BufferedReader bf;

try {
f = new FileReader("file1.text");
bf = new BufferedReader(f);

String s;
while ((s = bf.readLine()) != null)
System.out.println(s);

bf.close();
} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

The output of the execution of the application is:

Hello World!
nice!

97

23.5 Standard input

Sometimes the applications need to read from the standard input. The standard input of
an application can be referenced in Java with the variable System.in. In order to read
from it, it is necessary to define an InputStreamReader and a BufferedReader, as the
next example shows:

/**
* Standard input class Application
*/

import java.io.*;

class StandardInput {

public static void main(String[] args) {
InputStreamReader isr;
BufferedReader br;

try {
isr = new InputStreamReader(System.in);
br = new BufferedReader(isr);

String line;
while ((line = br.readLine()).length() != 0)
System.out.println(line);

} catch(IOException e) {
System.out.println("Error in standard input");

}
}

}

The method readLine returns a line from the standard input as a string. Note that
the method length is called on this returned string in order to check if the standard
input was closed.

The application just copies its standard input into its standard output.
As it was quoted before, the methods can express their interest in not to catch some

specific exceptions. This is done by using the word throws in the method specification.
In this case, it is not necessary to define the try and catch block.

The next application is the same as the previous one, but the method main throws
the exception IOException:

/**
* Standard input class Application (throws IOException)
*/

import java.io.*;

class StandardInputWithThrows {

98 Introduction to Java

public static void main(String[] args) throws IOException {
InputStreamReader isr;
BufferedReader br;

isr = new InputStreamReader(System.in);
br = new BufferedReader(isr);

String line;
while ((line = br.readLine()).length() != 0)
System.out.println(line);

}
}

Note that the try and catch block was not defined.

24 Threads

In Java it is possible to run concurrently different tasks called threads. Each thread
can be seen as an independently running task, with some CPU time assigned to it. The
threads can communicate between themselves and their access to shared data can be
synchronized.

In order to define a thread, it is necessary to create a subclass of the class Thread.
The class Thread has an abstract method called run, that has to be defined in the
subclass. This method has to contain the code that will be running as an independent
thread.

The next example defines a class called CharThread that is a subclass of Thread,
and defines the method run:

/**
* Char thread class Application
*/

class CharThread extends Thread {
char c;

CharThread(char aChar) {
c = aChar;

}

public void run() {
while (true) {
System.out.println(c);
try {
sleep(100);

99

} catch (InterruptedException e) {
System.out.println("Interrupted");

}
}

}
}

The class defines a character data member that is initialized with a character value
when an instance of the class is created with the constructor.

The method run contains an infinite loop where the character is printed, and then
the thread goes to sleep for 100 milliseconds. Note that an exception can be generated
when the thread is sleeping, so code has to be defined in order to catch it.

The next application creates two instances of this class, initialized with a different
character each one. Then both of them are started as a thread, so the method run of
both instances will be executed concurrently:

/**
* test threads class Application
*/

class TestThreads {

public static void main(String[] args) {

CharThread t1 = new CharThread(’a’);
CharThread t2 = new CharThread(’b’);

t1.start();
t2.start();

}
}

Note that the two instances of CharThread are created by calling the constructor.
Both threads are started by sending the message start.

The output of the execution of the application is:

a
b
a
b
a
b
a
b
a
b
a

100 Introduction to Java

b
...

Both threads get the CPU for some time, so the output produced by them is inter-
mixed.

24.1 The Producer and Consumer example

The producer and consumer problem is a standard example that illustrates concurrency,
and the problems derived from it. The idea is that there exist two processes that interact
through a common buffer: the producer produces items that are stored into a buffer,
and the consumer consumes these items.

A synchronization problem arise since both processes have to interact with the same
buffer. The buffer is then a critical resource. The other problem arises from the fact that
the producer cannot put items into a full buffer, and the consumer cannot consume
items from an empty buffer.

The next application shows a possible implementation of the main class for the con-
sumer and producer problem:

/**
* Producer Consumer class Application
*/

class ProducerConsumer {

public static void main(String[] args) {

Buffer buffer = new Buffer(20);

Producer prod = new Producer(buffer);
Consumer cons = new Consumer(buffer);

prod.start();
cons.start();

}
}

A buffer with 20 empty slots is created, and then an instance of the producer thread
and an instance of the consumer thread. The common buffer is passed as an argument
to the constructor, so both threads will share the buffer. After that, both threads are
started.

The producer class can be defined as follows:

/**
* Producer class Application
*/

class Producer extends Thread {

101

Buffer buffer;

public Producer(Buffer b) {
buffer = b;

}

public void run() {
double value = 0.0;

while (true) {
buffer.insert(value);
value += 0.1;

}
}

}

The producer class is a subclass of Thread, so it must have a method run that can
be executed as an independent thread. The class defines one data member that will
contain a reference to the buffer passed as argument to the constructor. The method
run inserts a double value into the buffer inside an infinite loop. So, the producer, is
producing double values that are inserted into the common buffer.

The consumer class can be defined as follows:

/**
* Consumer class Application
*/

class Consumer extends Thread {
Buffer buffer;

public Consumer(Buffer b) {
buffer = b;

}

public void run() {

while(true) {
System.out.println(buffer.delete());

}
}

}

The consumer class is also a subclass of Thread. The class defines a data member
that will contain a reference to the common buffer. The run method, i. e., the one
that will be executed as a thread, just removes data from the buffer, and prints it into
standard output.

102 Introduction to Java

The Buffer is defined as a circular buffer implemented with one array and two point-
ers, one for the head position and the other for the tail position. Data is inserted in the
tail position, and data is read from the head position. There is one data member used to
store the number of elements currently available on the buffer. The Buffer application is
shown below:

/**
* Buffer class Application
*/

class Buffer {

double buffer[];

int head = 0;
int tail = 0;
int size = 0;
int numElements = 0;

public Buffer(int s) {
buffer = new double[s];
size = s;
numElements = 0;

}

public void insert(double element) {

buffer[tail] = element;
tail = (tail + 1) % size;
numElements++;

}

public double delete() {

double value = buffer[head];
head = (head + 1) % size;
numElements--;
return value;

}
}

This implementation seems to be OK. However, it does not work. And it does not
work for two reasons:

• Both methods insert and delete operates concurrently over the same structure.
It is necessary to define a critical region, or in other words, both methods cannot

103

be executed concurrently. If one thread is inserting data, the other must wait till
the first one finish, and vice-versa.

• The insert method does not check if there is at least one slot free in the buffer, and
the delete method does not check if there is at least one piece of data available in
the buffer.

The next subsections will cover these problems and their solutions.

24.2 synchronized methods

In Java it is possible to define synchronized methods. These methods are not allowed to
be executed concurrently on the same instance. Each instance has a lock, that is used
to synchronize the access.

The solution to the first problem is to define the methods as follows:

public synchronized void insert(double element) {

buffer[tail] = element;
tail = (tail + 1) % size;
numElements++;

}

public synchronized double delete() {

double value = buffer[head];
head = (head + 1) % size;
numElements--;
return value;

}

24.3 wait and notify

Subclasses of Thread can send the messages wait and notify. The messages can
be sent only from synchronized methods. The message wait puts the calling thread
to sleep, releasing the lock. The message notify awakens a waiting thread on the
corresponding lock.

In our example, the thread that is going to insert a value in the buffer has to put itself
to sleep when there is no empty slots in a buffer. The thread that is going to remove a
value from an empty buffer has to put itself to sleep.

The thread that has just inserted data into an empty buffer, has to notify the other
thread so it can be awakened. The thread that has just removed data from a full buffer,
has to notify the other thread so it can be awakened.

The correct code for the implementation of both methods follows:

public synchronized void insert(double element) {
if (numElements == size) {

104 Introduction to Java

try {
wait();}
catch(InterruptedException e) {
System.out.println("Interrupted");

}
}
buffer[tail] = element;
tail = (tail + 1) % size;
numElements++;
notify();

}

public synchronized double delete() {

if (numElements == 0) {
try {
wait();

} catch(InterruptedException e) {
System.out.println("Interrupted");

}
}
double value = buffer[head];
head = (head + 1) % size;
numElements--;
notify();
return value;

}

Note that it is necessary to catch an exception when wait is used.
The listing of the Buffer class is provided in section D.

25 JAR files

When we were compiling the example ProducerConsumer, four class files were gener-
ated, as the following command shows:

ls *.class
Buffer.class
Consumer.class
ProducerConsumer.class
Producer.class

In order to distribute the executable application it is necessary to copy the four files.
Java provides a mechanism to pack and compress files into one file, in order to make

the process of distribution of applications easier. This compressed file is called a JAR
(Java ARchive) file.

105

A JAR file can be created and manipulated by the command jar. In order to create a
JAR file, it is necessary to define a manifest file. The manifest file contains information
on the files included in the JAR file. The command jar creates a default manifest file in
the directory META-INF with name MANIFEST.MF, just below the current directory.

It is possible to add specific lines to this manifest file, by passing as an argument to
jar, the name of a text file that contains these lines. Information is specified in pairs
(key,value). In the Producer Consumer example, the only necessary pair that has to be
specified is the name of the class that contains the main function. It can be done in a
text file (called mylines.txt in our example) with the following content:

cat mylines.txt
Main-Class: ProducerConsumer

The creation of a JAR file for this application can be done as follows:

jar cmf mylines.txt ProducerConsumer.jar
ProducerConsumer.class Producer.class Consumer.class
Buffer.class

The option c specifies creation of a JAR file, m that a text file with lines to be added
to the manifest file will be supplied in the command line, and f that the name of the
JAR file will be also supplied in the command line. mylines.txt contains the lines to
be added to the manifest file, ProducerConsumer.jar is the expected output file, and
the next file names are the names of the files to be added to the JAR file.

It is possible to see the contents of the JAR file just created by using the option t as
follows:

jar tf ProducerConsumer.jar
META-INF/
META-INF/MANIFEST.MF
ProducerConsumer.class
Producer.class
Consumer.class
Buffer.class

Note that a manifest file was added. Its content is:

Manifest-Version: 1.0
Main-Class: ProducerConsumer
Created-By: 1.4.0 (Sun Microsystems Inc.)

The application included in the JAR file can be executed as follows:

java -jar ProducerConsumer.java

It is possible to extract an update also the contents of a JAR file. Please refer to the
documentation for examples.

106 Introduction to Java

26 Java Native Interface

The Java Native Interface (JNI) allows to call functions written in other languages from
Java code. This is useful when a ”100%” Java solution is not enough to solve the
problem, may be due to some of the following situations:

• There is a large amount of existing fully tested code implemented in anther lan-
guage, and it makes no sense to rewrite it again in Java.

• The application requires access to system features or devices, which currently are
not supported by Java.

• The execution speed is essential.

Even if the JNI can help in these cases, it must be considered that its use has two
main disadvantages: portability is lost and security is reduced. Since the native code is
compiled for a specific platform, now the application will run just on this platform. It is
still possible to provide different versions of the native methods for different platforms,
but the benefits of portability are significatively reduced. Also code written in other
languages usually does not have the same security level of Java code.

JNI is not an easy topic and tasks like working with Java objects from other lan-
guages are quite complicated. The next subsections will introduce JNI by using C as
the language for native code. Since JNI is complex, the topics will be presented with
examples. However, most of the examples will just illustrate the use of JNI features,
without being the best examples, in the sense, that they will represent tasks that diffi-
cultly would be selected to be implemented as native methods. It was preferred to lose
on semantics in order to improve the simplicity of the examples.

26.1 The definition of native methods

To develop a Java application that uses native methods we have to follow the steps
below:

1. Define the prototype of the function in the Java class with the keyword native.

2. Compile the java application.

3. Generate a C header file by using the utility program javah.

4. Define the C function by following the JNI guidelines.

5. Compile the C function (and its header file) to a shared library.

The next example shows the definition of a simple method (static with no arguments
and no return value) in the class Book in order to illustrate the process. The method
printDescription is defined as a native method (step 1) as follows:

class Book {
.......
public native static void printDescription();

}

107

Note that the definition of the method is similar to the definition of a standard method,
with just two differences: there is no body, and the keyword native is used. This
keyword tells the compiler that the method is defined externally and in other language.

The class Book has to be compiled as usual (step 2):

javac Book.java

The utility program javah has to be used (step 3) to generate the header file as
follows:

javah Book

The execution of javah produces a header file with the same name of the class and
the extension .h. In this case it is called Book.h. In our example, the contents of this
file are:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class Book */

#ifndef _Included_Book
#define _Included_Book
#ifdef __cplusplus
extern "C" {
#endif
/* Inaccessible static: owner */
/*
* Class: Book
* Method: printDescription
* Signature: ()V
*/

JNIEXPORT void JNICALL Java_Book_printDescription
(JNIEnv *, jclass);

This file does not have to be edited, since it is generated by javah and it will be
regenerated again every time this utility program is executed. The two lines at the end
contains the prototype of the C function that we want to define:

JNIEXPORT void JNICALL Java_Book_printDescription
(JNIEnv *, jclass);

The name of the function is Java Book printDescription. It must start with the
string ”Java”, followed by the name of the class and the name of the method, separated
by underscores. The type of the return value is void and the function takes two ar-
guments, even if the original Java method does not have arguments at all. The first
argument is a pointer to a table of function pointers that will be used to access Java
functionality from C. The second argument identifies the class to which the message

108 Introduction to Java

was sent. We will not be using these arguments in this first example. The macros
JNIEXPORT and JNICALL define implementation details for shared libraries, and we can
safely ignore the way in which they are implemented.

The C function can be defined (step 4) in the file Book.c by using the prototype that
was generated by javah in the header file as follows:

#include <Book.h>
#include <stdio.h>

JNIEXPORT void JNICALL Java_Book_printDescription
(JNIEnv *env,jclass cl) {

printf("I am a book!\n");
}

Note that this is a standard C file, and it is possible to use all C functionality. In this
first example, the function just prints a string on the standard output.

The function has to be compiled as a shared library (step 5). This process is cer-
tainly dependent on the C compiler and the paths where the JNI header files have to be
searched for. A usual command that can be used to get the shared library from the file
Book.c with the GNU C compiler is:

gcc -shared -o libBook.so Book.c

The flag -shared indicates that Book.c has to be compiled into a shared library with
name libBook.so, as indicated by the option -o 1.

It is also necessary to instruct the class Book to load the shared library that contains
the definition of the native methods. This is usually done with a static initialization block
in the class Book, as follows:

class Book {
.......
static {

System.loadLibrary("Book");
}

}

The method loadLibrary instructs the class Book to load the shared library. The
way in which the name of the library is specified is system dependent.

The following is a test application that we can use to check the native method we
have defined:

class TestBook1 {
public static void main(String[] args) {
Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);

1If the compiler cannot find JNI specific header files, it is possible that you have to add to the include
search paths the directories include and include/linux from the Java SDK installation, or specify them
in the command line with the option -I.

109

b1.printDescription();
}

}

The output of the execution of the application is 1:

I am a book!

Not too much, but we manage to implement a method in the class Book with a C
function.

26.2 Numeric parameters and return values

Other point that makes native functions complicated is the fact that the standard types
can be different in Java and in C. All standard types in Java are guaranteed to have
a specific size, which is not the case with C. For example, an int in C has what is
called the natural size, which can be of course platform dependent. For this reason, the
following types are defined in JNI and has to be used for passing data between Java and
C programs:

Java C size

boolean jboolean 1
byte jbyte 1
char jchar 2
short jshort 2
int jint 4
long jlong 8
float jfloat 4
double jdouble 8

The values for the jboolean type are JNI TRUE and JNI FALSE, and are equivalent to
1 and 0 respectively.

The following example shows the definition, in the class Book, of the native method
computeWeight that can be used to compute the weight of a book:

public native static float computeWeight(int numPages,
float paperWeight);

It has two arguments: an integer that corresponds to the number of pages of the
book, and a float that corresponds to the weight of the paper. It returns a floating point
number that corresponds to the weight of the book. Note that the method is static and
it does not access the fields of a particular instance of a book.

The C function can be defined as follows:

1If the program stops with an error message that indicates that the shared library cannot be found, verify
that the shell variable LD LIBRARY PATH contains the directory in which the shared library is located.

110 Introduction to Java

JNIEXPORT jfloat JNICALL Java_Book_computeWeight
(JNIEnv *env, jclass cl, jint numPages, jfloat paperWeight) {
jfloat pageWeight;

// assume an A4 page
pageWeight = (0.23 * 0.297) * paperWeight;

// compute the weight
return (numPages / 2.0) * pageWeight;

}

The two new parameters are defined after the environment and the class parameters.
They have to be defined with types jint and jfloat respectively. The return type of the
functions is jfloat. The body of the function just computes the weight by assuming a
standard size of paper and returns the result. Note that jfloat and jint values can be
combined with float and int values. It is necessary just to take care on their respective
size in order not to lose precision.

The following application presents an example of the use of this method:

class TestBook2 {
public static void main(String[] args) {
float weight = Book.computeWeight(1129,80);
System.out.println("Weight: " + weight);

}
}

The output of the execution of the application is:

Weight: 3084.8796

26.3 Using strings

Things are also difficult when strings have to be shared between Java methods and
C functions, since implementation of strings is quite different in both languages: in C
a string is a null terminated sequence of 1-byte characters and in Java a string is a
sequence of 2-bytes UNICODE characters.

The following example shows the definition, in the class Book, of the native method
printTitle that receives a string as an argument. The method just prints the string in
standard output.

public native static void printTitle(String title);

The C function can be defined as follows:

JNIEXPORT void JNICALL Java_Book_printTitle
(JNIEnv *env, jclass cl, jstring title) {

111

char *str = (*env)->GetStringUTFChars(env,title,NULL);
printf(str);
(*env)->ReleaseStringUTFChars(env,title, str);
printf("\n");

}

The argument title is defined of type jstring, which is the Java string type defined
by JNI to be used in native methods. The function converts the Java string title to a
normal C string and stores it in the variable str, prints it by calling the standard printf
function and releases the memory allocated to the string.

The function used to convert the string is GetStringUTFChars and it receives as ar-
guments the environment and the Java string1. The function used to release the mem-
ory is ReleaseStringUTFChars and it receives as arguments the environment, the Java
string and the C string. The use of this function is compulsory to avoid the generation
of garbage (memory that is considered used but is not accessible from the program).

The environment pointer env points to a table of pointers to functions. It is used
as a hook to access Java functions from the native methods. All Java functions will be
accessed in this way.

The following application presents an example of the use of this method:

class TestBook3 {
public static void main(String[] args) {
Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);
Book.printTitle(b1.title);

}
}

The output of the execution of the application is:

Thinking in Java

The following example shows the definition, in the class Book, of the native method
getDescription that receives no arguments and returns a string:

public native static String getDescription();

The C function can be defined as follows:

JNIEXPORT jstring JNICALL Java_Book_getDescription
(JNIEnv *env, jclass cl) {
jstring jstr;
char desc[] = "I am a book!";

jstr = (*env)->NewStringUTF(env,desc);
return jstr;

}

1The third argument will be always NULL in our examples. Refer to the documentation for more details if
necessary.

112 Introduction to Java

It has no extra arguments and returns a value of type jstring. The function
NewStringUTF converts the C string desc into a Java string, which is the return value
of the function.

The following application presents an example of the use of this method:

class TestBook4 {

public static void main(String[] args) {
Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);
String str = b1.getDescription();
System.out.println(str);

}
}

The output of the execution of the application is:

I am a book!

26.4 Using non static methods and non static fields

All native methods implemented till now were static. In this section we will see how to
implement a non static method that accesses fields from an object. We will implement
a method that can be used to increment by a certain amount, the number of pages in a
book. In pure Java, it can be implemented as follows:

public void incrementNumberOfPages(int amount) {
numberOfPages += amount;

}

The following application presents an example of the use of this method:

class TestBook5 {
public static void main(String[] args) {
Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b1.incrementNumberOfPages(36);
System.out.println(b1.numberOfPages);
}

}

The output of the execution of the application is:

1165

The method could be rewritten as a native method with the following definition:

113

public native void incrementNumberOfPages(int amount);

The C function can be defined as follows:

JNIEXPORT void JNICALL Java_Book_incrementNumberOfPages
(JNIEnv *env, jobject obj_this, jint amount) {

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

// get the field id
jfieldID id_numberOfPages = (*env)->GetFieldID(env,

class_Book,"numberOfPages","I");

// get the field value
jint numberOfPages = (*env)->GetIntField(env,obj_this

id_numberOfPages);

// increment the value
numberOfPages += amount;

// set the field value
(*env)->SetIntField(env,obj_this,id_numberOfPages,

numberOfPages);
}

The function now contains three parameters: the first one is the usual environment
and the third one is the integer parameter that corresponds to the amount value. The
second parameter in a non static method is a reference to the object that is the receptor
of the message, or in other words, a reference to this. It means that static methods get
a reference to the class, and non static methods a reference to this.

In order to access the fields of an object it is necessary to get first a reference to the
class, and then a field identifier. The reference of the class in this example is obtained
by executing:

jclass class_Book = (*env)->GetObjectClass(env,obj_this);

The function GetObjectClass returns a reference to the class of the object passed
as an argument. In this example, the object passed as an argument is referenced by
this. After the execution of this statement, the variable class Book of type jclass will
contain a reference to the class Book.

The field identifier is obtained by executing:

jfieldID id_numberOfPages = (*env)->GetFieldID(env,
class_Book,"numberOfPages","I");

114 Introduction to Java

The function GetFieldID returns a field identifier of the object field described by the
arguments. The first argument is the environment, the second one is the class of the
object, the third one a string that corresponds to the name, and the fourth one a string
that identifies the type of the field. In this case, the type is ”I” that corresponds to an
integer. After the execution of this statement, the variable id numberOfPages of type
jfieldID will contain a field identifier for Book.numberOfPages.

The field value is obtained by executing:

jint numberOfPages = (*env)->GetIntField(env,obj_this
id_numberOfPages);

The function GetIntField returns the value of the integer field described by its
arguments. The first one is the environment, the second one a reference to the object
(this in this case) and the third one is the field identifier. The returned value is of type
jint.

After incrementing the number of pages, the new value can be set by executing:

(*env)->SetIntField(env,obj_this,id_numberOfPages,
numberOfPages);

The function SetIntField sets the integer field identified by its arguments with a
specific value. The first argument is the environment, the second one a reference to the
object (this in this case), the third one the field identifier and the fourth one the new
value (of type jint).

As it was seen before, a so called signature has to be used in order to specify the type
of a field. The encoding is described in the following table:

Signature Type name

B byte
C char
D double
F float
I int
J long
Lclassname; a class classname
S short
V void
Z boolean

In this example, the functions GetIntField and SetIntFieldwere used respectively
to get an integer value and to set an integer value. Of course, other functions must be
used for fields with different types. A set of functions Get--Field and Set--Field
are provided by JNI, where -- can be Boolean, Byte, Char, Short, Int, Long, Float,
Double or Object.

Just to have another example, the next lines shows the definition, in the class Book,
of the native method getWeight that receives an integer argument that corresponds to
the weight of the paper and returns the weight of the book:

115

public native float getWeight(float paperWeight);

The C function can be defined as follows:

JNIEXPORT jfloat JNICALL Java_Book_getWeight
(JNIEnv *env, jobject obj_this, jfloat paperWeight) {

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

// get the field id
jfieldID id_numberOfPages = (*env)->GetFieldID(env,

class_Book,"numberOfPages","I");

// get the field value
jint numberOfPages = (*env)->GetIntField(env,obj_this,

id_numberOfPages);

// assume an A4 page
jfloat pageWeight = (0.23 * 0.297) * paperWeight;

// compute the weight
return (numberOfPages / 2.0) * pageWeight;

}

The following application presents an example of the use of this method:

class TestBook6 {
public static void main(String[] args) {
Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);
float weight = b1.getWeight(80.0f);
System.out.println("Weight: " + weight);

}
}

The output of the execution of the application is:

Weight: 3084.8796

26.5 Accessing static fields

JNI provides a set of functions to access and modify static fields in a similar way as
with non static fields. The next example shows the definition, in the class Book, of the
native method updateOwner that receives a string as an argument and returns a string.
The method updates the value of the static field owner with the new string passed as an
argument and returns the old value.

public native String updateOwner(String newOwner);

116 Introduction to Java

The C function can be defined as follows:

JNIEXPORT jstring JNICALL Java_Book_updateOwner
(JNIEnv *env, jobject obj_this, jstring newOwner) {

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

// get the field id
jfieldID id_owner = (*env)->GetStaticFieldID(env,class_Book,

"owner","Ljava/lang/String;");

// get the field value
jstring owner = (*env)->GetStaticObjectField(env,obj_this,

id_owner);

// print old owner
char *str = (*env)->GetStringUTFChars(env,owner,NULL);
printf("Old owner: %s\n",str);
(*env)->ReleaseStringUTFChars(env,owner, str);

// set the new owner
(*env)->SetStaticObjectField(env,obj_this,id_owner,newOwner);

// return it
return newOwner;

}

The function receives the string as the argument newOwner of type jstring and
returns a Java string. In a similar way, in order to access the static fields of an object it
is necessary to get first a reference to the class, and then a field identifier. The reference
of the class is obtained by executing:

jclass class_Book = (*env)->GetObjectClass(env,obj_this);

The field identifier is obtained by executing:

jfieldID id_owner = (*env)->GetStaticFieldID(env,class_Book,
"owner","Ljava/lang/String;");

The function GetStaticFieldID returns a field identifier of the static object field
described by the arguments. The first argument is the environment, the second one
is the class of the object, the third one a string that corresponds to the name, and
the fourth one a string that identifies the type of the field. In this case, the type is
”Ljava/lang/String;”, indicating that the field contains an instance of the class Java.lang.String.
Note that the name of the class is specified by a concatenation of packages and class
names, separated by slashes.

The field value is obtained by executing:

117

jstring owner = (*env)->GetStaticObjectField(env,obj_this,
id_owner);

The function GetStaticObjectField returns a reference to the object stored in the
static field described by its arguments. The first one is the environment, the second one
a reference to the object (this in this case) and the third one is the field identifier. The
returned value is of type jobject, which can be safely assigned to a jstring variable.

In order to print the Java string it is necessary to convert it to a normal C string.
This is done in the function as follows:

char *str = (*env)->GetStringUTFChars(env,owner,NULL);
printf("Old owner: %s\n",str);
(*env)->ReleaseStringUTFChars(env,owner, str);

The new value is set by using the SetStaticObjectField function as follows:

(*env)->SetStaticObjectField(env,obj_this,id_owner,newOwner);

The following application presents an example of the use of this method:

class TestBook7 {
public static void main(String[] args) {
Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b1.setOwner("Carlos Kavka");
String newOwner = b1.updateOwner("Rinus Verkerk");
System.out.println("The new owner is: " + newOwner);
System.out.println("Just to be sure: " + b1.getOwner());

}
}

The output of the execution of the application is:

Old owner: Carlos Kavka
The new owner is: Rinus Verkerk
Just to be sure: Rinus Verkerk

The JNI functions GetStaticObjectField and SetStaticObjectField were used
respectively to get an object value and to set an Object value. Of course, other func-
tions must be used for fields with different types. JNI provides a set of functions
GetStatic--Field and SetStatic--Field, where -- can be Boolean, Byte, Char,
Short, Int, Long, Float, Double or Object.

26.6 Calling non static Java methods from C

This section illustrates the procedure to call non static Java methods from a native
function in C. The next example shows the definition, in the class Book, of the native
method printInitials that receives no arguments and returns nothing. The method
just prints the initials of the authors’ name by calling the method getInitials.

118 Introduction to Java

public native void printInitials();

The C function can be defined as follows:

JNIEXPORT void JNICALL Java_Book_printInitials
(JNIEnv *env, jobject obj_this) {

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

// get the method id
jmethodID id_getInitials = (*env)->GetMethodID(env,

class_Book,"getInitials","()Ljava/lang/String;");

// call the method
jstring in = (*env)->CallObjectMethod(env,obj_this,

id_getInitials);

// print initials
char *str = (*env)->GetStringUTFChars(env,in,NULL);
printf("Initials: %s\n",str);
(*env)->ReleaseStringUTFChars(env,in, str);

}

After getting the class as usual, it is necessary to get a method identifier for the
method to be called. This is done as follows:

jmethodID id_getInitials = (*env)->GetMethodID(env,
class_Book,"getInitials","()Ljava/lang/String;");

The JNI function GetMethodID returns a method identifier for the non static method
described by the arguments. The first argument is the environment, the second one is
the class of the object, the third one a string that corresponds to the name, and the
fourth one a string that identifies the signature or prototype of the method. In this case,
the type is ”()Ljava/lang/String;”, indicating that the method has no arguments and the
return value is a Java.lang.String.

The method getInitials is called by executing:

jstring in = (*env)->CallObjectMethod(env,obj_this,
id_getInitials);

The function CallObjectMethod sends the message specified by the method identi-
fier to a specific object. The method is specified by the third argument and the object
by the second argument. This function calls the method, and then returns a reference
to an object, which in this case, will be a reference to the Java string returned by the
method getInitials.

The string is then printed as usual:

119

char *str = (*env)->GetStringUTFChars(env,in,NULL);
printf("Initials: %s\n",str);
(*env)->ReleaseStringUTFChars(env,in, str);

The following application presents an example of the use of this method:

class TestBook8 {
public static void main(String[] args) {
Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b1.printInitials();

}
}

The output of the execution of the application is:

B.E.

In this example, the function CallObjectMethod was used to call a method that
returns an instance of an Object. Of course, other functions must be used for methods
that returns different types. A set of functions Call--Method are provided by JNI, where
-- can be Boolean, Byte, Char, Short, Int, Long, Float, Double or Object.

The signature or prototype of a method is defined by specifying between parenthesis
the signature for the arguments, and after the parenthesis the signature of the return
value1. Note that no separator is used. The next table shows some examples:

Method Signature

int fun(int x,int y); (II)I
boolean fun2(int x,char c,double f); (ICD)Z
double fun3(String s,int i,float f); (Ljava/lang/String;IF)D
String fun4(int i,int j,Book b); (IILBook;)Ljava/lang/String;

Just to have another example, the following lines show the definition, in the class
Book, of the native method lighter that receives a reference to a book as an argument
and returns a boolean value that indicates if the receptor book is lighter than the book
passed as an argument:

public native boolean lighter(Book other);

The C function can be defined as follows:

JNIEXPORT jboolean JNICALL Java_Book_lighter
(JNIEnv *env, jobject obj_this, jobject other) {

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

1The utility command javap with option -s can be used to get the signature of all methods from a specific
class.

120 Introduction to Java

// get the method id
jmethodID id_getWeight = (*env)->GetMethodID(env,

class_Book,"getWeight","(F)F");

// call the method twice
jfloat w1 = (*env)->CallFloatMethod(env,obj_this,

id_getWeight,80.0);
jfloat w2 = (*env)->CallFloatMethod(env,other,

id_getWeight,80.0);

if (w1 < w2)
return JNI_TRUE;

else
return JNI_FALSE;

}

The native function calls the method getWeight on both instances: the receptor
object (referenced by this) and the object passed as argument (referenced by other).
Note the use of the function CallFloatMethod since the return value of the method is a
float.

The following application presents an example of the use of this method:

class TestBook9 {
public static void main(String[] args) {
Book b1=new Book("Thinking in Java","Bruce Eckel",1129);
Book b2=new Book("Java in a nutshell","David Flanagan",353);
if (b1.lighter(b2))
System.out.println("Lighter");

else
System.out.println("Not lighter");

}
}

The output of the execution of the application is:

Not lighter

26.7 Calling static Java methods from C

Of course static Java methods can be called from Java. The next example shows the
definition, in the class Book, of the native method printDescription2 that receives no
arguments and returns nothing. The method just prints the description of the book by
calling the static method getDescription.

public native static void printDescription2();

The C function can be defined as follows:

121

JNIEXPORT void JNICALL Java_Book_printDescription2
(JNIEnv *env, jclass cl) {

// get the method id
jmethodID id_desc = (*env)->GetStaticMethodID(env,cl,

"printDescription","()V");

// call it
(*env)->CallStaticVoidMethod(env,cl,id_desc);

}

It is necessary to get a method identifier for the method to be called. This is done as
follows:

jmethodID id_desc = (*env)->GetStaticMethodID(env,cl,
"printDescription","()V");

The function GetStaticMethodID returns a method identifier for the static method
described by the arguments. The first argument is the environment, the second one is
the class of the object, the third one a string that corresponds to the name, and the
fourth one a string that identifies the signature or prototype of the method. In this case,
the type is ”()V”, indicating that the method has no arguments and the return type is
void.

The method printDescription is called by executing:

(*env)->CallStaticVoidMethod(env,cl,id_desc);

The JNI function CallStaticVoidMethod sends the message specified by the method
identifier to a specific object. The method is specified by the third argument and the class
by the second argument. Note that in our example, the method printDescription is
also native.

The following application presents an example of the use of this method:

class TestBook10 {
public static void main(String[] args) {
Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b1.printDescription2();

}
}

The output of the execution of the application is:

I am a book!

In this example, the function CallStaticVoidMethodwas used to call a method that
return nothing (void). Of course, other functions must be used for methods that returns
different types. A set of functions CallStatic--Method are provided by JNI, where --
can be Boolean, Byte, Char, Short, Int, Long, Float, Double or Object.

122 Introduction to Java

26.8 Calling Java constructors from C

A native method can create Java objects by calling a constructor. The next example
shows the definition, in the class Book, of the native method createNewBook that re-
ceives the title, the author and the number of pages and returns a new Book. The
method just calls one of the constructors of the class Book.

public native static Book createNewBook(String tit,String aut,
int num);

The C function can be defined as follows:

JNIEXPORT jobject JNICALL Java_Book_createNewBook
(JNIEnv *env, jclass cl, jstring tit, jstring aut, jint num) {

// get the method id
jmethodID id_constructor = (*env)->GetMethodID(env,cl,

"<init>","(Ljava/lang/String;Ljava/lang/String;I)V");

// build the object
jobject obj_new = (*env)->NewObject(env,cl,id_constructor,

tit,aut,num);

// return it
return obj_new;

}

The function GetMethodID is used to get the method identifier for the constructor:

jmethodID id_constructor = (*env)->GetMethodID(env,cl,
"<init>","(Ljava/lang/String;Ljava/lang/String;I)V");

The name of the method is specified by the string ”<init>”, which is the internal
name used in the Java Virtual Machine for the constructors. The string ”(Ljava/lang/String;Ljava/lang/String;I)V”
is the signature of the first constructor in the class Book.

The constructor is called as follows:

jobject obj_new = (*env)->NewObject(env,cl,id_constructor,
tit,aut,num);

The function NewObject returns a new object created by calling the constructor spec-
ified by the third argument of the class, which in turn is specified by the second argu-
ment. The parameters for the constructor are passed starting from the fourth position.

The following application presents an example of the use of this method:

123

class TestBook11 {
public static void main(String[] args) {
Book b1 = Book.createNewBook("Java in a nutshell",

"David Flanagan",353);
System.out.println("Book: " + b1.title + " ," + b1.author

+ " ," + b1.numberOfPages);
}

}

The output of the execution of the application is:

Book: Java in a nutshell ,David Flanagan ,353

26.9 Using arrays

It is possible to access Java arrays from native methods in C. JNI defines a set of types
to be used in C that correspond to Java arrays. They are shown in the following table:

Java arrays C arrays

boolean[] jbooleanArray
byte[] jbyteArray
char[] jcharArray
int[] jintArray
short[] jshortArray
long[] jlongArray
float[] jfloatArray
double[] jdoubleArray
Object[] jobjectArray

The next example shows the definition, in the class Book, of the native method
biggest that receives an array of books as an argument and returns a reference to
the biggest book. The method selects the biggest book by considering the number of
pages of the books in the array.

public native static Book biggest(Book[] books);

The C function can be defined as follows:

JNIEXPORT jobject JNICALL Java_Book_biggest
(JNIEnv *env, jclass cl, jobjectArray books) {

// get the field id
jfieldID id_numberOfPages = (*env)->GetFieldID(env,cl,

"numberOfPages","I");

124 Introduction to Java

// get the array length
jsize length = (*env)->GetArrayLength(env,books);

// traverse the array searching for the biggest book
int i;
int biggest = 0;
int numPages = 0;

for(i = 0;i < length;i++) {

// get ith book
jobject book = (*env)->GetObjectArrayElement(env,books,i);

// get number of pages
jint numberOfPages = (*env)->GetIntField(env,book,

id_numberOfPages);

// compare
if (numberOfPages > numPages) {
biggest = i;
numPages = numberOfPages;

}
}

// return it
return (*env)->GetObjectArrayElement(env,books,biggest);

}

The parameter books, that receives the array of books is defined with type jObjectArray.
The native function obtains the length of this array by executing:

jsize length = (*env)->GetArrayLength(env,books);

The function GetArrayLength returns a value of type jsize that corresponds to the
length of the array. The parameters are the environment and the Java array.

The i-th object in the array is obtained as follows:

jobject book = (*env)->GetObjectArrayElement(env,books,i);

The function GetObjectArrayElement receives as arguments the environment, the
array of objects and the position, and returns a reference to the object stored in this
position in the array.

The number of pages of the book in the array can be got as usual with the function
GetIntField:

125

jint numberOfPages = (*env)->GetIntField(env,book,
id_numberOfPages);

The function returns a reference to the biggest book by using the function GetObjectArrayElement:

return (*env)->GetObjectArrayElement(env,books,biggest);

The following application presents an example of the use of this method:

class TestBook12 {
public static void main(String[] args) {
Book b1=new Book("Java in a nutshell","David Flanagan",353);
Book b2=new Book("Thinking in Java","Bruce Eckel",1129);
Book b3=new Book("Neural Networks, A Comprehensive Foundation",

"Simon Haykin",696);

Book[] books = {b1,b2,b3};

Book biggest = Book.biggest(books);

System.out.println("The biggest book is: " + biggest.title);
}

}

The output of the execution of the application is:

The biggest book is: Thinking in Java

The elements in the array can also be modified by using the JNI function SetObjectArrayElement.
It has one extra parameter that is the reference to be assigned into the specific array po-
sition.

These methods can be used to access the elements of a Java array of Objects. JNI
provides a set of functions that can be used to convert other types of Java arrays into
equivalent C arrays. In this way, the arrays can be processed by using the efficient C
instructions. The next example defines the method smaller, that receives an array of
integers as an argument and returns an integer value that indicates how many numbers
in the array are smaller than the number of pages in the book. Note that it converts the
Java array into a C array before processing:

public native int smaller(int[] numbers);

The C function can be defined as follows:

JNIEXPORT jint JNICALL Java_Book_smaller
(JNIEnv *env, jobject obj_this, jintArray numbers) {
// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

126 Introduction to Java

// get the field id
jfieldID id_numberOfPages = (*env)->GetFieldID(env,

class_Book,"numberOfPages","I");

// get the field value
jint numberOfPages = (*env)->GetIntField(env,obj_this,

id_numberOfPages);

// get the size of the array
jsize length = (*env)->GetArrayLength(env,numbers);

// get the standard C array
int *a = (*env)->GetIntArrayElements(env,numbers,NULL);

// compute
int i,count = 0;
for(i = 0;i < length;i++) {
if (a[i] < numberOfPages)
count++;

}

// release the array
(*env)->ReleaseIntArrayElements(env,numbers,a,0);

// return the value
return count;

}

The function GetIntArrayElements converts a Java array of jint values into a C
array of int values:

int *a = (*env)->GetIntArrayElements(env,numbers,NULL);

The parameters of the function are the environment and the Java array 1. After the
assignment, the variable a can be used as a normal array. The memory area assigned
dynamically to the array is released by calling the function ReleaseIntArrayElements
with the environment, the original Java array and the C array as parameters 2:

(*env)->ReleaseIntArrayElements(env,numbers,a,0);

The following application presents an example of the use of this method:

class TestBook13 {

1The third argument will be always NULL in our examples. Refer to the documentation for more details if
necessary.

2The fourth argument will be always 0 in our examples. Refer to the documentation for more details if
necessary.

127

public static void main(String[] args) {
Book b1=new Book("Java in a nutshell","David Flanagan",353);

int[] numbers = {550,645,138,85,1022};

int num = b1.smaller(numbers);

System.out.println("Result: " + num);
}

}

The output of the execution of the application is:

Result: 2

In order to process elements from arrays with different types, JNI provides a set of
functions Get--ArrayElements, where -- can be Boolean, Byte, Char, Short, Int,
Long, Float, Double or Object.

The next example shows that the elements of an array can be modified from a native
method. The example defines the method getNumPages, that receives an array of books
and an array of integers as arguments and returns nothing. The method stores the
number of pages of each book in the corresponding position of the array of integers:

public native static void getNumPages(Book[] books,
int[] numbers);

The C function can be defined as follows:

JNIEXPORT void JNICALL Java_Book_getNumPages
(JNIEnv *env, jclass cl, jobjectArray books,
jintArray numbers) {

// get the field id
jfieldID id_numberOfPages = (*env)->GetFieldID(env,cl,

"numberOfPages","I");

// get the array length
jsize length = (*env)->GetArrayLength(env,books);

// get the standard C array for numbers
int *a = (*env)->GetIntArrayElements(env,numbers,NULL);

// traverse the array
int i;

for(i = 0;i < length;i++) {

128 Introduction to Java

// get ith book
jobject book = (*env)->GetObjectArrayElement(env,books,i);

// get number of pages
jint numberOfPages = (*env)->GetIntField(env,book,

id_numberOfPages);

// store it into the numbers array
a[i] = numberOfPages;

}
// release the array
(*env)->ReleaseIntArrayElements(env,numbers,a,0);

}

The native function traverses the array of books and stores the number of pages of
each book in the corresponding position of the array a. The function ReleaseIntArrayElements
has to be called at the end, not only to release the memory used by the array, but also
to perform the copy of the elements of the C array to the Java array.

The following application presents an example of the use of this method:

class TestBook14 {
public static void main(String[] args) {
Book b1=new Book("Java in a nutshell","David Flanagan",353);
Book b2=new Book("Thinking in Java","Bruce Eckel",1129);
Book b3=new Book("Neural Networks, A Comprehensive Foundation",

"Simon Haykin",696);

Book[] books = {b1,b2,b3};
int[] numbers = new int[3];

Book.getNumPages(books,numbers);

for(int i = 0;i < 3;i++)
System.out.println("Book " + i + ": " + numbers[i]);

}
}

The output of the execution of the application is:

Book 0: 353
Book 1: 1129
Book 2: 696

26.10 Exceptions

It is possible to throw exceptions from a C native function. They are passed to Java
methods for processing. The next example defines the method writeFile, that receives

129

no arguments and returns nothing, but can throw an IOException. The native method
just writes the title of the book in a text file, generating the exception if something goes
wrong.

public native void writeFile() throws IOException;

The C function can be defined as follows:

JNIEXPORT void JNICALL Java_Book_writeFile
(JNIEnv *env, jobject obj_this) {

void throw_IO_exception(JNIEnv *);

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

// get the field id
jfieldID id_title = (*env)->GetFieldID(env,class_Book,

"title","Ljava/lang/String;");

// get the field value
jstring title = (*env)->GetObjectField(env,obj_this,

id_title);
char *str = (*env)->GetStringUTFChars(env,title,NULL);

FILE *fp;
if ((fp = fopen("book.text","w")) == NULL) {
throw_IO_exception(env);
(*env)->ReleaseStringUTFChars(env,title,str);
return;

}

if (fprintf(fp,"%s\n",str) != strlen(str)+1) {
throw_IO_exception(env);
(*env)->ReleaseStringUTFChars(env,title,str);
return;

}

(*env)->ReleaseStringUTFChars(env,title,str);

if (fclose(fp)) {
throw_IO_exception(env);
return;

}
}

130 Introduction to Java

The native function gets the string value from the field title, opens a text file, writes
the string into the file and closes it. The function throw IO exception is called if there
is an error. This function is defined as follows:

void throw_IO_exception(JNIEnv *env) {

// get IO Exception class
jclass class_IO_exc = (*env)->FindClass(env,

"java/io/IOException");

// get constructor method
jmethodID id_IO_exc = (*env)->GetMethodID(env,

class_IO_exc,"<init>","()V");

// create object
jthrowable obj_exc = (*env)->NewObject(env,

class_IO_exc,id_IO_exc);

// throw it
(*env)->Throw(env,obj_exc);

}

In order to throw an exception an object of the class IOException has to be created.
This is done by calling the constructor of this class, in the same way as it was detailed
in section 26.8. First, the class of the exception has to be obtained. This can be done
with the function FindClass, to which a string identifying the class has to be passed:

jclass class_IO_exc = (*env)->FindClass(env,
"java/io/IOException");

Then, the function has to get a method identifier for the constructor (method <init>):

jmethodID id_IO_exc = (*env)->GetMethodID(env,
class_IO_exc,"<init>","()V");

The function NewObject is used to create the exception object:

jthrowable obj_exc = (*env)->NewObject(env,
class_IO_exc,id_IO_exc);

The exception is thrown by using the function Throw:

(*env)->Throw(env,obj_exc);

Note that the execution of this function by itself does not force the native method
termination. The native method has to perform a return after throwing the exception.

The following application presents an example of the use of this method:

131

class TestBook15 {
public static void main(String[] args) {
Book b1=new Book("Java in a nutshell","David Flanagan",353);

try {
b1.writeFile();
System.out.println("File written");

} catch (IOException e) {
System.out.println("Input/Output error");

}
}

}

The output of the execution of the application if there are no errors is:

File written

The output if there are errors is:

Input/Output error

It is also possible to create the exception with a single function call:

(*env)->ThrowNew(env,(*env)->FindClass(env,
"java/io/IOException"),"A problem");

The last argument is the string that identifies the reason of the exception. It can be
obtained by a Java method with the usual toString message.

JNI provides the function ExceptionOcurred that can be used to determine if a par-
ticular exception has been thrown and the function ExceptionClear to clear a pending
exception.

27 Ant

Ant is a building tool that provides support to compile, pack, deploy and document Java
applications. In some sense, its functionality is similar to the make command, except
that the approach is completely different. The make specifications are organized as a set
of shell commands, where the specifications for the ant command are defined in term
of XML sentences. A build file defines a project which consists of a set of tasks. The
building process is executed by calling out the target of tasks, where each task is run
by an object that implements a particular Task interface. The main advantage of this
approach is portability, since the build files are independent of the operating system. A
not so big disadvantage is that the shell commands cannot be used for specifications.

The ant specification is usually written in a file called build.xml. This file follows the
XML syntax, and it specifies a project (identified with the tag project), which consists
of a set of targets (identified with the tag target), which in turn consists of a set of task
elements. Each task element corresponds to a specific task to be performed by ant.

132 Introduction to Java

27.1 A first example

This section introduces ant with a simple example that can be used to compile a Java
application. Let us assume that the current directory contains the file HelloWorld.java
developed in section 3. A possible definition of the file build.xml follows:

<?xml version="1.0"?>
<!-- first build file -->

<project name="HelloWorld" default="build" basedir=".">
<target name="build">

<javac srcdir="." />
</target>

</project>

The first line specifies that this file is an XML file, the second line is a comment
and the rest specifies the actions to be taken for this project. The project is called
HelloWorld, its default action (target) is called build, and all directories will be con-
sidered relative to the current directory, which is specified by the value given to the
attribute basedir. Executing the project means just follow one target with name build.
This target involves only one task element, which is the compilation of all Java source
files in the current directory.

In order to compile the file, it is enough to execute the command ant as the following
example shows:

ant
Buildfile: build.xml

build:
[javac] Compiling 1 source file

BUILD SUCCESSFUL

Total time: 3 seconds

27.2 Projects, targets, task elements and properties

As it was explained before, a file build.xml specifies a project, which consists of a set
of targets, with each one containing a set of task elements.

A project specifies three attributes: the name of the project (name), the default target
(target) that will be called when no target is specified in the command line, and the
base directory (basedir), that provides the base for all relative references to directories
in the build file. The file build.xml in the previous section shows an example of a
project definition.

A target is a set of tasks to be executed. Each target can depend on other targets in
order to determine the order in which ant has to follow the different tasks in order to
build the project. A target specifies five attributes: the name of the target (name), the list

133

of targets on which it depends (depends), the name of the property that must be set (if),
the name of the property that must not be set (unless) and a comment (description).
Except for the name of the target, the other attributes are optional.

The properties can be used to hold a value. The value assigned to a property cannot
be changed, so they are not variables. As an example, the following XML sentences
assign the value yes to the variable conditionOK and the value src to the variable
src-dir:

<property name="conditionOK" value="yes"/>
<property name="src-dir" location="src"/>

The values can be accessed by placing the property name between "${" and "}".
Next section provides examples on its use.

27.3 A more complicated example

This section shows a file build.xml that can be used as a model for building specifi-
cation files for ant. The project called Complex can be used to create the TestComplex
application developed in section 15. This application consists of two files: Complex.java
and TestComplex.java, which are stored in a subdirectory with name src.

The project defines a set of four targets: init, build, dist and clean, that can
be used respectively to initialize the directory structure, compile the source files, create
the jar file and clean directories and object files. The file build.xml stored in the top
directory follows:

<?xml version="1.0"?>
<!-- first build file -->

<project name="Complex" default="dist" basedir=".">

<!-- set global properties -->
<property name="src-dir" location="src"/>
<property name="build-dir" location="build"/>
<property name="dist-dir" location="dist"/>

<target name="init" description="initial task">
<!-- Create the build directory -->
<mkdir dir="${build-dir}"/>

</target>

<target name="build" depends="init" description="compile task">
<javac srcdir="${src-dir}" destdir="${build-dir}"/>

</target>

<target name="dist" depends="build"
description="build distribution" >

134 Introduction to Java

<!-- Create the distribution directory -->
<mkdir dir="${dist-dir}"/>

<!-- Create the jar file -->
<jar jarfile="${dist-dir}/complex.jar" basedir="${build-dir}">
<include name="*.class"/>
<manifest>
<attribute name="Main-Class" value="TestComplex"/>

</manifest>
</jar>

</target>

<target name="clean" description="clean up" >
<delete dir="${build-dir}"/>
<delete dir="${dist-dir}"/>

</target>

</project>

The project is called Complex, its default target is dist and all directory references
are relative to the current directory. A set of properties are defined before any action is
taken:

<!-- set global properties -->
<property name="src-dir" location="src"/>
<property name="build-dir" location="build"/>
<property name="dist-dir" location="dist"/>

The property src-dir contains the value src, which is the directory in which the
source files are stored. The property build-dir contains the value build, which is the
directory in which the class files will be stored, and the property dist-dir the value
dist, the directory in which the final jar file will be created.

The target init just creates the directory specified by the variable build-dir, which
will be build in this case:

<target name="init" description="initial task">
<!-- Create the build directory -->
<mkdir dir="${build-dir}"/>

</target>

The target build is defined as follows:

<target name="build" depends="init" description="compile task">
<javac srcdir="${src-dir}" destdir="${build-dir}"/>

</target>

Note that it depends on the target init, meaning that init has to be executed before
build. Its task is to compile all java source files in the directory src and to leave all

135

class files in the directory build, as specified respectively by the attributes srcdir and
destdir.

The target dist is more complex:

<target name="dist" depends="build"
description="build distribution" >

<!-- Create the distribution directory -->
<mkdir dir="${dist-dir}"/>

<!-- Create the jar file -->
<jar jarfile="${dist-dir}/complex.jar" basedir="${build-dir}">
<include name="*.class"/>
<manifest>
<attribute name="Main-Class" value="TestComplex"/>

</manifest>
</jar>

</target>

It depends on build, meaning that the source files must be compiled before attempt-
ing to build the jar file. Its first action is to create the directory build. Then it creates
a jar file with name complex.jar in the dist directory, as specified by the attribute
jarfile. The base directory for the file references is build, as specified by the attribute
basedir, and the files that have to be included are those with extension .class, as spec-
ified by the task element include with attribute name. The manifest file is specified
with the task manifest, with the attribute Main-class with value TestComplex (see
section 15 for details on manifest file construction for this example).

The target clean just removes the directories created during the process:

<target name="clean" description="clean up" >
<delete dir="${build-dir}"/>
<delete dir="${dist-dir}"/>

</target>

An example of its execution follows:

ant
Buildfile: build.xml

init:
[mkdir] Created dir: ComplexNumbers/build

build:
[javac] Compiling 2 source files to ComplexNumbers/build

dist:
[mkdir] Created dir: ComplexNumbers/dist

136 Introduction to Java

[jar] Building jar: ComplexNumbers/dist/complex.jar

BUILD SUCCESSFUL

Total time: 11 seconds

It is possible to ask ant to execute just a specific target, by specifying it in the com-
mand line, as the following example shows:

ant clean
Buildfile: build.xml

clean:
[delete] Deleting directory ComplexNumbers/build
[delete] Deleting directory ComplexNumbers/dist

BUILD SUCCESSFUL

Total time: 3 seconds

ant build
init:

[mkdir] Created dir: ComplexNumbers/build

build:
[javac] Compiling 2 source files to ComplexNumbers/build

BUILD SUCCESSFUL

Total time: 7 seconds

Ant is quite more powerful than what the examples have shown. For more informa-
tion look at the Ant manual.

28 Java on the TINI

The TINI (Tiny InterNet Interface) is a platform developed by Dallas Semiconductor
that can be programmed in Java. Its Java API implements most of the classes in the
core packages java.lang, java.io, java.net and java.util. A new package called
com.dalsemi provides support for TINI unique capabilities.

In order to be able to execute an application developed in Java on the TINI, it is
necessary to follow a four steps process: (1) the application has to be compiled on the
target system by using a standard Java compiler, (2) then converted to the special format
required by TINI, (3) downloaded to the board and (4) executed there. The following
example shows these four steps when creating the HelloWorld application developed in
section 3.

137

Step 1: Compiling the source code : The source code is compiled by using any Java
compiler. For example, by using the Sun JDK, the command is:

javac HelloWorld.java

Step 2: Converting the .class file : The .class file generated in the previous step is
converted to the .tini format required by the TINI board by executing the program
TINIConvertor:

java -classpath /tini/bin/tini.jar TINIConvertor
-f HelloWorld.class
-d /tini/bin/tini.db -o HelloWorld.tini

Note that the program TINIConvertor is a Java application included in the file
tini.jar, this is why the program is executed by calling the Java interpreter spec-
ifying the jar file as the class path. The flag -f is used to specify the .class file
name and the flag -o to specify the .tini file name. The file tini.db is the TINI API
database. This example assumes that the TINI development system is located in
the directory /tini.

Step 3: Downloading the .tini file : The .tini file is downloaded to TINI by using ftp:

ftp tini
Connected to tini.
220 Welcome to slush. (Version 1.11) Ready for user login.
User (tini:(none)): root
331 root login allowed. Password required.
Password:
230 User root logged in.
ftp> bin
200 Type set to Binary
ftp> put HelloWorld.tini
200 PORT Command successful.
150 BINARY connection open, putting HelloWorld.tini
226 Closing data connection.
ftp: 183 bytes sent in 0.00 Seconds.
ftp> bye

Step 4: Executing on the TINI board : The program is executed by calling the Java
interpreter on TINI in a telnet session:

telnet tini
Connected to tini.
Escape character is ’ˆ]’.

Welcome to slush. (Version 1.11)

138 Introduction to Java

tini00a93c login: root
tini00a93c password:
TINI /> java HelloWorld.tini
HelloWorld

28.1 Using Ant

Since this process is rather tedious, it is usually automated by using makefiles, ant files
or the graphical user interfaces provided by some development environments. In this
section, we will explore a solution based on ant, using a package called tiniant. This
package provides the tini task element that can be used to convert a .class file into
a .tini class. The most important attributes are outputfile to specify the output file
name, database to specify the TINI API database, include for the source file names and
classpath for the location of the TINI development kit. It is necessary to specify also
the convert FileSet that specifies what to include and what to exclude in the output file.
For example, the file build.xml for compiling the application HelloWorld stored in the
directory src can be defined as follows:

<?xml version="1.0" encoding="UTF-8"?>

<project name="HelloWorld" default="convert" basedir=".">

<taskdef name="tini" classname="net.geeba.ant.Tini"/>

<property name="tini.dir" value="/tini/"
<property name="tini.db" value="${tini.dir}/bin/tini.db"/>
<property name="tini.classes"

value="${tini.dir}/bin/tiniclasses.jar"/>
<property name="tini.jar" value="${tini.dir}/bin/tini.jar"/>

<target name="init" description="initialize">
<mkdir dir="build"/>

</target>

<target name="build" depends="init" description="compile">
<javac srcdir="src" destdir="build"

bootclasspath="${tini.classes}"/>
</target>

<target name="convert" depends="build" description="convert">
<tini outputfile="HelloWorld.tini" database="${tini.db}"

classpath="${tini.jar}">
<convert dir="build"/>

</tini>
</target>

139

<target name="clean" description="clean">
<delete dir="build"/>
<delete file="HelloWorld.tini"/>

</target>
</project>

The application can be compiled with the command ant:

ant
Buildfile: build.xml

init:
[mkdir] Created dir: HelloWorldAnt/build

build:
[javac] Compiling 1 source file to HelloWorldAnt/build

convert:
[tini] TINIConvertor (KLA)
[tini] Version 1.24 for TINI 1.1 (Beta 2 and later ONLY!!!)
[tini] Built on or around March 20, 2002
[tini] Copyright (C) 1996 - 2002 Dallas Semiconductor Corp.
[tini] Loading class HelloWorldAnt/build/HelloWorld.class

from file HelloWorldAnt/build/HelloWorld.class
[tini] Getting UNMT...there are 0 user native methods
[tini]
[tini] Class HelloWorld, size 125, CNUM 8000, TH Contrib: 19
[tini]
[tini] Initial length of the application: 125
[tini] Output file created in 424 milliseconds.
[tini] Output file written in 1 milliseconds.
[tini] Output file size : 472
[tini] Number of string table entries: 1

BUILD SUCCESSFUL

Total time: 8 seconds

The third line in the file build.xml:

<taskdef name="tini" classname="net.geeba.ant.Tini"/>

is used to include the task tini in order to make it available for use in the specifica-
tions file. The tasks init and clean are defined in the same way as they were defined in
section 27.3. The task build compiles the file HelloWorld.java to HelloWorld.class
by including also the specific API class files developed for TINI with the attribute bootclasspath:

140 Introduction to Java

<target name="build" depends="init" description="compile">
<javac srcdir="src" destdir="build"

bootclasspath="${tini.classes}"/>
</target>

The task convert converts HelloWorld.class to HelloWorld.tini as specified by
the attribute outputfile, using the database specified by the property tini.db and
including the class definitions from tini.jar:

<target name="convert" depends="build" description="convert">
<tini outputfile="HelloWorld.tini" database="${tini.db}"

classpath="${tini.jar}">
<convert dir="build"/>

</tini>
</target>

It is possible to automate the download procedure by using a shell script for the FTP
transfer and make ant to call it after the building process is finished. The following shell
script called deploy.sh transfers the file HelloWorld.tini to the TINI board:

#!/bin/sh
ftp -n $1 <<!
user $2 $3
bin
put HelloWorld.tini
close
quit
!

It initiates an FTP session by using the board name, the user name and the password
passed as arguments in the command line. Note that it is possible to add more FTP
commands before the close statement. An example of its use from the command line
follows:

./deploy.sh tini root tini
Connected to tini.
220 Welcome to slush. (Version 1.11)
331 Password required for root.
230 User root logged in.
200 Type set to I.
local: HelloWorld.tini remote: HelloWorld.tini
150 Opening BINARY mode data connection for ’HelloWorld.tini’.
226 Transfer complete.
472 bytes sent in 0.00 Seconds.
221 Goodbye.

A special ant task called exec allows to call a script from the file build.xml. The
executable file is specified with the attribute executable, the base directory with dir

141

and the arguments with the FileSet arg. The attribute output can be used to specify
a file where the output of the command execution will be stored. The following task
definition can be used to download HelloWorld.tini to the tini board with name tini,
user account root and password tini:

<target name="deploy" depends="convert">
<exec dir="." executable="deploy.sh">
<arg value="tini"/>
<arg value="root"/>
<arg value="tini"/>

</exec>
</target>

The TINI application can then be downloaded by using ant as follows:

ant deploy

142 Introduction to Java

A The Book example

/**
* Books Application
*/

class Book {
String title;
String author;
int numberOfPages;
String ISBN;
static String owner;

/** This constructor creates a Book with a specified title,
* author, number of pages and unknown ISBN
*/

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}

/** This constructor creates a Book with a specified title,
* author, number of pages and ISBN
*/

Book(String tit,String aut,int num,String isbn) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = isbn;

}

/** This method returns a string containing the initials of
* the author
*/

public String getInitials() {
String initials = "";

for(int i = 0;i < author.length();i++) {
char currentChar = author.charAt(i);
if (currentChar >= ’A’ && currentChar <=’Z’) {
initials = initials + currentChar + ’.’;

143

}
}
return initials;

}

/** This method returns true if both the receptor and the
* argument correspond to the same book
*/

public boolean equals(Book b) {
return (title.equals(b.title) && author.equals(b.author) &&

numberOfPages == b.numberOfPages &&
ISBN.equals(b.ISBN));

}

/** This method sets the owner of the book
*/

public void setOwner(String name) {
owner = name;

}

/** This method gets the owner of the book
*/

public String getOwner() {
return owner;

}

/** This method returns a description of the book
*/

public static String description() {
return "Book instances can store information on books";

}
}

144 Introduction to Java

B The Scientific Book example

/**
* Scientific Book Class
*/

class ScientificBook extends Book {
String area;
boolean proceeding = false;

/** This constructor creates a Scientific Book with a
* specified title, author, number of pages, ISBN and
* area. Proceeding is set to false
*/

ScientificBook(String tit,String aut,int num,String isbn,
String a) {

super(tit,aut,num,isbn);
area = a;

}

/** This method returns true if both the receptor and the
* argument correspond to the same book
*/

public boolean equals(ScientificBook b) {
return super.equals(b) && area.equals(b.area) &&

proceeding == b.proceeding;
}

/** This method returns a description of the book
*/

public static String description() {
return "ScientificBook instances can store information" +

" on scientific books";
}

/** This method sets proceeding to true
*/

public void setProceeding() {
proceeding = true;

}

/** This method sets proceeding to false

145

*/

public boolean isProceeding() {
return proceeding;

}
}

C The Complex number example

/**
* Complex Number class
*/

public class Complex {
private double real; // real part
private double im; // imaginary part

/** This constructor creates a complex number from its real
* and imaginary part.
*/

Complex(double r,double i) {
real = r;
im = i;

}

/** This constructor creates a complex number as a copy
* of the complex number passed as argument
*/

Complex(Complex c) {
this(c.real,c.im);

}

/** This method returns the real part
*/

public double getReal() {
return real;

}

/** This method returns the imaginary part
*/

public double getImaginary() {

146 Introduction to Java

return im;
}

/** This method returns a new complex number wich is
* the result of the addition of the receptor and the
* complex number passed as argument
*/

public Complex add(Complex c) {
return new Complex(real + c.real,im + c.im);

}

/** This method returns a new complex number wich is
* the result of the substraction of the receptor and the
* complex number passed as argument
*/

public Complex sub(Complex c) {
return new Complex(real - c.real,im - c.im);

}

/** This method returns a new complex number wich is
* the result of the product of the receptor and the
* complex number passed as argument
*/

public Complex mul(Complex c) {
return new Complex(real * c.real - im * c.im,

real * c.im + im * c.real);
}

/** This method returns a new complex number wich is
* the result of the product of the receptor and the
* complex number passed as argument
*/

public Complex div(Complex c) {
double r,i;

if (Math.abs(c.real) >= Math.abs(c.im)) {
double n = 1.0 / (c.real + c.im * (c.im / c.real));
r = n * (real + im * (c.im / c.real));
i = n * (im - real * (c.im / c.real));

} else {
double n = 1.0 / (c.im + c.real * (c.real / c.im));
r = n * (im + real * (c.real / c.im));

147

i = n * (- real + im * (c.real / c.im));
}
return new Complex(r,i);

}

/** This method returns a new complex number wich is
* the result of the scaling the receptor by the
* argument
*/

public Complex scale(double c) {
return new Complex(real * c,im * c);

}

/** This method computes the norm of the receptor
*/

public double norm() {
return Math.sqrt(real * real + im * im);

}

/** This method increments the real part by a value
* passed as argument. Note that the method modifies
* the receptor
*/

public Complex addReal(double c) {
real += c;
return this;

}

/** This method returns a string representation of
* the receptor
*/

public String asString() {
return "" + real + " + i * " + im;

}
}

D The Producer and Consumer example

/**
* Producer Consumer class Application
*/

148 Introduction to Java

class ProducerConsumer {

/** This method creates a common buffer, and starts two
* threads: the producer and the consumer
*/

public static void main(String[] args) {

// creates the buffer
Buffer buffer = new Buffer(20);

Producer prod = new Producer(buffer);
Consumer cons = new Consumer(buffer);

// start the threads
prod.start();
cons.start();

}
}

/**
* Producer class Application
*/

class Producer extends Thread {
Buffer buffer;

/** This constructor initialize the data member buffer as
* a reference to the common buffer
*/

public Producer(Buffer b) {
buffer = b;

}

/** This method executes as a thread. It keeps inserting
* a value into the buffer
*/

public void run() {
double value = 0.0;

while (true) {
buffer.insert(value);
value += 0.1;

149

}
}

/**
* Consumer class Application
*/

class Consumer extends Thread {
Buffer buffer;

/** This constructor initialize the data member buffer as
* a reference to the common buffer
*/

public Consumer(Buffer b) {
buffer = b;

}

/** This method executes as a thread. It keeps removing
* values from the buffer, and printing them
*/

public void run() {

while(true) {
System.out.println(buffer.delete());
}

}
}

/**
* Buffer class Application
*/

class Buffer {

double buffer[];

int head = 0;
int tail = 0;
int size = 0;
int numElements = 0;

/** This constructor initialize the data member buffer as
* an array of doubles. The size of the array is also
* initialized

150 Introduction to Java

*/

public Buffer(int s) {
buffer = new double[s];
size = s;
numElements = 0;

}

/** This method inserts an element into the circular
* buffer. The thread goes to sleep if there is no empty
* slots, and notify waiting threads after inserting an
* element
*/

public synchronized void insert(double element) {

if (numElements == size) {
try {
wait();

} catch(InterruptedException e) {
System.out.println("Interrupted");

}
}
buffer[tail] = element;
tail = (tail + 1) % size;
numElements++;
notify();

}

/** This method removes an element from the circular
* buffer. The thread goes to sleep if there is no element
* to remove, and notify waiting threads after removing an
* element
*/

public synchronized double delete() {

if (numElements == 0) {
try {
wait();

} catch(InterruptedException e) {
System.out.println("Interrupted");

}
}
double value = buffer[head];
head = (head + 1) % size;

151

numElements--;
notify();
return value;

}
}

E The native Book example

#include <Book.h>
#include <stdio.h>

/*
* Class: Book
* Method: printDescription
* Signature: ()V
*/

JNIEXPORT void JNICALL Java_Book_printDescription
(JNIEnv *env,jclass cl) {

printf("I am a book!\n");
}

/*
* Class: Book
* Method: computeWeight
* Signature: (IF)F
*/

JNIEXPORT jfloat JNICALL Java_Book_computeWeight
(JNIEnv *env, jclass cl, jint numPages, jfloat paperWeight) {
jfloat pageWeight;

// assume an A4 page
pageWeight = (0.23 * 0.297) * paperWeight;

// compute the weight
return (numPages / 2.0) * pageWeight;

}

/*
* Class: Book
* Method: printTitle
* Signature: (Ljava/lang/String;)V
*/

JNIEXPORT void JNICALL Java_Book_printTitle
(JNIEnv *env, jclass cl, jstring title) {

152 Introduction to Java

char *str = (*env)->GetStringUTFChars(env,title,NULL);
printf(str);
(*env)->ReleaseStringUTFChars(env,title, str);
printf("\n");

}

/*
* Class: Book
* Method: getDescription
* Signature: ()Ljava/lang/String;
*/

JNIEXPORT jstring JNICALL Java_Book_getDescription
(JNIEnv *env, jclass cl) {
jstring jstr;
char desc[] = "I am a book!";

jstr = (*env)->NewStringUTF(env,desc);
return jstr;

}

/*
* Class: Book
* Method: incrementNumberOfPages
* Signature: (I)V
*/

JNIEXPORT void JNICALL Java_Book_incrementNumberOfPages
(JNIEnv *env, jobject obj_this, jint amount) {

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

// get the field id
jfieldID id_numberOfPages = (*env)->GetFieldID(env,

class_Book,"numberOfPages","I");

// get the field value
jint numberOfPages = (*env)->GetIntField(env,obj_this

id_numberOfPages);

// increment the value
numberOfPages += amount;

// set the field value
(*env)->SetIntField(env,obj_this,id_numberOfPages,

numberOfPages);
}

153

/*
* Class: Book
* Method: getWeight
* Signature: (F)F
*/

JNIEXPORT jfloat JNICALL Java_Book_getWeight
(JNIEnv *env, jobject obj_this, jfloat paperWeight) {

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

// get the field id
jfieldID id_numberOfPages = (*env)->GetFieldID(env,

class_Book,"numberOfPages","I");

// get the field value
jint numberOfPages = (*env)->GetIntField(env,obj_this,

id_numberOfPages);

// assume an A4 page
jfloat pageWeight = (0.23 * 0.297) * paperWeight;

// compute the weight
return (numberOfPages / 2.0) * pageWeight;

}

/*
* Class: Book
* Method: updateOwner
* Signature: (Ljava/lang/String;)Ljava/lang/String;
*/

JNIEXPORT jstring JNICALL Java_Book_updateOwner
(JNIEnv *env, jobject obj_this, jstring newOwner) {

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

// get the field id
jfieldID id_owner = (*env)->GetStaticFieldID(env,class_Book,

"owner","Ljava/lang/String;");

// get the field value
jstring owner = (*env)->GetStaticObjectField(env,obj_this,

id_owner);

154 Introduction to Java

// print old owner
char *str = (*env)->GetStringUTFChars(env,owner,NULL);
printf("Old owner: %s\n",str);
(*env)->ReleaseStringUTFChars(env,owner, str);

// set the new owner
(*env)->SetStaticObjectField(env,obj_this,id_owner,newOwner);

// return it
return newOwner;

}

/*
* Class: Book
* Method: printInitials
* Signature: ()V
*/

JNIEXPORT void JNICALL Java_Book_printInitials
(JNIEnv *env, jobject obj_this) {

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

// get the method id
jmethodID id_getInitials = (*env)->GetMethodID(env,

class_Book,"getInitials","()Ljava/lang/String;");

// call the method
jstring in = (*env)->CallObjectMethod(env,obj_this,

id_getInitials);

// print initials
char *str = (*env)->GetStringUTFChars(env,in,NULL);
printf("Initials: %s\n",str);
(*env)->ReleaseStringUTFChars(env,in, str);

}

/*
* Class: Book
* Method: lighter
* Signature: (LBook;)Z
*/

JNIEXPORT jboolean JNICALL Java_Book_lighter
(JNIEnv *env, jobject obj_this, jobject other) {

// get the class

155

jclass class_Book = (*env)->GetObjectClass(env,obj_this);

// get the method id
jmethodID id_getWeight = (*env)->GetMethodID(env,

class_Book,"getWeight","(F)F");

// call the method twice
jfloat w1 = (*env)->CallFloatMethod(env,obj_this,

id_getWeight,80.0);
jfloat w2 = (*env)->CallFloatMethod(env,other,

id_getWeight,80.0);

if (w1 < w2)
return JNI_TRUE;

else
return JNI_FALSE;

}

/*
* Class: Book
* Method: printDescription2
* Signature: ()V
*/

JNIEXPORT void JNICALL Java_Book_printDescription2
(JNIEnv *env, jclass cl) {

// get the method id
jmethodID id_desc = (*env)->GetStaticMethodID(env,cl,

"printDescription","()V");

// call it
(*env)->CallStaticVoidMethod(env,cl,id_desc);

}

/*
* Class: Book
* Method: createNewBook
* Signature: (Ljava/lang/String;Ljava/lang/String;I)LBook;
*/

JNIEXPORT jobject JNICALL Java_Book_createNewBook
(JNIEnv *env, jclass cl, jstring tit, jstring aut, jint num) {

// get the method id
jmethodID id_constructor = (*env)->GetMethodID(env,cl,

"<init>","(Ljava/lang/String;Ljava/lang/String;I)V");

156 Introduction to Java

// build the object
jobject obj_new = (*env)->NewObject(env,cl,id_constructor,

tit,aut,num);

// return it
return obj_new;

}

/*
* Class: Book
* Method: biggest
* Signature: ([LBook;)LBook;
*/

JNIEXPORT jobject JNICALL Java_Book_biggest
(JNIEnv *env, jclass cl, jobjectArray books) {

// get the field id
jfieldID id_numberOfPages = (*env)->GetFieldID(env,cl,

"numberOfPages","I");

// get the array length
jsize length = (*env)->GetArrayLength(env,books);

// traverse the array searching for the biggest book
int i;
int biggest = 0;
int numPages = 0;

for(i = 0;i < length;i++) {

// get ith book
jobject book = (*env)->GetObjectArrayElement(env,books,i);

// get number of pages
jint numberOfPages = (*env)->GetIntField(env,book,

id_numberOfPages);

// compare
if (numberOfPages > numPages) {
biggest = i;
numPages = numberOfPages;

}
}

// return it

157

return (*env)->GetObjectArrayElement(env,books,biggest);
}

/*
* Class: Book
* Method: smaller
* Signature: ([I)I
*/

JNIEXPORT jint JNICALL Java_Book_smaller
(JNIEnv *env, jobject obj_this, jintArray numbers) {

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

// get the field id
jfieldID id_numberOfPages = (*env)->GetFieldID(env,

class_Book,"numberOfPages","I");

// get the field value
jint numberOfPages = (*env)->GetIntField(env,obj_this,

id_numberOfPages);

// get the size of the array
jsize length = (*env)->GetArrayLength(env,numbers);

// get the standard C array
int *a = (*env)->GetIntArrayElements(env,numbers,NULL);

// compute
int i,count = 0;
for(i = 0;i < length;i++) {
if (a[i] < numberOfPages)
count++;

}

// release the array
(*env)->ReleaseIntArrayElements(env,numbers,a,0);

// return the value
return count;

}

/*
* Class: Book
* Method: getNumPages
* Signature: ([LBook;[I)V

158 Introduction to Java

*/
JNIEXPORT void JNICALL Java_Book_getNumPages
(JNIEnv *env, jclass cl, jobjectArray books,
jintArray numbers) {

// get the field id
jfieldID id_numberOfPages = (*env)->GetFieldID(env,cl,

"numberOfPages","I");

// get the array length
jsize length = (*env)->GetArrayLength(env,books);

// get the standard C array for numbers
int *a = (*env)->GetIntArrayElements(env,numbers,NULL);

// traverse the array
int i;

for(i = 0;i < length;i++) {

// get ith book
jobject book = (*env)->GetObjectArrayElement(env,books,i);

// get number of pages
jint numberOfPages = (*env)->GetIntField(env,book,

id_numberOfPages);

// store it into the numbers array
a[i] = numberOfPages;

}
// release the array
(*env)->ReleaseIntArrayElements(env,numbers,a,0);

}

/*
* Class: Book
* Method: writeFile
* Signature: ()V
*/

JNIEXPORT void JNICALL Java_Book_writeFile
(JNIEnv *env, jobject obj_this) {

void throw_IO_exception(JNIEnv *);

// get the class
jclass class_Book = (*env)->GetObjectClass(env,obj_this);

159

// get the field id
jfieldID id_title = (*env)->GetFieldID(env,class_Book,

"title","Ljava/lang/String;");

// get the field value
jstring title = (*env)->GetObjectField(env,obj_this,

id_title);
char *str = (*env)->GetStringUTFChars(env,title,NULL);

FILE *fp;
if ((fp = fopen("book.text","w")) == NULL) {
throw_IO_exception(env);
(*env)->ReleaseStringUTFChars(env,title,str);
return;

}

if (fprintf(fp,"%s\n",str) != strlen(str)+1) {
throw_IO_exception(env);
(*env)->ReleaseStringUTFChars(env,title,str);
return;

}

(*env)->ReleaseStringUTFChars(env,title,str);

if (fclose(fp)) {
throw_IO_exception(env);
return;

}
}

References

[1] Cay Horstmann and Gary Cornell (2001). Core Java, Volume I — Fundamentals. The
Sun Microsystems Press.

[2] Cay Horstmann and Gary Cornell (2000). Core Java, Volume II — Advanced Fea-
tures. The Sun Microsystems Press.

[3] Cay Hortsmann (2000). Computing concepts with Java 2, essentials. Second Edition.
Wiley.

[4] Steven Holzner (2000). Java 2. The Coriolis Group.

[5] Bruce Eckel (2000). Thinking in Java. Second Edition. Prentice Hall.

[6] Laura Lemay and Rogers Cadenhead (2000). Java 2. Guida Completa. Apogeo s.r.l.

[7] David Flanagan (1997). Java in a nutshell: A desktop quick reference. Second Edi-
tion. O’Reilly.

[8] Patrick Chan and Rossana Lee (1997). The Java class libraries: An annotated refer-
ence. Addison Wesley.

[9] The Java tutorial. A practical guide for programmers. Sun Microsystems. Available
online at http://java.sun.com.

