

Third Workshop on

Distributed Laboratory Instrumentation

Systems

22 November - 17 December 2004

Abdus Salam ICTP - Trieste, Italy

 1594/9
__

Graphical User Interfaces in Java

U. Raich
AB Division, CERN - Geneva

Graphical User Interfaces in Java

U. Raich†∗

† AB Division CERN

CH-1211 Geneva 23

Lecture given at the:

Third Workshop on

Distributed Laboratory Instrumentation Systems

Trieste, 22 November — 17 Desmber 2004

LNS

∗Ulrich.Raich@cern.ch

Abstract

The Workshop on Distributed Laboratory Systems intends to show how
a small distributed control and acquisition system could be set up. With the
arrival of the HTTP protocol and the World Wide Web it seems logical to at
least include this technology within the Workshop, if not making it its major
subject.

This lecture series of 6 lectures is dedicated to programming the WEB.
It will first introduce basic HTML programming providing static WEB pages
but very quickly introduce user interaction with WEB pages via Graphical
User Interfaces. It will first introduce HTML forms and its associated CGI
programs and then go into full blown Java applet programming.

Last but not least, the concept of re-usable software components that can
be treated by an interactive GUI builder, the Java Beans, will be introduced.

All these concepts will be demonstrated with example programs that form
part of the distributed laboratory system.

Once all the building blocks have been explained a complete distributed
application accessing the ICTP HC-11 boards is demonstrated. This system
consists of a sophisticated GUI application based on home built beans that
accesses the HC-11 hardware through a HttpServer on the TINI which in turn
interacts with the HC-11 via a serial command/response protocol.

Keywords: Linux
PACS numbers: 64.60.Ak, 64.60.Cn, 64.60.Ht, 05.40.+j

Contents

1 Basic HTML programming 1

1.1 Introduction . 1
1.2 WEB client-server model . 2
1.3 Static HTML . 3
1.4 Interactive HTML . 9

2 Accessing Hardware 14

2.1 Legacy equipment . 14
2.2 Software in the HC-11 . 16
2.3 The ICTP IO protocol . 18
2.4 Accessing the TINI . 22
2.5 Java Servlets . 22

3 Building Graphical User Interfaces with Swing 27

3.1 General comments on Graphical User Interfaces, the MVC
concept . 27

3.2 The View . 29
3.3 The Controller . 29
3.4 Creating the View . 29
3.5 The first widget on the screen 31
3.6 Java Applets . 32
3.7 The Applet life cycle . 36
3.8 Adding more Elements, Layout Management 37

3.8.1 The BorderLayout 38
3.8.2 The GridLayout . 40

3.9 The Event Delegation Model 44
3.10 The Calculator Model . 47

4 Software Components, Java Beans 49

4.1 What is a Bean? . 49
4.2 The Beanbox . 51
4.3 The BeanInfo class . 55
4.4 A customised Property Editor 57
4.5 Beans and Events . 59
4.6 Bounded Properties . 60

5 Putting things together 63

6 Conclusions 65

A HC-11 test procedure 66

B The servlet treating the post requests 67

C The full source code of the TINI ICTP IO class 76

4 Graphical User Interfaces

D The full source code of the Complex Calculator 92

1

1 Basic HTML programming

1.1 Introduction

CERN is the European Laboratory for particle physics located in Geneva and one
of the largest physics research centers in the world. It possesses several particle
accelerators of different types (protons, antiprotons, electrons, heavy ions) pro-
viding particle energies of up to 400 GeV. A new proton accelerator, the Large
Hadron Collider (LHC), a ring of 23 km circumference using supraconducting
magnets is currently under construction. When going into operation in 2006 it
will be the world’s highest energy accelerator and a unique research tool on this
planet.

Figure 1: Aereal view of CERN’s new Large Hadron Collider (LHC)

In LHC high energy particles will collide in precisely defined interaction points
where physics groups will place their detectors. The experiments will be of gi-
gantic dimensions (several stories high and weighting several thousand tons)
and groups of some thousand physicists will build the detectors and look af-
ter them during the physics runs. Already more than 50% of the world’s high
energy particle physicists work at CERN. As you may easily understand, the
exchange of information within such huge collaborations where subgroups in
different universities scattered around the globe work on different subsystems of
the detectors is a non-negligible problem. It is therefore not astonishing that the

2 Graphical User Interfaces

World Wide Web was born at CERN. The original WEB was a means to have de-
tector information stored over many computers in different countries but easily
accessible to everyone within the experiment collaboration.

An experiment at CERN. The image shows Delphi which was installed on the
now dismantled LEP accelerator. The new experiments foreseen for LHC will

even be bigger by an order of magnitude.

Figure 2: Delphi, an Experiment at the LEP Accelerator and its Crew

1.2 WEB client-server model

A major problem for international collaborations is the spread of information
across many computers in several labs located in several countries. Nowadays
most of the computers are linked through the Internet (btw: the WEB is NOT the
Internet! the WEB is an application and a protocol running over the Internet)
and it seems logical to invent a scheme where a request for information is sent

3

to a server machine, picking up the data in its local file system and sending it in
a defined format back to the requester who interprets the result and displays it.

A request is sent in the form of an http (the WEB’s protocol running over
the Internet) packet often received by an apache server which sends back ascii
information in the form of an html file which is interpreted by a browser (e.g
Netscape or Internet Explorer). This mechanisms works over the internet but
also locally using the local file system which can be very interesting for initial
testing.

1.3 Static HTML

The first html pages were simple formatted text pages. HTML gives you the
possibility to subdivide your text into headings, paragraphs, lists, tables etc.
and to modify the appearance of text, printing it bold or italic or you may modify
the font.

This is accomplished using so-called HTML tags. <h1> This is a header
</h1> is a typical example defining a first level header. <h1> starts the header
text </h1> determines its end.

When you start emacs on a new file with .html extension, emacs will auto-
matically create an html template of the following form for you:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>
Workshop on Distributed Laboratory Systems, Trieste 2001

</title>
</head>

<body>
<h1>
College on Distributed Laboratory Systems, Trieste 2001

</h1>
<hr>
<address>
Ulrich Raich

</address>
<!-- Created: Thu Nov 8 23:46:52 CET 2001 -->
<!-- hhmts start -->
<!-- hhmts end -->
</body>

</html>

4 Graphical User Interfaces

Even though this is an almost empty page we can still save it as is and load
it into netscape:

http://localhost/lecture/HTML/ICTP1.html

and we get what is shown in figure 3.

Figure 3: A first and very empty HTML page

Emacs created a lot of different <something></something> html tags which
define the basic structure of a html document. In the next section we will see
many more tags, used for all sorts of structuring, highlighting, layout and the
like. For the moment we will simply fill in the empty page with some text.

Here are the beginnings of a Welcome page for this Workshop. As you can
see, it looks very boring but wait. . . we are going to improve on that! Please note
that the screendumps are slightly different. The above one contains the Netscape
buttons in order to show that Netscape was used to bring up the page onto the
screen, while the one below and all following ones only show the page contents.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>
Workshop on Distributed Laboratory Systems, Trieste 2001

</title>
</head>

5

<body>
<h1>
Workshop on Distributed Laboratory Systems, Trieste 2001
</h1>
In 2001 the Realtime colleges get a new touch. The main language of
the college becomes Java, the network gets more attention and a full
distributed system is demonstrated, including HTML, GUI programming
with Swing, communication over the network via http, CGI scripts
and programs and a simple RS-232 protocol in order to communicate
with a microprocessor system.
As during the previous years Rinus Verkerk and Abhaya Induruwa
are the directors of the college.
We wish you all a lot of fun and hope you don’t regret to have
come to the college.
Ciao
<hr>
<address>

<a href="mailto:Ulrich.Raich@cern.ch"Ulrich Raich
</address>

<!-- Created: Thu Nov 8 23:46:52 CET 2001 -->
<!-- hhmts start -->
<!-- hhmts end -->
</body>

</html>

In order to improve the visual appearance of the page we must first get some
structure into the text which can be done by inserting tags similar to the ones
that emacs automatically created for us. Here is a little collection to begin with:

• headings — <h1>..<h6> create a heading of level 1..6;

• paragraph — <p> separates text into paragraphs;

• line break —

• center the text — <center>

In order to modify the appearance of a series of characters we can

• print them bold —

• or italic — <i>

• have them printed like a type writer — <tt>

• change their size — font size = 6

• or their color — or
the color code is: red, green, blue (0000ff is full blue)

6 Graphical User Interfaces

Figure 4: The HTML Page filled with some Text

<h1
Workshop on Distributed Laboratory Systems, Trieste 2001

</h1
<h2>
Introduction

</h2>
<p>
In <i>2001 the Realtime colleges</i>
get a new touch.
The main language of
the college becomes Java, the network
gets more attention and a full
distributed system is demonstrated,
including HTML,
GUI programming
with Swing,
communication over the network via
http, CGI scripts
and programs and a simple
RS-232 protocol in order to communicate
with a microprocessor system.

7

</pp>
As during the previous years
Rinus Verkerk and
Abhaya Induruwa
are the directors of the college.
We wish you all a lot of fun and hope you don’t regret to have
come to the college.
</p>
<center>

C
i
a
o

</center>

C
i
a
o

</center>

Of course we are curious to see the improvements in the page. For this reason
let us have a look at the current page in figure 5 as displayed with Netscape.

We can do better still:

• At first we will create a table with 2 columns using the <table> tag,

• then we put (aligned to the center) table headings (the names of our 2 di-
rectors!) enclosed in <th> tags,

• after this, the table body follows with a new row defined by <tr>

• and new table elements with <td>

• Inside those table elements we put the corresponding images.

The final code is shown below:

<table align = "center" cols=2 border="0" cellpadding="10"
cellspacing="5">

<thead><th align=center>Rinus</th>
<th align=center>Abhaya</th>
</thead>
<tbody>
<tr><td align=center>

8 Graphical User Interfaces

Figure 5: Improving the HTML page with style and color

</td><td align=center>

</td></tr>

</tbody>
</table>

Putting the tag micro-
processor around the text microprocessor we create a so-called anchor (this
is why the tag is named ”a”) which will create a link to a Unified Resource Locator
(URL) that can be activated. As we can see, the word microprocessor turns blue

9

and gets underlined, indicating it can be activated. Clicking the mouse pointer
on it will show an image of our HC-11 microprocessor system. If, instead of spec-
ifying the URL of a jpg image you specify the URL of another html page within
the a tag, then this html page will be loaded and displayed by your browser. Like
this the user can jump from one page to the next.

Of course this page does not conform to the latest standards of WEB design
but it shows the use of a maximum of tags on a small portion of text. And we
can do even quite a bit more:

1.4 Interactive HTML

When surfing the WEB and dowloading software or when buying things on the
Internet you have surely already seen some forms which you may fill in and
submit. . . Well, where do you actually send them to? And what happens, once
you have sent them?

These forms contain text input panels, buttons, pulldown selection menus,
and the like. In order to create a button we must first tell the browser that we
are going to use a form and then declare the button itself:
<form method="POST" action="http://localhost/cgi-bin/showString.cgi">.

The form tag declares that now interactive elements are permitted and that
the settings will be sent using the POST method. There are several ways of
treating post requests. The traditional way was the use of Common Gateway
Interface scripts which we will use in this chapter. Another way is the use of
servlets extending the http servers’ capabilities which will be treated in the last
chapter of this lecture series. Let us consider that the post requests will be sent
to a CGI program on localhost, namely cgi-bin/showString.cgi. Each WEB
server uses a directory tree for storage of html pages, images, video clips, audio
clips, and cgi programs which, in the case of the apache WEB server on RedHat
Linux, is /var/www, where you will find the subdirectories html and cgi-bin and
maybe some more.

HTML uses 2 different methods for sending user created information to the
WEB server:

• the GET
• and the POST action.

GET passes the information in evironment variables (and here we will stop
mentioning this method!) while with POST the WEB server will start the CGI
program and send the user created information as a text string on standard
input to it.

Time for an example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>>Becoming Interactive</title>

10 Graphical User Interfaces

Figure 6: The final Welcome Page for the Workshop

11

</head>
<body>
<h1>>Becoming Interactive</h1>
<h3>>Buttons, Menus and the like </h3>
<p>
Up to now all pages we got were purely static. I mean,
all pages were prepared before and simply displayed
<i> as is</i>. Now we want to figure out
how we can make pages interactive: The page we will
see now will be created on the fly
depending on settings provided by the user.
This is accomplished with so-called
 forms.
<hr>
<form method="POST" action="http://PCUli/cgi-bin/showString.cgi">
So, let us create a
<input type="checkbox" name="LED_data" value="b1">;
checkbox button (bit 1) and then
<input type="checkbox" name="LED_data" value="b2">
another one (bit 2)

</form>
<hr>
<address
>>>Ulrich Raich
</address>

<!-- Created: Sun Nov 11 13:50:25 CET 2001 -->
<!-- hhmts start -->
Last modified: Sun Nov 11 15:09:33 CET 2001
<!-- hhmts end -->
</body>

</html>

And here is the result:
So far, so good. Now we have 2 buttons on the screen, we can activate those

buttons but that’s it. We still cannot send the information to the CGI program.
This will be accomplished by adding a submit button to the page:
<input type=”submit” name=”submit1” value=”Submit Request”>

Writing the really tiny C program named showString.c, compiling it to show-
String.cgi and installing it in the directory /var/www/cgi-bin will tell us what is
actually going on:

/* showString.c */
#include <stdio.h>
int main() {
char lineBuffer[1000];
int retCode;
printf("Content-type:text/html\n\n");

12 Graphical User Interfaces

Figure 7: Interactive HTML, a first try

while (fgets(lineBuffer,999,stdin) != NULL)
printf("%s\n",lineBuffer);}

As you can see, this program simply reads the standard input and it writes
the characters it receives on standard input back to the standard output. The
result, when the two checkbox buttons are pushed, is the following:

LED data=b1&LED data=b2&submit1=Submit+Request.

Now it also becomes clear what the parameters to the input tag mean: the
type describes the type of the GUI element and the name and value create
”name/value” pairs that are sent in the form: name=value e.g. LED data=b1
to the cgi program. The name value pairs are separated by an ampersand. All
the cgi program needs to do is picking up these name/value pairs, interpreting
them and executing whatever is appropriate.

Here are some more tags including an example which enable us to create a
nice interactive little WEB page. Please note that I also modified the name of the
CGI program! A complete html example is also given.

• <input type=”checkbox” name=”LED data” value=”b2” checked>

which creates the checkbox toggle button. If you mention checked the but-
ton will be on by default.

• <input type=”radio” name=”command” value=”read”checked>

creates a radio button with a name/value pair of ”command=read” which by
default is off. When you have several buttons of this type only a single one

13

can be active (you automatically deactivate the previously selected button
when selecting a new one).

• <input type=”text” name=”LCD data” maxlength=16 value=”! Hi all

!”>
creates a text input widget of maximum 16 char with a default text:
”! Hi all !”

• <input type=”reset” value=”Reset Request”> resets all input elements
to their default values.

The promissed example then looks like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>

<head>
<title>Becoming Interactive</title>

</head>
<body>

<h1>Becoming Interactive</h1>
<h2>Buttons, Menus and the like </h2>
<p>
Up to now all pages we got were purely static. I mean,
all pages were prepared beforehand and simply displayed
<i>as is</i>. Now we want to figure out how we can
make pages interactive: The page we will see now will
be created on the fly depending on settings provided
by the user. This is accomplished with so-called
forms.
<hr>
<form method="POST"
action="http://tini/servlet/HC11Servlet">
So, let us create a
<input type="checkbox" name="LED_data" value="b1">
checkbox button (bit 1) and then
<input type="checkbox" name="LED_data" value="b2">
another one (bit 2)

or some radiobox
<input type="radio" name="command" value="read"> read
<input type="radio" name="command" value="write" checked>
write

or we can create some
<input type = "text" name ="LCD_Data"
MAXLENGTH=16 VALUE="! Hi all !">
and let;s say a <select name="device">
<option value="LCD"> LCD </option>
<option selected value="LEDs"> LEDs </option>

14 Graphical User Interfaces

<option value="Switches"> Switches </option>
</select>

and the 2 more buttons for resetting the values to default
and for submit:

<input type="submit"
name="submit1" value="Submit Request">
<input type="reset" value="Reset Request">
</form>
<hr>
<address>
Ulrich Raich</address>

<!-- Created: Sun Nov 11 13:50:25 CET 2001 -->
<!-- hhmts start -->
Last modified: Sun Nov 11 16:53:04 CET 2001
<!-- hhmts end -->

</body>
</html>

This finished interactive WEB page sends data that correspond to settings
on the ICTP IO board. ”LED data=b1”, the text that will be sent to tini/serv-

let/HC11Servlet will be interpreted as a command switching bit 1 of the LEDs
on. If in addition ”command=write” is sent, then this information will be passed
onto the ICTP IO protocol and sent to the HC-11 via a serial protocol. You will
see the LED light up.

Finally there is a WEB page which refers to all devices available on the ICTP
HC-11 boards. The devices are accessed in the same way as in the example
above where only LEDs and LCD screen are treated. For more details on the
HC-11 boards, see the next chapter.

These programs are really interactive!

Of course it is impossible to go through all the features of HTML in just one
lecture. For this reason we give at least a link1 to a listing of some more HTML
tags.

2 Accessing Hardware

2.1 Legacy equipment

Imagine. . . You have this oscilloscope that you bought some years ago or this
multimeter or whatever other equipment which you would like to use in a mea-
surement setup and you want this to be accessible through the network. How
can you interface these devices such that they are visible on the net? Many

1http://werbach.com/barebones/

15

Figure 8: Finished interactive WEB page

commercial devices are delivered with some kind of computer interface, mostly
RS232 or Centronix or GPIB using a well defined communication protocol. For
the ICTP colleges we have designed and built a microprocessor board associated
with an I/O board (C.S. Ang) which possesses an RS-232 interface and which
uses a parallel interface in order to drive an LCD panel, an LED panel and a se-
ries of switches. A multiplexed ADC is implemented on the microcontroller chip
itself. The chip is a Motorola HC-11 microcontroller featuring 128 bytes of RAM,
2 kBytes of EEProm a parallel interface, a serial interface, timer, ADC . . . all on-
chip. This means that the processor board consists only of the microcontroller
itself with very few support electronics. It connects through a flat cable to the
I/O board (see figure 10, The microcontroller is mostly hidden by the flat cable.

Let us consider the HC-11 + I/O board as the commercial equipment which
we want to interface to the internet. In oder to make the device internet ready
we need some interface box that has an Ethernet connection on one side and a
serial interface on the other and the Tini is capable of implemented exactly this
type of box. The Tini can be accessed through TCP/IP and it has a serial line

16 Graphical User Interfaces

Figure 9: Accessing all HC-11 devices via dynamic html

that can be connected to the HC-11.

2.2 Software in the HC-11

In order to be able to communicate with the HC-11 a communications protocol
must be defined that allows access to HC-11 I/O devices. On the HC-11 a server
program implementing this protocol has been installed. Before being able to

17

Figure 10: The HC11 microcontroller and I/O board

download and debug the server however a simple debug monitor is needed which
is started on reset. The HC-11 EEPROM has therefore been subdivided into 2
sections of 1 kBytes each where the first one (at address F800) is used by the
protocol server and the second one (address FC00) by the debug monitor. Both
programs have been implemented in HC-11 assembly language.

The monitor has the following commands:

• gxxxx goto xxxx, start program at address xxxx
• s single step
• c continue program from the current address
• p program the EEPROM, used for downloding of programs
• v verify the EEPROM against the contents of a HC11 binary file (s19)
• r print register contents
• m examine and modify memory
• b set breakpoint (only a single breakpoint is possible)
• d display breakpoint

18 Graphical User Interfaces

• u uninstall breakpoint

This monitor will normally only be used by people who want to implement a
new ICTP IO protocol server with features deferring from the supplied one. It
can be accessed by the TINI through the TiniTerm terminal emulator, a program
that takes input from the connected telnet session and transfers them to the
serial line. Answers coming back from the HC-11 are read off the serial line and
printed in the telnet session.

2.3 The ICTP IO protocol

After reset the HC-11 starts the monitor and the monitor command gf800 ac-
cessed through TiniTerm, transfers control to the protocol server.

The protocol has been given the name ICTP IO protocol and borrows heav-
ily from the interface of UNIX drivers. Of course different servers are possible
treating different devices or treating devices in a different way.

The server provided as an example is capable of reading and writing the de-
vices available on the HC-11 boards. It does this by waiting for messages to be
sent to it via the serial line which have the following form:

• a header of 4 bytes, containing, in order, a device number, a command code,
an error code and a datasize field specifying how many bytes must be read
or witten

• in case of writing: the data must be attached in addition

The server analyses this ICTP IO message, executes the command specified
and send back a reply message of the same form in which the error code and, in
case of a read command, the data read from the device are modified.

In order to ease the use of the protocol on the client side a support class
named tini ictp io has been developed making it easy to create ICTP IO messages
and sending them to the HC-11. A typical client program (I used it to test the
support class) looks as follows:

/*
* ICTP_IO_test.java
*
* Created on September 1, 2003, 11:03 PM
*/

package tini_ictp_io;
/**
*
* @author uli
*/

public class ICTP_IO_test {

19

/** Creates a new instance of ICTP_IO_test */
public ICTP_IO_test() {

}

/**
* @param args the command line arguments
*/

public static void main(String[] args) {
byte LEDdata1 = 0x55;
byte LEDdata2 = -0x56; // should be 0xaa
String LCDString = new String("Ca marche!");
byte[] LCDbyteArray,LCDbyteArrayRead;
byte[] switchValue = new byte[1];

TINI_ICTP_IO tiniConn = new TINI_ICTP_IO();
tiniConn.setDebug(false);

for (int i=0; i<1;i++) {

if (tiniConn.open()!= TINI_ICTP_IO.ICTP_IO_SUCCESS)
{
System.out.println("Could not open HC-11 connection,

giving up ...");
System.exit(-1);

};
if (tiniConn.getDebug())

System.out.println("----------------- LED ---");
if (tiniConn.write(TINI_ICTP_IO.ICTP_IO_LED,LEDdata1)
!= TINI_ICTP_IO.ICTP_IO_SUCCESS)

System.out.println("Could not write to HC-11 \
connection");

if (tiniConn.getDebug())
System.out.println("----------------- LED ---");

if (tiniConn.write(TINI_ICTP_IO.ICTP_IO_LED,LEDdata2)
!= TINI_ICTP_IO.ICTP_IO_SUCCESS)

System.out.println("Could not write to
HC-11 connection");

}

if (tiniConn.getDebug())
System.out.println("--------------- ioctl LCD ---");

20 Graphical User Interfaces

if (tiniConn.ioctl(TINI_ICTP_IO.ICTP_IO_LCD,
(byte)TINI_ICTP_IO.ICTP_IO_CLEAR)
!= TINI_ICTP_IO.ICTP_IO_SUCCESS) {
System.out.println("Error on ioctl to select LCD");

}
if (tiniConn.ioctl(TINI_ICTP_IO.ICTP_IO_LCD,

(byte)TINI_ICTP_IO.ICTP_IO_HOME)
!= TINI_ICTP_IO.ICTP_IO_SUCCESS) {

System.out.println("Error on ioctl to select LCD");
}

LCDbyteArray = LCDString.getBytes();
if (tiniConn.getDebug())

System.out.println("----------------- LCD ---");
if (tiniConn.write(TINI_ICTP_IO.ICTP_IO_LCD,LCDbyteArray)
!= TINI_ICTP_IO.ICTP_IO_SUCCESS)
System.out.println("Could not write to

HC-11 connection");

if (tiniConn.open()!= TINI_ICTP_IO.ICTP_IO_SUCCESS) {
System.out.println("Could not open HC-11 connection,

giving up ...");
System.exit(-1);

};
tiniConn.setDebug(true);

if (tiniConn.getDebug())
System.out.println("------------------ Switches ---");

if (tiniConn.read(TINI_ICTP_IO.ICTP_IO_SWITCHES,
switchValue) !=

TINI_ICTP_IO.ICTP_IO_SUCCESS)
System.out.println("Could not read from

HC-11 connection");
else

System.out.println("Switch value : " + switchValue[0]);

LCDbyteArrayRead = new byte[16];
for (int i=0;i<LCDbyteArrayRead.length;i++)

LCDbyteArrayRead[i]=’ ’;
System.out.println("Before ictp_io_read LCD");
if (tiniConn.read(TINI_ICTP_IO.ICTP_IO_LCD,

LCDbyteArrayRead)
!= TINI_ICTP_IO.ICTP_IO_SUCCESS)

System.out.println("Could not read from HC-11

21

connection");
else

System.out.println("LCDtext : " +
new String(LCDbyteArrayRead));

if (tiniConn.close() != TINI_ICTP_IO.ICTP_IO_SUCCESS)
System.out.println("Could not close HC-11 connection");

}
}

As you can see the class TINI ICTP IO provides methods for opening and clos-
ing a serial connection to the HC-11, methods to read and write HC-11 devices
and ioctl methods for certain controls of the LCD like clear and home. The fol-
lowing devices are available and defined as public constants:

• ICTP IO SERVER: When reading this pseudo device an identifier for the
server type is returned. It is possible to run different servers on the same
type of hardware. On the HC-11 for example the ADC can be used to read a
single value but it may also be used as slow sampling ADC showing the time
development of a signal. Such a facility can be implementd in a different
server which would have a different ID number.

• ICTP IO SWITCHES: The dual inline switches on the I/O board
• ICTP IO ADC: The ADC on the HC-11 chip. Reading this device returns a

single byte value corresponding to the current input voltage connected to
the ADC.

• ICTP IO BUTTONS: Reads the current state of two push buttons on the I/O
board

• ICTP IO LED: The LED chain on the I/O board
• ICTP IO LCD: The LCD display on the I/O board.

These are the methods available:

• open(): Opens the serial line to the HC-11 and sends an ICTP IO message
with the command code set to open. Waits for the return mesaage and
passes on the error code.

• close(): Sends a close message to the HC-11
• write(byte dev, byte data): Write a byte to the HC-11 device specified by

device This call is typically used to write the LED chain.
• write(byte dev, byte data[]): Write a series of bytes to the HC-11 device

specified by device This call is typically used to write the LCD.
• read(byte dev, byte[] data): Read data from a device. Any device is read-

able, even the LEDs or LCD. In case of the HC-11 switches of the ADC data
read fron the device are returned otherwise it will be the data last written
to the device.

• ioctl(byte dev, byte ioctCmd): The LCD has additional features that allow
the user to clean the entire LCD display with a single command or to put
the cursor back to he beginning of the line (home the cursor). These are
ioctl command of which the following are available:

22 Graphical User Interfaces

– ICTP IO SELECT: The HC-11 multiplexes the data lines between the
LCD and the LEDs. ICTP IO SELECT selects the LCD.

– ICTP IO DESELECT: Same as above but the LEDs are selected. When
sending a wite command to LCD or LEDs this selection is down auto-
matically by the server.

– ICTP IO CLEAR: Clears the LCD display
– ICTP IO HOME: Put the LCD cursor to home position

The TINI ICTP IO class hides the protocol itself as well as all the difficulties
connected to the serial interface. You may want to check how exactly this is
done by looking at the source code of the class provided in the appendix of these
notes.

2.4 Accessing the TINI

Now that we know how to access the HC-11 though a class on the TINI we must
figure out how to access the TINI over the network. Naturally there are different
solutions like writing dedicated programs using sockets. The easiest way access-
ing the internet and the most commonly used one is browsing WEB browsing.
We have already seen how to write WEB pages that can access dynamic informa-
tion. In order to be able to follow this path, we would need a WEB server running
on the TINI. A WEB server is a server program understanding the http protocol
and such a server including extensions to allow creation of dynamic html pages
through so-called servlets is available on the TINI. Each WEB server expects
html files in a predefined directory on its file system, /docs in the case of TINI. In
order to check TINI access we take one of the html files described in the previous
chapters and put it into the TINI’s /docs directory. Starting a WEB browser on
the PC and entering http://mytini/mypage.html as URL will take use to our html
file, If no filename is given we are directed to the root of the TINI’s html tree, a
file named index.html. None of the pages we saw in the previous chapter how-
ever is capable of creating WEB pages dynamically which is needed if we want to
display the state of our HC-11 hardware. Traditionally the creation of dynamic
page content was accomplished with so-called Common Gateway Iinterface (CGI)
scripts. A even more powerful solution is the use of servlets, pieces of Java code
extending the server. Servlets must be compiled and linked into the server be-
fore installation. The next task will therefore be the addition of a HC11Servlet
which will do the access to the HC-11 through the TINI ICTP IO class and create
dynamically a html page displayin the result.

2.5 Java Servlets

A servlet extends the Http server functionality. In the chapter on applets we will
see that it does this in a way which is very similar to the applet increasing the
functionality of a WEB browser on the client side.

Servlets are normal Java code which create HTML code and send it back to
the browser. They have a life cycle which is similar to that of an applet. A servlet

23

has an init method, a service method and a destroy method. The init method
is executed when the servlet is first loaded. Servlets are not ”run” in the same
sense as Java applets or applications, they extend server functionality. In order
to access a servlet it must be installed in the hosting server and a servlet service
request must be made via a client request.

Http servlets are accessed by the user entering a URL or by an HTML form
action like the one explained in the previous chapter. For example: If you enter
the URL: http://tini/servlet/SnoopServlet then the SnoopServlet is requested to
dynamically create an HTML page and send it to the browser for interpretation.
If the submit button on the hc11.html page is pressed then a http request will
be sent to the HC11Servlet which will execute a ICTP IO command: read, write,
ioctl on the HC-11 and return the result in form of an html page to the browser.

Since servlets that use the http protocol are very common an http specific
helper class HttpServlet is provided. Http defines a set of text based requests
called http methods. These methods include

• GET
• POST
• PUT
• DELET
• TRACE
• CONNECT
• OPTIONS

Since we are only using the post method, we will concentrate on this. The
http message contains information about the the type of request, the requestor,
the host, the browser etc. which can be consulted by the servlet. Before going
any further let’s have a look at an example. This is a code snippet that was
extracted from the SnoopServlet which is provided with the TiniHttpServer bye
Smart Software Consulting (www.smartsc.com).

import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class SnoopServlet
extends HttpServlet
{

public void doPost(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException
{

24 Graphical User Interfaces

doGet(req, res);}

public void doGet(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException
{
PrintWriter out;
res.setContentType("text/html");
int i;
out = res.getWriter();
out.println("<html>");
out.println("<head><title>Snoop Servlet</title></head>");
out.println("<body>");
out.println("<h1>Request information:</h1>");

out.println("<pre>");
print(out, "Request method", req.getMethod());
print(out, "Request URI", req.getRequestURI());
print(out, "Request protocol", req.getProtocol());
print(out, "Servlet path", req.getServletPath());
print(out, "Path info", req.getPathInfo());
print(out, "Path translated", req.getPathTranslated());
print(out, "Query string", req.getQueryString());
print(out, "Content length", req.getContentLength());
print(out, "Content type", req.getContentType());
print(out, "Server name", req.getServerName());
print(out, "Server port", req.getServerPort());
print(out, "Remote user", req.getRemoteUser());
print(out, "Remote address", req.getRemoteAddr());
print(out, "Remote host", req.getRemoteHost());
print(out, "Authorization scheme", req.getAuthType());
out.println("</pre>");
enum = req.getHeaderNames();
if(enum.hasMoreElements())

{
out.println("<h1>Request headers:</h1>");
out.println("<pre>");
while(enum.hasMoreElements())
{
String name = (String)enum.nextElement();
out.println(" " + name + ": " + req.getHeader(name));
}
out.println("</pre>");

}
enum = req.getParameterNames();
if(enum.hasMoreElements())
{

25

out.println("<h1>Servlet parameters
(Single Value style):</h1>");

out.println("<pre>");
while(enum.hasMoreElements())
{
String name = (String)enum.nextElement();
out.println(" " + name + " = "

+ req.getParameter(name));
}
out.println("</pre>");

}
enum = req.getParameterNames();
if(enum.hasMoreElements())
{
out.println("<h1>

Servlet parameters (Multiple Value style):
</h1>");

out.println("<pre>");
while(enum.hasMoreElements())
{
String name = (String)enum.nextElement();
String[] vals = req.getParameterValues(name);
//out.println(" " + name + " = " +
// req.getParameter(name));

if (vals != null)
{
out.print(" " + name + " = ");
out.println(vals[0]);
for(i = 1; i<vals.length; i++)

out.println(" " + vals[i]);
}

out.println("<p>");
}
out.println("</pre>");

}
out.println("</body></html>");

}

As we can see this servlet does not directly implement the init, service and
delete methods mentionned above. These methods are implemented in the Hppt-
Servlet code. However we have the possibility to override the doGet and doPost
methods which, as you might expect, are the methods that treat get and post

http requests. A HttpServletRequest object is passed into the method and from
this object all sorts of information on the request can be retrieved. req.getMethod
will tell us which http method has been used and should be POST in our case.
As you can see we can also check from which browser the request comes, on

26 Graphical User Interfaces

which machine the browser is running etc.
We also see how the servlet dynamically creates the html page and sends it via

the Writer out back to the browser. The other interesting point in this example
is the way the name/value pairs can be found. In order to select the LED the
following code was supplied in the html file:

<select name="device">
<option selected value="LEDs"> LEDs </option>

which was converted by the browser to a url-encoded string of this kind:
device=LED&LED data=b2&submit1=Submit+Request.

The name/value pairs can be found back from enum = req.getParameterNames();

and vals = req.getParameterValues(name); All that needs to be done is the inter-
pretation of the name/value pairs in order to extract

• the device number

• the command code

• the data values

The following extract from the HC11Servlet contains all the Strings that must
be interpreted.

/*
* strings that are needed for comparison
*/

private static final String ICTP_IO_DEVICE= new String("device");
private static final String ICTP_IO_LED = new String("LEDs");
private static final String ICTP_IO_LED_DATA =

new String("LED_data");
private static final String ICTP_IO_LED_BIT1 = new String("b1");
private static final String ICTP_IO_LED_BIT2 = new String("b2");
private static final String ICTP_IO_LED_BIT3 = new String("b3");
private static final String ICTP_IO_LED_BIT4 = new String("b4");
private static final String ICTP_IO_LED_BIT5 = new String("b5");
private static final String ICTP_IO_LED_BIT6 = new String("b6");
private static final String ICTP_IO_LED_BIT7 = new String("b7");
private static final String ICTP_IO_LED_BIT8 = new String("b8");
private static final String ICTP_IO_LED_NUM_DATA =

new String("intData");
private static final String ICTP_IO_LCD = new String("LCD");
private static final String ICTP_IO_LCD_DATA =

new String("LCD_data");

private static final String ICTP_IO_SWITCHES =
new String("Switches");

27

private static final String ICTP_IO_BUTTONS =
new String("Buttons");

private static final String ICTP_IO_ADC = new String("ADC");

private static final String ICTP_IO_COMMAND =
new String("command");

private static final String ICTP_IO_CMD_READ =
new String("read");

private static final String ICTP_IO_CMD_WRITE =
new String("write");

private static final String ICTP_IO_CMD_IOCTL =
new String("ioctl");

private static final String ICTP_IO_LCD_IOCTL =
new String("ioctlCmd");

private static final String ICTP_IO_IOCTL_SELECT =
new String("select");

private static final String ICTP_IO_IOCTL_DESELECT =
new String("deselect");

private static final String ICTP_IO_IOCTL_CLEAR =
new String("clear");

private static final String ICTP_IO_IOCTL_HOME =
new String("home");

Once the device number, the command code and the data are known the call
to the ICTP IO object can be made and the command is sent to the server on the
HC-11. The error code coming back from the HC-11 as well as possible data are
returned to the caller in form of html text in the form Error Code: or ICTP IO

Data: respectively. In case the requester is a html page these data are simply
printed in case it is a more complex program that creates the URL string itself it
is this program that must interpret the html text coming back to it. For further
details about the HC11Servlet please refer to the appendix in which you will find
the full source code.

3 Building Graphical User Interfaces with Swing

3.1 General comments on Graphical User Interfaces, the MVC

concept

Since the appearance of the first MacIntosh computers the use of a mouse for
interaction with a program displaying buttons, menus, sliders, textboxes and the
like has become common practice on all desktop computers. These Graphical
User Interfaces (GUI) have not only given computer access to many computer
illiterate people but they also have revolutionized the way application programs
are written. While the use of computers becomes more and more easy or ”user

28 Graphical User Interfaces

friendly”, providing (designing and implementing) the programs becomes more
and more difficult and time consuming.

GUI programming is inherently difficult: conceptually difficult because the
user dictates the sequence of operations to be carried out but difficult also be-
cause of the size of GUI libraries which may well contain 10,000 different rou-
tines or more needed for creation, layout and interaction with user interface
element: the so-called widgets.

When creating a program with a GUI the design will usually be broken up
into 3 distinct parts. We will take a calculator program for complex numbers as
our example (ComplexCalc) and demonstrate the full design and implementation
cycle on this example:

The Model

The first part models the problem. We call this part the Model. Our Complex-

Model models the Calculator and is implemented with classical object oriented
programming without connection to graphical user interfaces. Here the real
problem solving takes place. Imagine the user wants to perform an addition in
our complex calculator. He will first enter the real and imaginary parts of the
first number and then press +. Then the second number will be entered and
finally he will press =. The model therefore must be capable of

• keeping the current state of the entered number;
• saving the entered number in internal registers when the operator button

(+) is pressed
• keeping the operator in order to know which calculation must be executed

once = is pressed.

In order to fulfil these requests the ComplexModel needs to have instance
variables allowing to save

• the number currently entered;
• the number that had been entered before the operator button was pressed
• the operator

and it needs methods to

• get the currently entered number
• add a digit to the currently entered number
• clear the currently entered number
• set/get the operator
• get the number entered before pressing the operator button
• execute the calculation
• set the decimal point

We will see the implementaion of the ComplexModel in some detail later.

29

3.2 The View

Graphical User Interfaces consist of a hierarchy of widgets. Here we must dis-
tinguish two different widget types: the container widget whose function is to
contain other widgets which in turn may be container widgets themselves, and
primitive widgets which are the ones that can be seen on the screen and inter-
acted with. Starting from a root widget a tree structure is built with intermediate
notes being container widgets and the primitive widgets as leafs.

This static layout of widgets (the buttons, menus, labels, and the like) which
show the current state of the model, we call the View .

Interactive GUI builders help with the task of creating the widget hierarchy.
The dynamic behaviour however is entirely left to the programmer. It is up to him
to implement what will happen when a user presses a button or selects an item in
a menu. GUI builders can save time but they can be used efficiently only once the
programmer perfectly understands the underlying concepts (layout managers,
widget resources etc.). For this reason the GUI for the complex calculator is
created by hand. Once you understand all the mechnisms involved you are
encouraged to try rebuilding the view with help of a GUI builder like Borlands
JBuilderTM; or SUNs Forte4JTM.

In our complex calculator this will be the code that creates text widgets show-
ing the current state of real and imaginary parts, buttons that allow to enter
numbers (in addition to the text widgets themselves) and buttons that permit
starting the operations like addition, multiplication, etc.

3.3 The Controller

Last but not least, we must make our GUI responsive (dynamic). This means
that pushing buttons or entering text must provoke changes in the model and
the view. Pushing the ”add button” must add the number currently visible in the
text widgets with the previously entered numbers and display the result on the
text widgets. The task of dispatching commands for data entry or calculation to
the model and commands for display updates to the view is performed by the
Controller.

The 3 parts that make up a GUI driven program are therefore the Model, View

and Controller, and we speak of the MVC concept.

3.4 Creating the View

Since a single example says more than thousand words we will go through the
design and implementation of the complex calculator step by step. We will start
with the GUI (the view), then attach a few simple actions, just in order to demon-
strate that we can actually launch actions with our interface (a few steps into
the direction of implementing the controller), then we create the model and in
the end we put the pieces together in order to get a working program.

Before coding, the widget layout should be done on paper. Here we show
where we want to get to and then we slowly work towards this goal.

30 Graphical User Interfaces

Screenshot of the finished static part of the GUI for the complex number
calculator, the View.

Figure 11: The Layout of Widgets for the Complex Calculator

You can distinguish

• 2 text widgets and 2 associated labels used for display and data entry for
the real - and the imaginary parts of the number.

• Then there is a series of buttons allowing to enter single digits and a radio
box with 2 radio buttons, defining into which of the two text widgets the
input will go.

• Last but not least, we have the operator buttons ”+” ”-” ... ”=” starting
operations on the numbers.

What you don’t see are the container widgets allowing to define geometrical
relations between these widgets.

31

3.5 The first widget on the screen

In order to get a feeling of what we need to do, we will write a sort of a Swing
”hello world” program. Swing is the name of the Java class library responsible
for the creation of graphical user interfaces. It relies on classes that connect to
the native operating system for window creation placement and the like, collected
in the Abstract Windows Toolkit (AWT). We create a single text widget and make
it appear on the screen.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
* ComplexCalcUI.java
*
* Created: Mon Aug 21 21:19:31 2000
* Stage 1
* @author Ulrich Raich
* @version 1.0
*/

public class ComplexCalcUI
{
public static void main(String arg[])
{
/*
Create a Panel for real and imaginary part
text inputs

*/
JFrame frame =

new JFrame("Beginning of the Complex Calculator");
JTextField realPartText = new JTextField(30);

frame.getContentPane().add(realPartText);
frame.pack();
frame.setVisible(true);

}
}// ComplexCalcUI

And the result is shown in figure 12

Figure 12: A Java Application with a single Swing GUI Element

32 Graphical User Interfaces

Firstly we need to include a few Swing specific packages which is done by
the import statements at the beginning of the code. Then we create a JFrame
which is the basic window into which all other GUI elements will be put. Then
we create a text input widget of 30 chars in length, put it into the contentPane of
the base window and make the JFrame (and therefore also the text input) visible
on the screen. The application is extremely simple but it already allows you to
enter some text.

3.6 Java Applets

Now you say: “This is all fine but how do I put this application onto the WEB,
after all your lectures have the title: Programming the WEB?”

Well, ehhh. . . oops. . . I cannot! However, what I can do is re-writing the ap-
plication very slightly, turning the program into an applet. Now I do not have
the main method any more but there is an init method instead. Also this class
extends JApplet and it adds the text input into the contentPane of the JApplet
instead of creating a JFrame and putting it in there.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
* ComplexCalcUI_Stage1.java
* Created: Mon Aug 21 21:19:31 2000
* Stage 1
* @author Ulrich Raich
* @version 0.1
*/

public class ComplexCalcUI_Stage1 extends JApplet {
public ComplexCalcUI_Stage1 () {
}

/**
* Generates a Text widget that will be used for Display
* and text entry for the real part of our complex number
*/

public void init() {
/*
Create a Panel for real and imaginary part
text inputs

*/
JTextField realPartText;
realPartText = new JTextField();

this.getContentPane().add(realPartText);
}

33

}// ComplexCalcUI_Stage1

However now we have the problem that there is no main method any more and

java ComplexCalcUI Stage1

will result in an error message. We have to integrate the applet into a html
page.

<html>
<head>
<title> A Calculator for Complex Numbers </title>
<!-- Changed by: Uli Raich, 12-Feb-2000 -->
<h1> A Calculator for Complex Numbers </h1>
<body bgcolor="#c4c4c4">
<div align="center">
<applet code="ComplexCalcUI_Stage1.class" height=50 width=150>
</applet>
</div>
</body>
</html>

Save this html page into a file named ComplexCalc.stage1.html and run ap-

pletviewer ComplexCalc.stage1.html Your applet will appear on the screen.
“Wait!” you say, “this is still not what I wanted. I wanted to have a WEB page
with everything you showed us in the section called Introduction in Chapter 1
and the section called CGI Programming in Chapter 2 and my applet appearing
on this page and I want to visualise all this in my Netscape browser!”

Unfortunately here things become really clumsy. Most WEB browsers come
with a rather outdated Java VirtualMachine (JVM) which is unable to run Swing
applets. Older java versions were delivered with only the Abstract Windows
Toolkit installed but without the Swing classes. You can therefore not run Swing
applets in these browsers, unless you install a plugin implementing a more mod-
ern JVM.

Now the problem arises of how to distinguish those 2 JVMs, the one packaged
in the standard Netscape distribution and the one added through the plugin. The
answer is new tags within the html file.

When creating a real Java program and not just a simple ICTP college exer-
cise the code is usually subdivided into modules stored in several files. When
compiling, this will create several .class files. In addition you may need image or
video or audio files for your applet. In order to improve applet loading time you
can package all these files into a single jar (java archive) file which is very similar
to tar files. This simple Makefile shows you how the jar file for the first stage of
the Complex Calculator has been created:

34 Graphical User Interfaces

This makefile creates the jar file for the Complex Calculator
in a single JAR file.

INSTALLDIR=/var/www/html/ICTP/lecture/

CLASSFILES= \
ComplexCalcUI_Stage1.class

JARFILE= ../jars/complexCalcStage1.jar

all: $(JARFILE)

Create a JAR file with a suitable manifest.

$(JARFILE): $(CLASSFILES)

echo "Name: ComplexCalcUI.class" >> manifest.tmp
echo "Java-Bean: False" >> manifest.tmp

echo "" >> manifest.tmp

jar cfm $(JARFILE) manifest.tmp *.class

@/bin/rm manifest.tmp

Rule for compiling a normal java file
%.class: %.java

export CLASSPATH; CLASSPATH=. ; \
javac $<

clean:
/bin/rm -f *.class
/bin/rm -f *˜
/bin/rm -f $(JARFILE)

install:
cp $(JARFILE) $(INSTALLDIR)/jars
cp ComplexCalcStage1-Netscape.html $(INSTALLDIR)/HTML/complexCalc

The following html file defines that the class ComplexCalcUI Stage1.class
should be loaded from the java archive ../jars/ComplexCalcUI Stage1.jar and
should be executed.

35

<html>
<head>
<title> The beginning of the Complex Calculator GUI <\title>
<!-- Changed by: Uli Raich, 02-Mar-2000 -->
<h1> The beginnings of the Complex Calculator GUI </h1>
<body bgcolor="#c4c4c4">
<div align="center">

<EMBED type=application/x-java-applet
java_docbase=file:///none width=150 height=50
code=ComplexCalcUI_Stage1.class
archive=../jars/ComplexCalcUI_Stage1.jar>
<p>
</div>
</body>
</html>

And the result is shown in figure 13

Figure 13: The first Java applet within a WEB page as seen by Netscape

Notice that when clicking on the text widget the caret will appear and you will
be able to enter text into it.

36 Graphical User Interfaces

3.7 The Applet life cycle

Applets encounter several important milestones in their life. Firstly they are
created when the browser brings up the html page into which they are embedded
for the first time. At this moment the init method is called.

When you switch to another page the applet is stopped (its stop method is
called) and restarted (the start method is called) when you come back to the
page. Finally, when you exit the browser the destroy will be given a chance to
do some cleanup that might be necessay.

The applet therefore has the following methods which may be overridden or
not:

• init
• start
• stop
• destroy

One more thing that is worth mentioning: System.out.println will not print
anything onto the applet area; this text goes into the system console. When
rewriting the HelloWorld program from the lectures on basic Java into an applet
we will have to do graphics drawing in order to get the text onto the html page.

import java.awt.*;
import java.awt.event.*;

/**
* ComplexCalcUI.java
*
*
* Created: Mon Aug 21 21:19:31 2000
* Stage 1
* @author Ulrich Raich
* @version 1.0
*/

public class HelloWorld extends JApplet {
public HelloWorld () {

}

/**
* Generates a Text widget that will be used for Display
* and text entry for the real part of our complex number
*/
public void paint(Graphics g)
{

37

g.drawString("Hello World !",10,20);
}

}// HelloWorld

Figure 14: The Hello World Program re-written as an Applet

Unfortunately explaining the Graphics class which permits drawing in Java,
or its more modern Graphics2d or even 3d counterparts, goes largely beyond
the scope of this Workshop. We could actually give a 4 weeks course on Java
graphics alone. For this reason you are referred to the Java API documentation
of the SUN Java tutorials.

3.8 Adding more Elements, Layout Management

A typical graphical user interface, except for a hello world style program consists
of a whole series of GUI elements. In our example we first want to add a label
describing the text intput. Of course you have no problem of creating such a
label:

realPartLabel = new JLabel("Real Part");

will do the trick, however the question arises where this new widget will be situ-
ated on the screen. To keep things simple for the moment we will create a vertical

38 Graphical User Interfaces

box and add the label and the text to the box where they will appear one on top
of each other, as you may expect. The box is then added to the content pane of
the applet and we are done.

Box realPartBox;
JLabel realPartLabel;
JTextField realPartText;
/*

create the widgets
*/
realPartBox = Box.createVerticalBox();
realPartLabel = new JLabel("Real Part");
realPartText = new JTextField();
/*

Place the label and the text widget in the box
*/

realPartBox.add(realPartLabel);
realPartBox.add(realPartText);
this.getContentPane().add(realPartBox);

And here is the result:

Figure 15: Two Applets in a Vertical Box

Since there is the equivalent to the vertical Box also in horizontal direction
many layout problems can be solved this way. When many GUI elements are
used however, this method gets very clumsy.

3.8.1 The BorderLayout

For this reason Java uses the concept of layout managers in order to define how
the children of container widgets are placed. The default Layout manager of

39

JApplet is the BorderLayout which has 5 fields into which the elements can be
placed.

Figure 16: The BorderLayout

Instead of creating a vertical box and inserting our label and text widget in
there, we could have taken advantage of the border layout manager associated
with JApplet and placed the label in the North area of the layout while the text
would have gone into the South area. The end result would have been essentially
the same because the unused areas are shrunk to zero size.

public void init() {
/*

Create a Panel for real and imaginary part
text inputs

*/
JLabel realPartLabel;
JTextField realPartText;
/*

create the widgets
*/
realPartLabel = new JLabel("Real Part");
realPartText = new JTextField();
/*

Place the label and the text widget the content pane
using the default border layout manager

*/

this.getContentPane().add(realPartLabel,"North");
this.getContentPane().add(realPartText,"South");

40 Graphical User Interfaces

}

3.8.2 The GridLayout

Unfortunately the BorderLayout does not really map onto our problem. We want
to have our widget laid out in a regular grid. When only looking at the 2 text
input areas we would like to have them arranged as a 2x2 matrix. This is exactly
what the GridLayout does. We will therefore create a GridLayout manager, attach
it to the applets content pane and then insert our label widgets, which will go
into the first row followed by text widgets which will appear below.

In addition, to make things look even prettier, we surround the 4 widgets
with a border, the BevelBorder, which allows to make the widgets look lowered
into the screen by setting its bevelType to Bevel.LOWERED (a constant defined
in the BevelBorder object). Again there are many different border types and
you are invited to look for the keywords: BevelBorder, LineBorder, EtchBorder,
TitledBorder. . . in the Java API docs.

Now the Calculator display is already almost done.

Figure 17: The Display Part of the Calculator

In the next step we add all the buttons needed for number entry and for
entry of commands like add, sub, div, mult, clear. In contrast to the GridLayout,

41

the GridBagLayout allows the creations of elements of different size which are
realised using so-called GridBagConstraints. These constraints are imposed on
the element to be entered into the GridBag. gridx and gridy define the position
while weightx and weighty define the amount of space (in %) to be taken up by
the element. Like this we can optimise the calculator layout since the display
area needs less space than all the buttons. Width and height can be used if you
want to have one element take more than one slot in x or y direction.

/**
* In this stage we create the rest of the widgets.
* Now the number output widgets as well as the
* number and command buttons are ready for use.
* All that is missing are the labels on those buttons
*/

public void init() {
/*

Create a Panel for real and imaginary part
text inputs

*/
JPanel calcPanel;
GridBagLayout gridBagLayout = new GridBagLayout();
GridBagConstraints gridBagConstraints = new GridBagConstraints();
GridLayout numberLayout;
GridLayout numberInputLayout;
JPanel numberPanel;
Box inputBox;
JButton[] numberInputButton;
JButton[] operatorInputButton;
JPanel numberInputPanel;
JPanel operatorInputPanel;
JLabel realPartLabel;
JTextField realPartText;
JLabel imagPartLabel;
JTextField imagPartText;
BevelBorder TextBorder;
/*

create the widgets
*/
calcPanel = new JPanel(gridBagLayout);
inputBox = Box.createHorizontalBox();
numberInputLayout = new GridLayout(4,3);
numberInputPanel = new JPanel(numberInputLayout);
operatorInputPanel = new JPanel(numberInputLayout);
inputBox.add(numberInputPanel);
inputBox.add(operatorInputPanel);

42 Graphical User Interfaces

numberInputButton = new JButton[12];
for (int i=0;i<12;i++)

{
numberInputButton[i] = new JButton();
numberInputPanel.add(numberInputButton[i]);

}
operatorInputButton = new JButton[12];
for (int i=0;i$<$12;i++)

{
operatorInputButton[i] = new JButton();
operatorInputPanel.add(operatorInputButton[i]);

}
numberPanel = new JPanel();
numberLayout = new GridLayout(2,2);
numberPanel.setLayout(numberLayout);
realPartLabel = new JLabel("Real Part");
realPartText = new JTextField();
imagPartLabel = new JLabel("Imaginary Part");
imagPartText = new JTextField();
TextBorder = new BevelBorder(BevelBorder.LOWERED);
numberPanel.setBorder(TextBorder);
/*

Place the label and the text widget in the box
*/
numberPanel.add(realPartLabel);
numberPanel.add(imagPartLabel);
numberPanel.add(realPartText);
numberPanel.add(imagPartText);

gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 0;
gridBagConstraints.gridwidth = 1;
gridBagConstraints.gridheight = 1;
gridBagConstraints.weightx = 100;
gridBagConstraints.weighty = 20;
gridBagConstraints.fill = GridBagConstraints.BOTH;
gridBagLayout.setConstraints(numberPanel,gridBagConstraints);
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 1;
gridBagConstraints.gridwidth = 1;
gridBagConstraints.gridheight = 1;
gridBagConstraints.weightx = 100;
gridBagConstraints.weighty = 80;
gridBagLayout.setConstraints(inputBox,gridBagConstraints);
calcPanel.add(numberPanel);

43

calcPanel.add(inputBox);
this.getContentPane().add(calcPanel);

}

Figure 18: All the Calculator Widgets are there!

Once the labels are on the widget and 2 radio buttons, deciding into which
field (the real or the imaginary one) button input has to go, the GUI is entirely
finished. An interesting point may be the way how the numbers are put onto the
number buttons:

44 Graphical User Interfaces

numberInputButton = new JButton[12];
for (int i=0; i<10; i++)

{
numberInputButton[i] = new JButton(Integer.toString(i));
numberInputPanel.add(numberInputButton[i]);

}

The Integer class provides a conversion method from integer to String which
we take advantage of in order to convert the loop index into a String, which is
used as a button label when creating the JButton.

3.9 The Event Delegation Model

The GUI of the complex calculator is more or less ready and you have seen that it
is a rather tedious task to put all the widgets together. For this reason graphical
user interface builders have been built allowing you to create the GUI in an
interactive manner. You click on graphical representations of JLabel, JButton,
JTextField ... and place them in a container widget on the screen. At the same
moment the GUI elements are created and visualised such that you can see what
the final result is going to be. In order to make this possible the elements must
be built in a well defined way such that they can act as software components
which can be connected to other components a bit like when building a model
out of LegoTM; blocks (did you play with Legos when you were a child?). How
exactly the software components, the Java Beans, are built, we will see in the
next chapter.

Even though our complex calculator GUI may look quite pretty, it is not of
much use yet. The reason is that nothing happens when we click the number
or operator buttons. We therefore have to look into the problem of activating the
GUI. What actually happens when you press a number button?

A button click will be seen by the operating system which will pass this in-
formation to the Swing button. The sequence of button down – button up will be
interpreted as a button press or, in other words, an activation of the button. The
button will create an ActionEvent and send it to all ActionListeners attached
to it. This means that, in order to interact with the button, we will have to create
an ActionListener and add it to the JButton’s list of ActionListeners.

The ActionListener is a Java Interface with just a single method: actionPer-

formed(ActionEvent). As explained in the introduction to GUI programming,
this is usually implemented in the Controller. In order to know from which
Object the event originated (which element was the event source) this informa-
tion is ported in the ActionEvent. The event’s method getSource() will return the
Object that sent the event.

In our example, and for the moment, only JButtons can be event sources and
each of our buttons has got a label on it. In order to find out which button had
been pressed we therefore first get the reference to the button that triggered the
event and then we read its label with the button’s getText() method. Since we
want to demonstrate the handling of events another textfield has been added to

45

the complex calculator’s user interface to display some text identifying the event.
We will also need a simple method that allows us to write to this textfield from
an outside object:

/*
add the controller containing the action listeners

*/
ComplexCalcController7 complexCalcController =

new ComplexCalcController7(this);
numberInputButton = new JButton[12];
for (int i=0; i<10; i++)

{
numberInputButton[i] = new JButton(Integer.toString(i));
numberInputPanel.add(numberInputButton[i]);
numberInputButton[i].addActionListener(complexCalcController);

}
numberInputButton[10] = new JButton(".");
numberInputPanel.add(numberInputButton[10]);
numberInputButton[10].addActionListener(complexCalcController);

numberInputButton[11] = new JButton("+/-");
numberInputPanel.add(numberInputButton[11]);
numberInputButton[11].addActionListener(complexCalcController);

operatorInputButton = new JButton[12];
operatorInputButton[0] = new JButton("+");
operatorInputPanel.add(operatorInputButton[0]);
/* activate the thing */
operatorInputButton[0].addActionListener(complexCalcController);
debugText = new JTextField(20);

and so on ...
/**
* Writes debug text to the debug text field
* Used for demonstration of events
*/

public void setDebugText(String debug)
{

debugText.setText(debug);
return;

}

This method is used by the controller which will find out the event source
and print a text identifying the source. We do not use System.out.println in
order to visualise the text on the page. Here of course, since this is only debug
information we could have used System.out.println and either tested the widget

46 Graphical User Interfaces

with the appletviewer or we could have observed the print result on the system
console.

/**
* ComplexCalcController7.java
* Created: Sat Aug 26 22:17:25 2000
*
* @author Ulrich Raich
* @version 0.1
*/

public class ComplexCalcController7 implements ActionListener {
ComplexCalcUI_Stage7 parent;
public ComplexCalcController7 (ComplexCalcUI_Stage7 p) {

parent = p;
}
public void actionPerformed(ActionEvent e)
{

JButton activatedButton;
String buttonLabel;
activatedButton = (JButton)e.getSource();
buttonLabel = activatedButton.getText();
if (buttonLabel.equals("+"))

{
parent.setDebugText("Add Button");
return;

}
if (buttonLabel.equals("-"))

{
parent.setDebugText("Sub Button");
return;

}
if (buttonLabel.equals("*"))

{
parent.setDebugText("Mult Button");
return;

}
if (buttonLabel.equals("/"))

{
parent.setDebugText("Div Button");
return;

}
if (buttonLabel.equals("+/-"))

{
parent.setDebugText("Change Sign Button");
return;

}

47

if (buttonLabel.equals("="))
{

parent.setDebugText("Equals Button");
return;

}
if (buttonLabel.equals("."))

{
parent.setDebugText("Dot Button");
return;

}
if (buttonLabel.equals("Clear"))

{
parent.setDebugText("Clear Button");
return;

}
if (buttonLabel.equals("Norm"))

{
parent.setDebugText("Norm Button");
return;

}
for (int i=0; i<10; i++)

if (buttonLabel.equals(Integer.toString(i)))
{

parent.setDebugText("Number:" + i);
return;

}
}

}

3.10 The Calculator Model

The most complex part of any GUI base program is the model and at the same
time it is the one I explain least. It is the model that implements the actual
problem solving. The user interface merely provides pretty buttons, pull-down
menus and the like while it does not do much, seen from the functional point of
view. The controller simply receives events from the user interface and dispatches
them to the model. Again not much is done from the functional point of view. It is
the model that does the actual data treatment. On the other hand, programming
the model only uses ”standard” programming concepts and there is nothing new
to be learned.

In the case of the calculator you will find all the routines that are needed
to handle digits newly entered, which are added to the already available digits,
the switch from entering numbers from the real part entry field to the imaginary
part field, the conversion of the series of digits entered into doubles and later

48 Graphical User Interfaces

Figure 19: First Test of Activation

complex numbers, the handling of operators (”+”, ”-”, ”*”, ”/”) and of the course
calculations themselves (when ”=” is pressed).

The whole program now works as follows: The user presses a button (e.g. a
digit) which triggers an actionEvent. This event is captured and interpreted by
the controller which in turn informs the model which action needs to be taken.
To do this, it calls a model method.

The method modifies the model’s internal state (a digit is added to the number
entered) which must be reflected in the user interface. The controller therefore
informs the view by calling one of its methods, which in turn updates its display
on the screen.

You will find the complete source code of the model in the appendix. Please
have a look at it. Note that most of the work is actually the conversion from
doubles (well, actually Complex, the type used for calculations) to byte arrays
and back. Each time a modification is made, the conversions are performed in
order to make sure that the double respresentation and the byte arrays always

49

correspond.
And the final result will essentially look like figure 19

4 Software Components, Java Beans

4.1 What is a Bean?

Beans are re-usable software modules with strictly defined interfaces that can
be hooked together by a graphical user interface builder. Of course, most beans
will be visible user interface elements (all of the Swing components like JButton,
JLabel, JTextField... as well as the container components are beans) but even
the visibility is not a necessary criterion.

Apart from obeying certain rules, beans are just ordinary Java objects. Just
like any other object, beans have internal variables, here called properties, which
may be modified by the objects methods.

As we have seen in the calculator example, the objects that make up the
calculator applet interact with each other by means of events. Since beans, in
order to be treated by a GUI builder must be clearly defined entities with no cross
links, beans only use events for their communication.

The questions we now have to ask are: “How does the GUI builder discover the
capabilities of the bean? How does it know, which properties are implemented
in the bean and how to read and modify their values? How does it know which
events are used for communication and which bean is considered to create the
event and which one is capturing it?”

The magic buzz-word is introspection. Let us first have a look at properties.
If a bean has got a property called prop then it must implement two methods
named: void setProp(type val); type getProp() in order to expose them.

The very first beans example does not attempt to get a usable bean, it simply
tries to show the sequence of steps needed to create a bean. The bean itself is a
simple java object, not extending any Swing component which means that it is
not going to be visible. Note that the bean implements the Serializable interface
which does not require any supplementary code but add the capability to the
bean to save itself onto a file (serialize itself). This functionality is very important
because, after having built an application with a large number of beans, which
have all been customized (their properties have been set) we do not want to loose
this work but we want to be able to save it.

import java.beans.*;
import java.io.Serializable;

/**
* bean1.java
*
*

50 Graphical User Interfaces

* Created: Sat Nov 24 13:13:42 2001
*
* @author
* Ulrich Raich
* @version
*/

public class bean1 implements Serializable{
public bean1 (){

}
double result;
/**
* Get the value of result.
* @return value of result.
*/

public double getResult() {
return result;

}

/**
* Set the value of result.
* @param v Value to assign to result.
*/

public void setResult(double v) {
this.result = v;

}
}// bean1

The bean only has a single property of type double called result and it exposes
a get and a set method for this property. In order to make a bean out of this code
it must be compiled and the resulting class file must be packed together with a
manifest file into a jar packet. Here is the Makefile that does exactly this:

This makefile delivers the bean1 bean into the beansbox
in a single JAR file.

BEANSDIR= /opt/ICTP/lectures/lectureNotes/Java/code/beans/BDK1.1/jars
CLASSFILES= \

bean1.class

JARFILE= ../../jars/bean1.jar

all: $(JARFILE)

Create a JAR file with a suitable manifest.

51

$(JARFILE): $(CLASSFILES) $(DATAFILES)
echo "Name: bean1.class" >> manifest.tmp
echo "Java-Bean: True" >> manifest.tmp
echo "" >> manifest.tmp
jar cfm $(JARFILE) manifest.tmp bean1.class

@/bin/rm manifest.tmp

Rule for compiling a normal .java file
%.class: %.java

export CLASSPATH; CLASSPATH=. ; \
javac $<

install:
cp $(JARFILE) $(BEANSDIR)

clean:
/bin/rm -f *.class
/bin/rm -f *.ser
/bin/rm -f $(JARFILE)

The manifest contains the following text:
Name: bean1.class
Java-Bean: True
It states that the content of this package contains a bean of name bean1. It is
possible to package several beans into a single jar package if they are denoted as
described above.

4.2 The Beanbox

As we said at the beginning, this bean does not provide much functionality and
it will not even be visible when used in a GUI builder.

SUN provides a very simplistic GUI builder designed for testing user created
beans in its Beans Development Kit, the beanbox. This program will search
through a directory of jar files and make all beans found in this directory avail-
able for test. All we have to do is therefore copying our beans jar file into the
directory searched by the beanbox.

Once the beanbox is started we find back the bean in its toolbox. Clicking the
text will modify the cursor to a cross, clicking on the BeanBox now, make the
bean appear on the screen. The BeanBox is in design mode in which case the
bean is displayed with this strange border indicating that in the later application
or applet it will be invisible.

In order to provide a little more realistic example, let us consider an arrow
button, which is a simple JButton that shows an arrow pointer in any direction
up, down, left or right. From this description it becomes clear immediately that

52 Graphical User Interfaces

Figure 20: Bean1 sitting in the beanbox

we will extend a JButton, use icons for the arrows and have a property that can
be up, down, left or right. Please note the way, the icons are read: We use a
URL in order to get at the gif files that are transferred in the jar package. Due to
security reasons an applet is not allowed to access the local file system. We can
get at resources within the jar file though.

import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;
import javax.swing.*;

public class ArrowButton extends JButton implements Serializable {
Image arrowImage;

53

public ArrowButton() {
super();
createIcons();
arrowDirection = ARROW_UP;
this.setIcon(images[arrowDirection]);

}

public ArrowButton(int direction) {
super();
createIcons();
if ((direction < 0) || (direction > MAX_DIRECTIONS))

arrowDirection = ARROW_UP;
else

arrowDirection = direction;

this.setIcon(images[direction]);
}

public void createIcons()
{

try {
java.net.URL url =

getClass().getResource("images/up.gif");
images[ARROW_UP] = new ImageIcon(url);

} catch (Exception e)
{

System.out.println(e.getMessage());
}

try {
java.net.URL url =

getClass().getResource("images/down.gif");
images[ARROW_DOWN] = new ImageIcon(url);

} catch (Exception e)
{

System.out.println(e.getMessage());
}

try {
java.net.URL url =

getClass().getResource("images/left.gif");
images[ARROW_LEFT] = new ImageIcon(url);

} catch (Exception e)
{

System.out.println(e.getMessage());
}

try {

54 Graphical User Interfaces

java.net.URL url =
getClass().getResource("images/right.gif");

images[ARROW_RIGHT] = new ImageIcon(url);
} catch (Exception e)

{
System.out.println(e.getMessage());

}
}

/**
* Get the value of arrowDirection.
* @return Value of arrowDirection.
*/

public int getArrowDirection() {return arrowDirection;}
/**

* Set the value of arrowDirection.
* @param v Value to assign to arrowDirection.
*/

public void setArrowDirection(int v)
{

if ((v < 0) || v > MAX_DIRECTIONS)
return;

this.arrowDirection = v;
if (images[v] == null)

images[v] = new ImageIcon(
"images/"
+ imageFilename[v]);

this.setIcon(images[v]);

}
ImageIcon[] images = new ImageIcon[4];

private int arrowDirection;
public static final int ARROW_UP = 0;
public static final int ARROW_DOWN = 1;
public static final int ARROW_RIGHT = 2;
public static final int ARROW_LEFT = 3;

private final int MAX_DIRECTIONS = 4;

static ImageIcon DownPic;
static final String[] imageFilename =

{"up.gif", "down.gif", "right.gif","left.gif"};
}

The Makefile needs some brush-up as well since we have to add the images
into the jar package. The code snippet below is of course not complete, the rest

55

of the Makefile does not change however.

ICONS=images
all: $(JARFILE)
Create a JAR file with a suitable manifest.
$(JARFILE): $(CLASSFILES) $(DATAFILES)

echo "Name: ArrowButton.class" >> manifest.tmp
echo "Java-Bean: True" >> manifest.tmp
echo "" >> manifest.tmp
jar cfm $(JARFILE) manifest.tmp ArrowButton.class $(ICONS)/*
@/bin/rm manifest.tmp

4.3 The BeanInfo class

When we instantiate the ArrowButton bean in the beanbox, it will appear as a
normal button and the arrow will be seen normally (this is now a visible bean
since it is extended from a Swing Component!). However we can also see that
the property box is entirely full even though we only defined the arrowDirection
property with set/get methods. The reason for this is the subclassing of JButton.
We do not only see the ArrowButtons properties but all the properties of its super
class. Note however that the arrowDirection property can actually be changed
with the property editor, which will make the arrow turn.

How can we avoid that all those properties, which we want to keep as default
values, will be proposed for change? This can be done with a BeanInfo class. If
our bean is named ArrowButton, then we will have to define a new class named
ArrowButtonBeanInfo and here it is:

import java.awt.*;
import java.awt.event.*;
import java.beans.*;

public class ArrowButton2BeanInfo extends SimpleBeanInfo {
public PropertyDescriptor[] getPropertyDescriptors() {

try {
PropertyDescriptor arrowDirection =

new PropertyDescriptor("arrowDirection",
beanClass);

PropertyDescriptor rv[] = {arrowDirection};
return rv;

} catch (IntrospectionException e) {
throw new Error(e.toString());

}
}
private final static Class beanClass = ArrowButton2.class;

}

56 Graphical User Interfaces

Figure 21: The Properties of the ArrowButton

An array of PropertyDescriptors is created and returned in the getPropertyDe-

scriptors() method. Only those properties explicitly exposed in the PropertyDe-
scriptor will be proposed for customisation.

Still the property editor is not as nice as it could be because the direction
can actually only take 4 values while it is implemented and seen by the property
editor as an integer. In order to give the user only those 4 possibilities we will

57

have to customise the property editor.

4.4 A customised Property Editor

Of course there are different possible ways of proposing to change the arrow
directions. When we have a set of possible values then implementing just a
few methods of the PropertyEditor interface and announcing this property editor
in the bean info file is enough. It is however also possible to write a custom
property editor as we would have been obliged to do if we wanted to enter complex
numbers.

Here is the property editor and a screen dump showing the result.

import java.beans.*;

/**
* ArrowButtonDirectionNameEditor.java
*
*
* Created: Sun Jan 16 15:58:36 2000
*
* @author Ulrich Raich
* @version
*/

public class ArrowButton3DirectionNameEditor extends
PropertyEditorSupport {

public String[] getTags()
{

String directions[] = {"Up","Down","Left","Right"};
return directions;

}
public String getAsText() {

Integer direction = (Integer)getValue();
switch(direction.intValue()) {
case ArrowButton3.ARROW_UP: return "Up";
case ArrowButton3.ARROW_DOWN: return "Down";
case ArrowButton3.ARROW_LEFT: return "Left";
case ArrowButton3.ARROW_RIGHT: return "Right";
default: return null;
}

}

public void setAsText(String text)
throws IllegalArgumentException

58 Graphical User Interfaces

{
if (text.equals("Up"))

setValue(new Integer((int)ArrowButton3.ARROW_UP));
if (text.equals("Down"))

setValue(new Integer((int)ArrowButton3.ARROW_DOWN));
if (text.equals("Left"))

setValue(new Integer((int)ArrowButton3.ARROW_LEFT));
if (text.equals("Right"))

setValue(new Integer((int)ArrowButton3.ARROW_RIGHT));
}

public String getJavaInitializationString() {
return (String)getValue();

}

} // ArrowButtonDirectionNameEditor

. . . and the modified bean info

import java.awt.*;
import java.awt.event.*;
import java.beans.*;

public class ArrowButton3BeanInfo extends SimpleBeanInfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {

PropertyDescriptor arrowDirection =
new PropertyDescriptor("arrowDirection",

beanClass);

arrowDirection.setPropertyEditorClass(
ArrowButton3DirectionNameEditor.class);

PropertyDescriptor rv[] = {arrowDirection};
return rv;

} catch (IntrospectionException e) {
throw new Error(e.toString());

}
}

private final static Class beanClass = ArrowButton3.class;
}

59

Figure 22: The Property Editor for the Arrow Directions

4.5 Beans and Events

Since beans are handled as autonomous entities it is not possible to directly call
methods of a bean from within another bean. You can never be sure that the
user of the GUI builder has actually instantitated both beans. How then can
beans communicate with each other? Again this is done using events. Our Ar-
rowButton, since it is a subclass of JButton is able to create ActionEvents. These
ActionEvents can be caught by any ActionListener. The BeanBox is capable to
connect a bean’s method to an event by interspersing so called event adapter
classes (other methods for doing the same thing exist).

If we add an increment method to our bean1 we can connect this method to
the ActionEvent created when the ArrowButton is pressed. Each time the user
presses the button, the number will be increased by one.

Looking at the events presented by the beanbox the user will again be bewil-
dered by their big number. As with the properties this is due to the subclassing
and as with properties we can restrict the events displayed to the essentials
using the bean info class.

This method must be added to the bean info class in order to achieve the
clean-up:

public EventSetDescriptor[] getEventSetDescriptors() {
try {

EventSetDescriptor push =

60 Graphical User Interfaces

new EventSetDescriptor(beanClass,
"action",
java.awt.event.ActionListener.class,
"actionPerformed");

push.setDisplayName("action");
EventSetDescriptor[] rv = { push };
return rv;

} catch (IntrospectionException e) {
throw new Error(e.toString());

}
}

4.6 Bounded Properties

When developing the complex calculator we have already seen that the GUI part
of the project needed update each time the model changes its internal state. It
seems therefore logical to provide a PropertyChangeEvent which the model fires
each time any of its properties changes. The ComplexCalcUI then only needs to
provide the necessary methods that take an PropertyChangeEvent as parameter
just as our simple beans has done for ActionEvents.

Once these conditions are fulfilled then we can connect the Model with the
userinterface by means of an automatically generated event adapter. Of course
the model, which becomes an event source, must supply additional code such
that an PropertyChangeListener can be added and removed to a list of objects to
be informed of property changes.

One following code shows the simple invisible bean created at the beginning
of this chapter augmented with the capability of firing PropertyChangeEvent
s. In addition we create a NumberField bean which can take the Property-
ChangeEvents and display the latest number stored in the bean firing the events.
A PropertyChangeEvent always contains the old and the new values and it is
therefore simple to perform the updates of the NumberF ield. Now we can con-
nect the Arrowbutton to the simple bean for increment and decrement using
ActionEvents. The simple bean in turn is connected to the Numberfield through
the PropertyChangeEvent for display of its current state.

import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;
import javax.swing.*;
import java.beans.*;
/**
* bean3.java
*
* Created: Sat Nov 24 13:13:42 2001
*
* @author Ulrich Raich<>
* @version

61

*/

public class bean3 implements Serializable {
public bean3 (){
changes = new PropertyChangeSupport(this);

}
private double result;

/**
* Get the value of result.
* @return value of result.
*/
public double getResult() {
return result;

}

/**
* Set the value of result.
* @param v Value to assign to result.
*/
public void setResult(double v) {
double oldValue;
oldValue = result;
changes.firePropertyChange("value",

new Double(oldValue),new Double(v));
this.result = v;

}

/**
* increments the value
*/
public void increment(ActionEvent e)
{
double oldValue;
oldValue = result;
result+=1.0;
changes.firePropertyChange("value",new Double(oldValue),

new Double(result));
}

/**
* decrements the value
*/
public void decrement(ActionEvent e)
{
double oldValue;
oldValue = result;
result-=1.0;
changes.firePropertyChange("value",

new Double(oldValue),new Double(result));
}
/*
here we collect all Listeners to whom we sent the

62 Graphical User Interfaces

propertyChange events
*/

public void addPropertyChangeListener(PropertyChangeListener l)
{
changes.addPropertyChangeListener(l);

}
public void removePropertyChangeListener

(PropertyChangeListener l)
{
changes.removePropertyChangeListener(l);

}

private PropertyChangeSupport changes;
}// bean3

import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;
import javax.swing.*;
import java.beans.*;
import java.text.*;

public class NumberField extends JTextField implements
PropertyChangeListener,Serializable {

double number;
public NumberField() {
super(16);

}

/**
* Get the current value
* @return double value
*/
public double getNumber()
{
return number;

}

/**
* Set the value
* @param v Value to assign
*/

public void setNumber(double v)
{
String valString;
DecimalFormat df = new DecimalFormat("0.0######");
valString = df.format(v);
setText(valString);
number = v;

63

return;
}

public void propertyChange(PropertyChangeEvent e)
{
String valString;
double newValue;
newValue = ((Double)e.getNewValue()).doubleValue();
DecimalFormat df = new DecimalFormat("0.0######");
valString = df.format(newValue);
setText(valString);
number = newValue;
return;

}
}

5 Putting things together

In the first chapters a desciption was given on how to access the HC-11 hard-
ware. After that the construction of applications and applets with a sophisticated
graphical user interface was shown and finally the building blocks of these GUIs,
namely beans, were shown. Having all these elements ready we now want to put
things together and build an application with a nice GUI that accesses the HC-
1 hardware. This GUI uses the theoretical concept of model-view-controller as
explained in the previous chapter. Please refer to fig. 23.

The application consists of the HC-11 photograph which has been made ac-

tive. When the user passes the mouse over the LCD it becomes high-lighted and
text may be entered. The same is true for the LEDs, When you point to one of the
LEDs in the photograph, a button appears. This active photograph implements
the View (IOBoardView). When a LED button is pushed an ledActionEvent is
fired, when you type a carriage return in the LCD a lcdActionEvent is the result.

Since the IOBoard is implemented as a bean, any other bean capable of treat-
ing ledActionEvents of lcdActionEvents can be connected to it. Such a bean is
the IOBoardmodel which acts as am actionListener for those two events. Once a
ledActionEvent is captured by the model, it extracts the new led values from the
ledActionEvent and communicates this new value to the HC11Servlet running on
the TINI. In order to do so it must create a URL and send a URL encoded string
to the servlet containing the name/value pair intData=0x01 (if only the first LED
is to be switched on). Here is the code snippet showing how this is done. First
a httl connection is opened to the machine we want to task to. hostname is the
name of the TINI whose Http server we want to access.

public int write(int dev, int data)
{

int retCode;
try {

url = new URL("http://" + hostname + HTTPSERVER);

64 Graphical User Interfaces

IOBoardTimer

actionPerformed

IOBoardView IOBoardModel

led button push

lcd text
ledActionPerformed

lcdActionPerformed

timer fired

switchValue propertyChange

LEDValue propertyChange

LCDValue propertyChange

ADCValue propertyChange
read ADC

read switches

call the Servlet with urlencoded

string

Figure 23: Architecture of a complete application

connection = url.openConnection();
} catch (Exception e)

{
System.out.println("Could not open URL connection\n");
System.out.println(e.getMessage());
return OPEN_FAILURE;

}
connection.setDoOutput(true);
return sendWriteCmd(ICTP_IO_WRITE,dev,data);

}

Once the connection is established we can send the http code:

cmdString = "command="+cmds[cmd];
devString = "device="+devices[dev];
tmpLedData = data & 0xff;
ledData = "intData=" + "0x" +Integer.toHexString(tmpLedData);
urlString = cmdString + "&"

+ devString + "&"
+ ledData + "&" + submitString;

sendURLString(urlString);

As you can see the string

command=write&device=LED&intData=0x01}

65

is created and sent to the TINI. This explains how LEDs and LCD are written.
However, how do we know if the switches have been changed by somebody of if
the ADC has a new value? The answer is simple: We periodically read their val-
ues and check. In order to do this in regular intervals we use a Timer bean which
fires an actionPerformed event at an interval that can be predetermined. The ac-
tionPerformed event is captured by the model which interogates the HC11Servlet
for the current value. If a value change is seen the model fires a propertyChange
event, which in turn is captured by the view. The View then does the necessary
updates on the display.

6 Conclusions

This ends our excursion into the world of WEB programming. Of course these
lectures will only allow you a quick glimpse on the opportunities opened by this
computer science field.

If we managed to stimulate your curiosity and we showed you how to go on
from here, then these lectures were a success. Please note that, even though we
are using Linux during the college, this is by no means a requirement for WEB
programming. All we showed you during these lectures can be applied to the
operating systems like MS Windows of MacOS.

Acknowlegements

Giving these lectures would not have been possible without the consent of my
employer CERN. Also my wife Dong Ye and my children Melanie and David have
suffered seeing their husband and father sitting in front of the computer for too
long hours. Thanks for their understanding.

66 Graphical User Interfaces

A HC-11 test procedure

<html>
<head>
<title>HC-11 test procedure</title>
</head>

<h1><center>HC-11 Test</center></h1>
<form method="POST" action="http://localhost:8080/cgi-bin/hc11.cgi">
<p>
<table border="0" cellpadding="10" cellspacing="0">
<TR><TD>
Device
<select name="device">
<option value="LCD"> LCD </option>
<option selected value="LEDs"> LEDs </option>
<option value="Switches"> Switches </option>
<option value="Buttons"> Buttons </option>
<option value="ADC"> ADC </option>
<option value="Scope"> Digital Scope Trace </option>
</select>
</td>
<td>
<p>Command
<input type="radio" name="command" value="read"> read
<input type="radio" name="command" value="write" checked> write
<input type="radio" name="command" value="ioctl"> ioctl
<p>
</td></tr>
<tr><td>

<center> LCD</center>

LCD contents, don’t exceed 16 chars
<p>
<input type = "text" name ="LCD_Data" MAXLENGTH=16 VALUE="Hello World !">
LCD Text
<p>
<input type="radio" name="lcdIoctl" value="select"> select LCD
<input type="radio" name="lcdIoctl" value="deselect"> deselect LCD
<input type="radio" name="lcdIoctl" value="clear"> clear
<input type="radio" name="lcdIoctl" value="home"> home
<p>
</td>
<td>

67

<center>LED</center>

LED Value, highest significant bit first
<p>
<input type="checkbox" name="LED_data" value="b8"> 8
<input type="checkbox" name="LED_data" value="b7"> 7
<input type="checkbox" name="LED_data" value="b6"> 6
<input type="checkbox" name="LED_data" value="b5"> 5
<input type="checkbox" name="LED_data" value="b4"> 4
<input type="checkbox" name="LED_data" value="b3"> 3
<input type="checkbox" name="LED_data" value="b2"> 2
<input type="checkbox" name="LED_data" value="b1"> 1
<p>
</td></tr>
<tr><td>
<p>
<input type="submit" name="submit1" value="Submit Request">
<input type="reset" value="Reset Request">
</td></tr>
</table>

</form>
</body>
</html>

B The servlet treating the post requests

// HC11Servlet.java - A servlet that gives access to the HC11 device.
//
// Copyright (C) 2003 Ulrich.Raich
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330,
// Boston, MA 02111-1307, USA.
//

68 Graphical User Interfaces

// Ulrich.Raich
// AB Division
// CERN
// CH-1211 Geneva 23
// Switzerland
//
// email: Ulrich.Raich@cern.ch
//

import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;
import tini_ictp_io.TINI_ICTP_IO;

/** This is the servlet that allows access to the HC-11 devices
* It uses the TINI_ICTP_IO class in which implements the ICTP_IO
* serial protocol on the TINI. It gets request to read/write hc11
* devices like LCD, LEDs Switches etc. and it executes the
* corresponding commands and returns the results.
* @author Ulrich Raich
* @version 0.5
*/

public class HC11Servlet
extends HttpServlet
{

/** serve http post requests
* @param req the http request
* @param res the response
*/
public HC11Servlet()
{

super();
/*
* create a new connection to the hc11
*/

tini_ictp_io = new TINI_ICTP_IO();
tini_ictp_io.setDebug(true);

}
public void doPost(HttpServletRequest req,

HttpServletResponse res)
throws ServletException, IOException
{
doGet(req, res);

}

69

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{
PrintWriter out;
Enumeration enum;

byte[] retData;
int retCode;

int i;
int tmp;
boolean debug = false;

res.setContentType("text/html");

retCode = TINI_ICTP_IO.ICTP_IO_SUCCESS;

// Get writer
out = res.getWriter();

out.println("<html>");
out.println("<head><title>HC11 Servlet</title></head>");
out.println("<body>");

enum = req.getHeaderNames();
if(enum.hasMoreElements()) {

if (debug) {
out.println("<h1>Request headers:</h1>");
out.println("<pre>");

}
while(enum.hasMoreElements()) {

String name = (String)enum.nextElement();
if (debug)

out.println(" " + name + ": " +
req.getHeader(name));

}
if (debug)

out.println("</pre>");
}

enum = req.getParameterNames();
if(enum.hasMoreElements()) {

if (debug) {
out.println(

"<h1>Servlet parameters (Multiple Value style):</h1>");
out.println("<pre>");

}
while(enum.hasMoreElements()) {

String name = (String)enum.nextElement();

70 Graphical User Interfaces

String[] vals = req.getParameterValues(name);
String parameter;
if (debug)

out.println(" " + name + " = " +
req.getParameter(name));

/*
* check for the names defined for
* the ICTP_IO protocol
* first try to get the command to be
* executed
* Only read, write and ioctl are
* implemented
*/

parameter = req.getParameter(name);
System.out.println("name: " + name + ",

parameter: " +
parameter);

if (name.equals(ICTP_IO_COMMAND)) {
if (parameter.equals(ICTP_IO_CMD_READ))

servletCmd = TINI_ICTP_IO.ICTP_IO_READ;
else if (parameter.equals(ICTP_IO_CMD_WRITE))

servletCmd = TINI_ICTP_IO.ICTP_IO_WRITE;
else if (parameter.equals(ICTP_IO_CMD_IOCTL))

servletCmd = TINI_ICTP_IO.ICTP_IO_IOCTL;
else
System.out.println("Invalid command code");

}

/*
* then check for the device
* that has been selected
*/

else if (name.equals(ICTP_IO_DEVICE)) {
if (parameter.equals(ICTP_IO_LED))

servletDevice = TINI_ICTP_IO.ICTP_IO_LED;
else if (parameter.equals(ICTP_IO_LCD))

servletDevice = TINI_ICTP_IO.ICTP_IO_LCD;
else if (parameter.equals(ICTP_IO_SWITCHES))

servletDevice =
TINI_ICTP_IO.ICTP_IO_SWITCHES;

else if (parameter.equals(ICTP_IO_BUTTONS))
servletDevice =

TINI_ICTP_IO.ICTP_IO_BUTTONS;
else if (parameter.equals(ICTP_IO_ADC))

servletDevice = TINI_ICTP_IO.ICTP_IO_ADC;
else

System.out.println("Invalid device code");

71

}

else if (name.equals(ICTP_IO_LED_NUM_DATA)) {
LED_data = (byte)

(Integer.decode(parameter)).intValue();
if (debug)

System.out.println("LED data from direct value: " + LED_data);
}

else if (name.equals(ICTP_IO_LED_DATA)) {
if (debug)

System.out.println("LED data are coming!");
/*
* check for values to be written
*/

if (vals != null) {
LED_data = 0;
for(i = 0; i<vals.length; i++) {

if (vals[i].equals(ICTP_IO_LED_BIT1))
LED_data |= 0x1;

else if
(vals[i].equals(ICTP_IO_LED_BIT2))
LED_data |= 0x2;

else if
(vals[i].equals(ICTP_IO_LED_BIT3))
LED_data |= 0x4;

else if
(vals[i].equals(ICTP_IO_LED_BIT4))
LED_data |= 0x8;

else if
(vals[i].equals(ICTP_IO_LED_BIT5))
LED_data |= 0x10;

else if
(vals[i].equals(ICTP_IO_LED_BIT6))
LED_data |= 0x20;

else if
(vals[i].equals(ICTP_IO_LED_BIT7))
LED_data |= 0x40;

else if
(vals[i].equals(ICTP_IO_LED_BIT8))
LED_data |= 0x80;

}
out.print(" " + name + " = ");
out.println(vals[0]);
for(i = 1; i<vals.length; i++)

out.println(" " +

72 Graphical User Interfaces

vals[i]);
}
System.out.println("LED_data: " + LED_data);
out.println("<p>");

}
else if (name.equals(ICTP_IO_LCD_DATA)) {

if (debug)
System.out.println("LCD data are coming!");

LCD_data = new byte[parameter.length()];
LCD_data = parameter.getBytes();

if (debug)
System.out.println("Writing " + parameter + "to LCD");

}
else if (name.equals(ICTP_IO_LCD_IOCTL)) {

if (parameter.equals(ICTP_IO_IOCTL_SELECT))
servletIoctlCmd =

TINI_ICTP_IO.ICTP_IO_SELECT;
else if

(parameter.equals(ICTP_IO_IOCTL_DESELECT))
servletIoctlCmd =

TINI_ICTP_IO.ICTP_IO_DESELECT;
else if (parameter.equals(ICTP_IO_IOCTL_HOME))
servletIoctlCmd = TINI_ICTP_IO.ICTP_IO_HOME;

else if (parameter.equals(ICTP_IO_IOCTL_CLEAR))
servletIoctlCmd = TINI_ICTP_IO.ICTP_IO_CLEAR;

else
out.println("Illegal ioctl cmd: " + parameter);

}
}
out.println("</pre>");

}
if ((servletDevice == TINI_ICTP_IO.ICTP_IO_LED) &&

(servletCmd == TINI_ICTP_IO.ICTP_IO_WRITE))
out.println("LED_data: " + LED_data);

else if ((servletDevice == TINI_ICTP_IO.ICTP_IO_LCD) &&
(servletCmd == TINI_ICTP_IO.ICTP_IO_WRITE))

out.println("LCD_data: " + new String(LCD_data));
out.println("
device = " + servletDevice);
out.println("
command = " + servletCmd);
out.println("</body></html>");
/*
* now execute the command
*/

out.println("before execution");
if (tini_ictp_io.open()

73

!= TINI_ICTP_IO.ICTP_IO_SUCCESS) {
out.println(

"HC11 Servlet: Error when opening the HC-11 connection");
return;

}
switch (servletCmd) {

case TINI_ICTP_IO.ICTP_IO_WRITE:
if (servletDevice == TINI_ICTP_IO.ICTP_IO_LED)

{
System.out.println("Writing " + LED_data +

" to device " + servletDevice);
retCode = tini_ictp_io.write((byte)servletDevice,LED_data);
}

else if (servletDevice == TINI_ICTP_IO.ICTP_IO_LCD)
{

System.out.println("Writing " + LCD_data + " to device " +
servletDevice);

retCode = tini_ictp_io.write((byte)servletDevice,LCD_data);
}

break;
case TINI_ICTP_IO.ICTP_IO_READ:
if (servletDevice == TINI_ICTP_IO.ICTP_IO_LCD) {
if (debug)

out.println("16 chars to be read from LCD");
retData = new byte[16];

}
else {

retData = new byte[1];
}
if ((retCode =

tini_ictp_io.read((byte)servletDevice,
retData))!=TINI_ICTP_IO.ICTP_IO_SUCCESS)

out.println(
"Fatal error when trying to read ICTP_IO device");
else

if (retData.length > 1) {
out.println("Read from device: " +

servletDevice + " " +
new String(retData));

out.print("ICTP_IO Data: ");
for (i=0;i<retData.length;i++) {

tmp = ((int)retData[i]) & 0xff;
out.print("0x" +

Integer.toHexString(tmp)
+ " ");

}

74 Graphical User Interfaces

out.println();
}
else {

out.println("Read from device: " +
servletDevice + " " +

Integer.toHexString((int)retData[0]));
tmp = ((int)retData[0]) & 0xff;
out.println("ICTP_IO Data: " + "0x" +

Integer.toHexString(tmp));
}

break;
case TINI_ICTP_IO.ICTP_IO_IOCTL:

if (servletDevice != TINI_ICTP_IO.ICTP_IO_LCD)
out.println(

"ioctl command are only valid on the LCD device");
else

{

if ((retCode =
tini_ictp_io.ioctl((byte)servletDevice,

servletIoctlCmd)) != TINI_ICTP_IO.ICTP_IO_SUCCESS)
out.println(

"Fatal error when trying to ioctl ICTP_IO device");
}
break;

default:
out.println("HC11 Servlet: Illegal command");

}
out.println("Error Code: " + "0x" +

Integer.toHexString(retCode)); // needed for the client

if (tini_ictp_io.close() != TINI_ICTP_IO.ICTP_IO_SUCCESS) {
out.println(

"HC11 Servlet: Error when closing the HC-11 connection");
return;

}
}

private void print(PrintWriter out, String name, String value)
{
out.print(" " + name + ": ");
out.println(value == null ? "<none>" : value);

}

private void print(PrintWriter out, String name, int value)
{

75

out.print(" " + name + ": ");
if (value == -1)
{
out.println("<none>");

}
else
{
out.println(value);

}
}

/*
* strings that are needed for comparison
*/

private static final String ICTP_IO_DEVICE =new String("device");
private static final String ICTP_IO_LED = new String("LEDs");
private static final String ICTP_IO_LED_DATA =

new String("LED_data");
private static final String ICTP_IO_LED_BIT1 = new String("b1");
private static final String ICTP_IO_LED_BIT2 = new String("b2");
private static final String ICTP_IO_LED_BIT3 = new String("b3");
private static final String ICTP_IO_LED_BIT4 = new String("b4");
private static final String ICTP_IO_LED_BIT5 = new String("b5");
private static final String ICTP_IO_LED_BIT6 = new String("b6");
private static final String ICTP_IO_LED_BIT7 = new String("b7");
private static final String ICTP_IO_LED_BIT8 = new String("b8");
private static final String ICTP_IO_LED_NUM_DATA =

new String("intData");
private static final String ICTP_IO_LCD = new String("LCD");
private static final String ICTP_IO_LCD_DATA =

new String("LCD_data");

private static final String ICTP_IO_SWITCHES =
new String("Switches");

private static final String ICTP_IO_BUTTONS =
new String("Buttons");

private static final String ICTP_IO_ADC = new String("ADC");

private static final String ICTP_IO_COMMAND =
new String("command");

private static final String ICTP_IO_CMD_READ = new String("read");
private static final String ICTP_IO_CMD_WRITE =

new String("write");
private static final String ICTP_IO_CMD_IOCTL = new String("ioctl");
private static final String ICTP_IO_LCD_IOCTL =

new String("ioctlCmd");
private static final String ICTP_IO_IOCTL_SELECT =

new String("select");

76 Graphical User Interfaces

private static final String ICTP_IO_IOCTL_DESELECT =
new String("deselect");

private static final String ICTP_IO_IOCTL_CLEAR
= new String("clear");

private static final String ICTP_IO_IOCTL_HOME= new String("home");

private int servletCmd;
private int servletDevice;
private int servletLCDdata;
private int servletLEDdata;
private byte servletIoctlCmd;
private byte LED_data;
private byte[] LCD_data;

TINI_ICTP_IO tini_ictp_io;
}

C The full source code of the TINI ICTP IO class

/*
* ICTP_IO.java
*
* Created on August 21, 2003, 8:30 PM
*/

package tini_ictp_io;

import java.io.*;
import java.util.*;
import java.lang.Thread;
import javax.comm.*;
import com.dalsemi.comm.*;
/** The TINI_ICTP_IO class implements the ICTP_IO prototocol
* on the TINI. The protocol consists of simple messages which
* are sent to the HC-11 or 6809 boards were <I>servers</I>
* interpret it and execute the requested action of the hardware.
* After execution the same message is sent back with a error
* and possibly data fields filled in.

* The messages have a <i>header</i> field with an entry for
* a device code, a command code, an error code and a data size
* field followed by a number of data bytes who’s number was giveb
* in the data size field.
* @author Ulrich Raich
* @version 0.5
*
* The ICTP_IO class accesses the ICTP HC-11 IO board

77

* Its design is based on the ICTP_IO libraries for the RINOS 6809
* and the HC-11 boards, re-written for Java
* The TINI serial class is used for serial communication with the HC-11
*/

public class TINI_ICTP_IO {

/** Creates a new instance of ICTP_IO */

private static final byte ICTP_IO_HDR_LENGTH = 4;
private static final byte ICTP_PROT_CMD = 0;
private static final byte ICTP_PROT_DEV = 1;
private static final byte ICTP_PROT_ERR = 2;
private static final byte ICTP_PROT_SIZE = 3;
private static final byte ICTP_PROT_DAT = 4;

static final byte ICTP_PROT_NOERR = 1;

/** command code for opening the connection
to the microprocessor */

public static final byte ICTP_IO_OPEN = 0;
/** command code for reading */
public static final byte ICTP_IO_READ = 1;
/** command code for writing */
public static final byte ICTP_IO_WRITE = 2;
/** command code for ioctl */
public static final byte ICTP_IO_IOCTL = 3;
/** command code for closing the connection

to the microprocessor */
public static final byte ICTP_IO_CLOSE = 4;

/** The server is a pseudo device code which is read only.
* On the same hardware different servers, implementing different
* device accesses may be implemented. The ADC may read a single
* value but may also be used for sampling.
*/

public static final byte ICTP_IO_SERVER = 0;
/** devicve code for HC-11 switches */
public static final byte ICTP_IO_SWITCHES = 1;
/** device code for HC-11 ADC */
public static final byte ICTP_IO_ADC = 2;
/** device code for HC-11 Buttons */
public static final byte ICTP_IO_BUTTONS = 3;
/** device code for HC-11 Buttons */
public static final byte ICTP_IO_LED = 4;
/** device code for HC-11 LCD */

78 Graphical User Interfaces

public static final byte ICTP_IO_LCD = 5;
/** max device code for input devices */
private static final byte ICTP_IO_MAX_INPUT = 3;
/** min device code for input devices */
private static final byte ICTP_IO_MIN_INPUT = 1;
/** mac device code for output devices */
private static final byte ICTP_IO_MAX_OUTPUT = 4;
/** min device code for output devices */
private static final byte ICTP_IO_MIN_OUTPUT = 5;

private static final int ICTP_IO_ADC_RANGE = 256;
private static final int ICTP_IO_MAX_LCD_STRING = 16;

// ioctl codes

/** ioctl code for select */
public static final int ICTP_IO_SELECT = 2;
/** ioctl code for deselect */
public static final int ICTP_IO_DESELECT = 3;
/** ioctl code for clearing the LCD */
public static final int ICTP_IO_CLEAR = 4;
/** ioctl code for homing the LCD */
public static final int ICTP_IO_HOME = 5;

// possible errors

/** return code for success */
public static final int ICTP_IO_SUCCESS = 1;
/** error code for busy */

public static final int ICTP_IO_BUSY = -1;
// only a single board may be opened

/** error code for bad configuration */
public static final int ICTP_IO_BAD_CONFIG = -2;
// wrinting to LCD when in LED mode

/** error code when writing read only devices */
public static final int ICTP_IO_RDONLY = -3;
// trying to write read only device

/** error code when reading write only devices */
public static final int ICTP_IO_WTONLY = -4;
// trying to read write only device

/** error code when device code is invalid */
public static final int ICTP_IO_ILLEGAL_DEV = -5;

79

// no such device

/** error code when creation of ICTP_IO message was impossible */
public static final int ICTP_IO_MSG_CREATE_ERR = -6;
// Could not create message queue

/** not used */
public static final int ICTP_IO_MSG_DELETE_ERR = -7;
// Could not delete message queue

/** error code when the serial connection
could not be established */

public static final int ICTP_IO_NOT_OPEN = -10;
// devoce has not been opened

/** error code for hardware error */
public static final int ICTP_IO_HW_ERR = -11;
// hardware error

/** error code when no of data bytes does not
correspond to the command */

public static final int ICTP_IO_ILL_WC = -12;
// wrong no of bytes in mesg

/** error code when command code is invalid */
public static final int ICTP_IO_ILL_REQ = -13;
// unknown ioctl request

/** error code for timeout */
public static final int ICTP_IO_TIMEOUT = -16;
// read timeout

static boolean ICTP_IO_isOpen = false;
static boolean portIsOpen = false;

private Enumeration portList;
private CommPortIdentifier portId;
private SerialPort serialPort;
private SerialOutputStream serialOut;
private SerialInputStream serialIn;

boolean debug = false;
byte LCDValue = 0;
// settings of the serial port
// this is fixed for the HC-11

private static final String PORT_NAME = "serial0";

80 Graphical User Interfaces

private static final int BAUDRATE = 9600;

/** Get the value of debug
* returns true if the class is in debug mode
* @return true if in debug mode false otherwise
*/

public boolean getDebug() {return debug;}

/** set/reset the classes debug mode
* @param v true if class is to go to debug mode, false otherwise
*/

public void setDebug(boolean v) {this.debug = v;}

/** returns the state of the connection to the microprocessor
* true of open
* @return true if device has already been successfully opened
*/

public boolean isOpen()
{

return ICTP_IO_isOpen;
}
/** The open routine checks if the device
* has already been opened

* by this task

* If yes, it simply returns Success

* if not, it sends an open request to the microprocessor board
* and returns whatever error message comes back from there
* @return Error code indicating possible errors detected by
* the microprocessor board
*/

public int open() {
int i,noBytes,retCode;
byte dummy = 0;

if (debug)
System.out.println("ICTP_IO.open: called");

if (ICTP_IO_isOpen) {
System.out.println("ICTP_IO.open: connection is already"+
"open, nothing to do");
return ICTP_IO_SUCCESS;

}
/*
* open the serial port first and setup
* for normal working parameters
* 9600 baud ...
*/

81

if (!portIsOpen) {
if (openPort() != ICTP_IO_SUCCESS) {

System.out.println("ICTP_IO.open: Open failed");
return (ICTP_IO_HW_ERR);

}
if (debug)

System.out.println("ICTP_IO.open:"+
"serial port successfully opened");

}
this.writeMsg(ICTP_IO_OPEN,dummy);

retCode = checkError();
if (retCode != ICTP_IO_SUCCESS)

{
System.out.println("ICTP_IO.open:"+

"Error when opening HC-11 connection");
return retCode;
}
ICTP_IO_isOpen = true;
portIsOpen = true;
return ICTP_IO_SUCCESS;

}

/**The close routine teminated the connection to the HC-11

* @return Error code indicating possible errors detected by
* the microprocessor board
*/

public int close() {
int i,noBytes,retCode;
byte dummy = 0;

if (debug)
System.out.println("ICTP_IO.close: Close called");

if (!ICTP_IO_isOpen)
return ICTP_IO_SUCCESS;

this.writeMsg(ICTP_IO_CLOSE,dummy);

if (debug)
System.out.println("ICTP_IO.close:"+

"serial port successfully closed");

ICTP_IO_isOpen = false;
return this.checkError();

}

82 Graphical User Interfaces

/** The Write routine writes data to an HC-11 device

* this will be a bit pattern which is sent to the LEDs
* @return Error code indicating possible errors detected by
* the microprocessor board
*/

public int write(byte dev, byte data) {

if (debug)
System.out.println("ICTP_IO.write:"+

" Write single byte called ");

if (!ICTP_IO_isOpen)
return ICTP_IO_NOT_OPEN;

if (dev != ICTP_IO_LED)
return ICTP_IO_ILLEGAL_DEV;

if (debug)
System.out.println("ICTP_IO.write " + data + " to LED");

writeMsg (ICTP_IO_WRITE,dev,data);
return (checkError());

}

/** The Write routine writes data to an HC-11 device

* this will be a text which is sent to the LCDs
* @return Error code indicating possible errors detected by
* the microprocessor board
*/

public int write(byte dev, byte[] data) {

if (debug)
System.out.println("ICTP_IO.write:"+

" Write multiple bytes called");

if (!ICTP_IO_isOpen)
return ICTP_IO_NOT_OPEN;

if (dev != ICTP_IO_LCD)
return ICTP_IO_ILLEGAL_DEV;

if (debug)
System.out.println("ICTP_IO.write " + new String(data)

+ " to LCD");
writeMsg (ICTP_IO_WRITE,dev,data);
return (checkError());

}

public int ioctl(byte dev, byte data) {
int retCode;

83

if ((retCode = writeMsg(ICTP_IO_IOCTL, dev, data)) !=
ICTP_IO_SUCCESS) {

System.out.println("ICTP_IO.ioctl:"+
" Error sending request message");

return retCode;
}
else

return(checkError());
}

/** The read routine reads data from an HC-11 device

* it will first send a read request and then get data back
* from the return message.
* For the moment a single data byte is read
* (e.g. switches or buttons)
* but in principle any data size can be read
*/

public int read(byte dev, byte[] data) {

byte dummy = 0;
int retCode;
byte[] ICTP_IOmsg = {0,0,0,0};
byte[] ICTP_IOretMsg = {0,0,0,0,0};
byte dataSize=1;
byte[] ICTP_msgTail = new byte[1]; // datasize
if (debug)

System.out.println("ICTP_IO.read: Read called");

if (!ICTP_IO_isOpen)
return ICTP_IO_NOT_OPEN;

/*
* write the message to the port
*/

ICTP_IOmsg[ICTP_PROT_CMD] = ICTP_IO_READ;
ICTP_IOmsg[ICTP_PROT_DEV] = dev;
ICTP_IOmsg[ICTP_PROT_ERR] = -1;
ICTP_IOmsg[ICTP_PROT_SIZE] = 1;

if (debug)
printMsg("read",ICTP_IOmsg);

try {
if (debug)

System.out.println("ICTP_IO.read: Sending read request to device "
+ dev + " with datasize " + dataSize);

84 Graphical User Interfaces

serialOut.write(ICTP_IOmsg);

} catch (IOException e) {
System.out.println("ICTP_IO.read:"+

" Could not write the message to the output stream");
return ICTP_IO_MSG_CREATE_ERR;

}

/* now read the return message header */

if ((retCode = readMsgHdr(ICTP_IOretMsg)) != ICTP_IO_SUCCESS) {
System.out.println("ICTP_IO.read:"+

" Could not read return message header");
return retCode;

}

if (debug)
printMsg("ICTP_IO.read:",ICTP_IOretMsg);

dataSize = ICTP_IOretMsg[ICTP_PROT_SIZE];
if (debug)

System.out.println("ICTP_IO.read: No of bytes to be read:"
+ dataSize);

byte[] dataArray = new byte[dataSize];

try {
do {}
while (serialIn.available() < dataSize);
retCode = serialIn.read(dataArray,0,dataSize);
if (retCode < 0) {

System.out.println("ICTP_IO.read: no of chars read: "
+ retCode);

return ICTP_IO_TIMEOUT;
}

if (debug)
printMsg("ICTP_IO.read:",ICTP_IOretMsg);

} catch (IOException e) {
System.out.println("ICTP_IO.read: read error");
return ICTP_IO_HW_ERR;

}

if (debug) {
System.out.println("ICTP_IO.read: Data read:");
for (int i=0;i<dataSize;i++)

System.out.println(dataArray[i]);

85

}
for (int i=0;i<dataSize;i++)

data[i] = dataArray[i];
return ICTP_IO_SUCCESS;

}
/** Open the serial connection and get the input and out stream
* identifiers for later use. This
* @return error code, ICTP_IO_SUCCESS if everything goes fine
*/

public synchronized int openPort() {

if (debug)
System.out.println("ICTP_IO.openPort: called");

try {
// create SerialPort object from specified port
serialPort =

(SerialPort)
CommPortIdentifier.getPortIdentifier

(PORT_NAME).open("ICTP_IO", 5000);
serialPort.setSerialPortParams(BAUDRATE,

SerialPort.DATABITS_8,
serialPort.STOPBITS_1, SerialPort.PARITY_NONE);

} catch (NoSuchPortException nsp) {
System.out.println("Specified serial port ("+

PORT_NAME+") does not exist");
return ICTP_IO_HW_ERR;

} catch (PortInUseException piu) {
System.out.println("Serial port "+PORT_NAME+"

is in use by another application");
return ICTP_IO_HW_ERR;

} catch (UnsupportedCommOperationException usc) {
System.out.println("Unable to configure port:"+PORT_NAME);
return ICTP_IO_HW_ERR;

}

try {
serialIn = (SerialInputStream)serialPort.getInputStream();
serialOut = (SerialOutputStream)serialPort.getOutputStream();

} catch (IOException e) {
System.out.println("ICTP_IO.openPort:"

+ " Could not get input/output stream");
return ICTP_IO_HW_ERR;

}

return ICTP_IO_SUCCESS;

86 Graphical User Interfaces

}

/** this is a private class used to send the message
* header containing the command code and the device code
* @return error code if the header cannot be sent to the serial
* port
* @param cmd the command to be executed
* @param device the device that must be contacted
*/

private int writeMsgHdr(int cmd, int device) {
byte errorCode = -1;
byte[] ICTP_msg = new byte[ICTP_IO_HDR_LENGTH-1];
ICTP_msg[ICTP_PROT_CMD] = (byte)cmd;
ICTP_msg[ICTP_PROT_DEV] = (byte)device;
ICTP_msg[ICTP_PROT_ERR] = errorCode;
if (debug)
{

System.out.println("ICTP_IO.writeMsgHdr:"+
" Message header before sending:");

System.out.println("ICTP_IO.writeMsgHdr: Cmd: "
+
ICTP_msg[ICTP_PROT_CMD]);

System.out.println("ICTP_IO.writeMsgHdr: Dev: "
+
ICTP_msg[ICTP_PROT_DEV]);

System.out.println("ICTP_IO.writeMsgHdr: Err: "
+
ICTP_msg[ICTP_PROT_ERR]);

}
/*
* write the message to the port
*/

try {
serialOut.write(ICTP_msg);

} catch (IOException e) {
System.out.println("IOCT_IO.writeMsgHrd:" +

Could not write the message to the output stream");
return ICTP_IO_MSG_CREATE_ERR;

}
return ICTP_IO_SUCCESS;

}

/** writes a dataless message to the serial port

87

* @return error code
* @param cmd the command to be executed
* @param device the device that must executed the cmd
*/

public int writeMsg(byte cmd, byte device) {
byte[] dataSize = new byte[1];
dataSize[0] = 0;
if (debug)

System.out.println("ICTP_IO.writeMsg:"+
"sending the message header");

this.writeMsgHdr(cmd,device);
/*
* write the message to the port
*/

try {
serialOut.write(dataSize);

}
catch (IOException e) {

System.out.println("ICTP_IO.writeMsg:"+
"Could not write to output stream");

}
return ICTP_IO_SUCCESS;

}

/** writes a message with 1 data byte to the serial port
* @return error code
* @param cmd the command to be executed
* @param device the device that must executed the cmd
* @param data a single data byte
*/

private int writeMsg(byte cmd, byte device, byte data) {

byte[] ICTP_msgTail = new byte[2];

ICTP_msgTail[0] = 1; // datasize
ICTP_msgTail[1] = data;

if (debug)
System.out.println("ICTP_IO.writeMsg, data = " + data);

writeMsgHdr(cmd,device);

/*
* write the message to the port
*/

try {
serialOut.write(ICTP_msgTail);

} catch (IOException e) {

88 Graphical User Interfaces

System.out.println("writeMsg:"
+" Could not write the message to the output stream");

return ICTP_IO_MSG_CREATE_ERR;
}
return ICTP_IO_SUCCESS;

}
/** writes a dataless message to the serial port
* @return error code
* @param cmd the command to be executed
* @param device the device that must executed the cmd
* @param data a single data byte
*/

private int writeMsg(byte cmd, byte device, byte[] data) {

int LCDdataSize;

byte dataSize;
LCDdataSize=data.length;
LCDdataSize = (LCDdataSize > 16) ? 16:LCDdataSize;
dataSize = (byte) LCDdataSize;

if (debug) {
System.out.println("ICTP_IO.writeMsg to LCD, data = "

+ new String(data)
+ " size: " + LCDdataSize);

}
writeMsgHdr(cmd,device);

/*
* write the message to the port
*/
try {

serialOut.write(dataSize);

serialOut.write(data,0,LCDdataSize);
// sends the array of data

} catch (IOException e) {
System.out.println("writeMsg:"+
" Could not write the message to the output stream");

return ICTP_IO_MSG_CREATE_ERR;
}
return ICTP_IO_SUCCESS;

}

89

/** Read the answer message and check for the error field
* in the return message.
* @return the error code from the return message
*/

private int checkError() {
/*
* read back the answer
* first check if reading works ok
* maybe the wrong program is started of
* the HC-11 is entirely switched off ?
*/

int retCode = -1;
byte[] returnMsg = {0,0,0,0};
if ((retCode = readMsgHdr(returnMsg)) != ICTP_IO_SUCCESS) {

if (debug)
System.out.println("checkError:"+

" Error from HC-11 board: " +
retCode + " " + returnMsg[ICTP_PROT_ERR]);

}
if (returnMsg[ICTP_PROT_ERR] != ICTP_PROT_NOERR)

{
System.out.println("checkError: Error from HC-11 board,"+

" trying to recover...");
if ((retCode = startServer()) != ICTP_IO_SUCCESS) {

System.out.println("No way to recover, giving up!");
return retCode;

}
else {

if (debug)
System.out.println("TINI_ICTP_IO.checkError:"+

" Recovery successful");
return ICTP_IO_SUCCESS;

}
}
return retCode;

}
/**
* if there is a failure when reading the HC-11 it may well be
* that the HC-11 has been reset and the server is not running
* In that case we can start it by sending gf800 (a monitor
* command starting the server
* After that we must try to re-send the open message
* and see if we are fine now.
*/

private int startServer()

90 Graphical User Interfaces

{
byte cr = 0x0d;
byte dummy = 0;
byte[] startServerMsg;
String startServerString=new String("gf800 ");
byte[] dummyBuffer, returnMsg={0,0,0,0};
int retCode;

startServerMsg = startServerString.getBytes();
startServerMsg[5] = cr;
try {

serialOut.write(cr); // we sent a message
// the monitor does
// not understand !

Thread.sleep(500);
flushInputBuffer();
serialOut.write(startServerMsg);
Thread.sleep(500); // wait until the server is started
flushInputBuffer(); // the monitor echo back!

/* send the open message again */
this.writeMsg(ICTP_IO_OPEN,dummy);

}
catch (InterruptedException e)

{}
catch (IOException e)

{
System.out.println("TINI_ICTP_IO.startServer:"+

" Could not write to HC-11 serial stream");
return ICTP_IO_HW_ERR;
}
if ((retCode = readMsgHdr(returnMsg)) != ICTP_IO_SUCCESS) {

System.out.println("TINI_ICTP_IO.startServer:"
+" cannot read return message: " + retCode);

return ICTP_IO_MSG_CREATE_ERR;
}
if (returnMsg[ICTP_PROT_ERR] != ICTP_PROT_NOERR) {

System.out.println("TINI_ICTP_IO.startServer: bad error code: "
+ returnMsg[ICTP_PROT_ERR]);

return returnMsg[ICTP_PROT_ERR];
}
return ICTP_IO_SUCCESS;
}

private void flushInputBuffer()
{

int charsAvailable,retCode;

91

byte[] inBuffer;

try {
charsAvailable = serialIn.available();
inBuffer = new byte[charsAvailable];
if (charsAvailable != 0) {

do {
inBuffer = new byte[charsAvailable];
retCode=serialIn.read(inBuffer,0,charsAvailable);
if (debug) {

System.out.println("ICTP_IO.flushInputBuffer: removed "
+ charsAvailable + " from input buffer");

System.out.println(new String(inBuffer));
}
Thread.sleep(500);
charsAvailable = serialIn.available();

}
while (charsAvailable != 0);
}

} catch (IOException e) {
System.out.println("ICTP_IO.flushInputBuffer: read error");

}
catch (InterruptedException e)

{}

return;

}

private int readMsgHdr(byte[] inBuffer) {
int i,count;
int charsAvailable;
count = 0;
try {

if (debug)
System.out.println("readMsgHdr: entered");

charsAvailable = serialIn.available();
do {

try {
Thread.sleep(10);
} catch (InterruptedException e)

{};
count++;

}
while ((serialIn.available() < ICTP_IO_HDR_LENGTH)

&& (count < 100));

92 Graphical User Interfaces

if (count >99)
{

System.out.println("readMsgHdr:"+
" HC-11 does not respond!");

return ICTP_IO_HW_ERR;
}
for (i=0;i<ICTP_IO_HDR_LENGTH;i++)

inBuffer[i] = (byte)serialIn.read();

if (debug)
printMsg("readMsgHdr",inBuffer);

} catch (IOException e) {
System.out.println("readMsgHdr: read error");
return ICTP_IO_HW_ERR;

}

return ICTP_IO_SUCCESS;
}

private void printMsg(String routineName,byte[] msg) {
System.out.println("ICTP_IO." + routineName + " "

+ "ICTP_IO_msg contents:");

System.out.println("ICTP_IO." + routineName +
" " + "cmd: " + msg[ICTP_PROT_CMD]);

System.out.println("ICTP_IO." + routineName + " "
+ "dev: " + msg[ICTP_PROT_DEV]);

System.out.println("ICTP_IO." + routineName + " "
+ "err: " + msg[ICTP_PROT_ERR]);

System.out.println("ICTP_IO." + routineName + " "
+ "datasize: " + msg[ICTP_PROT_SIZE]);

}
}

D The full source code of the Complex Calculator

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;

93

/**
* ComplexCalcUI_Stage9.java
*
*
* Created: Mon Aug 21 21:19:31 2000
* Stage 7
* @author Ulrich Raich
* @version 0.1
*/

public class ComplexCalcUI_Stage9 extends JApplet {
private JTextField realPartText;
private JTextField imagPartText;
private JRadioButton realPartSelector,imagPartSelector;
boolean debug = false;

public ComplexCalcUI_Stage9 () {

}

/**
* In this stage be put a border around the 2 widgets
* Making the box look lowered
*/

public void init() {
/*
Create a Panel for real and imaginary part
text inputs

*/

JPanel calcPanel;
GridBagLayout gridBagLayout = new GridBagLayout();
GridBagConstraints gridBagConstraints = new GridBagConstraints();
GridLayout numberLayout;
GridLayout numberInputLayout;
JPanel numberPanel;
Box inputBox;
JButton[] numberInputButton;
JButton[] operatorInputButton;
Box selectorBox;
JPanel numberInputPanel;
JPanel operatorInputPanel;
JLabel realPartLabel;
JLabel imagPartLabel;

BevelBorder TextBorder;

94 Graphical User Interfaces

if(debug)
System.out.println("Version 9");

/*
create the widgets

*/
calcPanel = new JPanel(gridBagLayout);
inputBox = Box.createHorizontalBox();

numberInputLayout = new GridLayout(4,3);
numberInputPanel = new JPanel(numberInputLayout);
operatorInputPanel = new JPanel(numberInputLayout);

inputBox.add(numberInputPanel);
inputBox.add(operatorInputPanel);

/*
create the label and the text fields for
entry of complex numbers

*/
numberPanel = new JPanel();
numberLayout = new GridLayout(2,2);
numberPanel.setLayout(numberLayout);
realPartLabel = new JLabel("Real Part");
realPartText = new JTextField(15);
realPartText.setText("0.0");
realPartText.setEditable(false);
imagPartLabel = new JLabel("Imaginary Part");
imagPartText = new JTextField(15);
imagPartText.setEditable(false);
imagPartText.setText("0.0");

TextBorder = new BevelBorder(BevelBorder.LOWERED);
numberPanel.setBorder(TextBorder);
/*
Place the label and the text widget in the box

*/

numberPanel.add(realPartLabel);
numberPanel.add(imagPartLabel);
numberPanel.add(realPartText);
numberPanel.add(imagPartText);

/*
create the controller containing the action listeners
and pass it the instances of realPartText,imagPartText...
which are needed when treating the Action events

*/

95

ComplexCalcController complexCalcController =
new ComplexCalcController(this);

/*
create a RadioBox for selection into which

TextField the button input should go
*/
selectorBox = Box.createVerticalBox();
realPartSelector = new JRadioButton(
"Input real part of the number");

realPartSelector.setActionCommand("SetReal");
realPartSelector.addActionListener(complexCalcController);
realPartSelector.setSelected(true);

imagPartSelector = new JRadioButton(
"Input imaginary part of the number");

imagPartSelector.addActionListener(complexCalcController);
imagPartSelector.setActionCommand("SetImag");

/*
Group them into a Radio Box

*/
ButtonGroup buttonGroup = new ButtonGroup();
buttonGroup.add(realPartSelector);
buttonGroup.add(imagPartSelector);

selectorBox.add(realPartSelector);
selectorBox.add(imagPartSelector);

numberInputButton = new JButton[12];
for (int i=0;i<10;i++)

{
numberInputButton[i] = new JButton(Integer.toString(i));
numberInputPanel.add(numberInputButton[i]);
numberInputButton[i].addActionListener(complexCalcController);
}

numberInputButton[10] = new JButton(".");
numberInputPanel.add(numberInputButton[10]);
numberInputButton[10].addActionListener(complexCalcController);

numberInputButton[11] = new JButton("+/-");
numberInputPanel.add(numberInputButton[11]);
numberInputButton[11].addActionListener(complexCalcController);

operatorInputButton = new JButton[12];

96 Graphical User Interfaces

operatorInputButton[0] = new JButton("+");
operatorInputPanel.add(operatorInputButton[0]);
/* activate the thing */
operatorInputButton[0].addActionListener(complexCalcController);

operatorInputButton[1] = new JButton("-");
operatorInputButton[1].addActionListener(complexCalcController);
operatorInputPanel.add(operatorInputButton[1]);

operatorInputButton[3] = new JButton("*");
operatorInputPanel.add(operatorInputButton[3]);
operatorInputButton[3].addActionListener(complexCalcController);

operatorInputButton[4] = new JButton("/");
operatorInputPanel.add(operatorInputButton[4]);
operatorInputButton[4].addActionListener(complexCalcController);

operatorInputButton[8] = new JButton("=");
operatorInputPanel.add(operatorInputButton[8]);
operatorInputButton[8].addActionListener(complexCalcController);

/* this button is not used yet */
operatorInputButton[9] = new JButton();
operatorInputPanel.add(operatorInputButton[9]);

operatorInputButton[10] = new JButton("Norm");
operatorInputPanel.add(operatorInputButton[10]);
operatorInputButton[10].addActionListener(complexCalcController);

operatorInputButton[10] = new JButton("Clear");
operatorInputPanel.add(operatorInputButton[10]);
operatorInputButton[10].addActionListener(complexCalcController);

/*
get the proportions right between

the display and the button part
*/
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 0;
gridBagConstraints.gridwidth = 1;
gridBagConstraints.gridheight = 1;
gridBagConstraints.weightx = 100;
gridBagConstraints.weighty = 15;
gridBagConstraints.fill = GridBagConstraints.BOTH;
gridBagLayout.setConstraints(numberPanel,gridBagConstraints);

gridBagConstraints.gridx = 0;

97

gridBagConstraints.gridy = 1;
gridBagConstraints.gridwidth = 1;
gridBagConstraints.gridheight = 1;
gridBagConstraints.weightx = 100;
gridBagConstraints.weighty = 70;
gridBagLayout.setConstraints(inputBox,gridBagConstraints);

gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 2;
gridBagConstraints.gridwidth = 1;
gridBagConstraints.gridheight = 1;
gridBagConstraints.weightx = 100;
gridBagConstraints.weighty = 15;
gridBagLayout.setConstraints(selectorBox,gridBagConstraints);

calcPanel.add(numberPanel);
calcPanel.add(inputBox);
calcPanel.add(selectorBox);

this.getContentPane().add(calcPanel);
}

/**
* Get the value of realPartText.
* @return Value of realPartText.
*/

public JTextField getRealPartText() {return realPartText;}
/**

* Get the value of imagPartText.
* @return Value of imagPartText.
*/

public JTextField getImagPartText() {return imagPartText;}
/**

* Get the value of imagPartText.
* @return Value of imagPartText.
*/

public void setRealPartText(String s)
/**

* Write the String into imagPartText.
*/

{
if(debug)

System.out.println("UI setText text: " + s);
realPartText.setText(s);

}

98 Graphical User Interfaces

public void setImagPartText(String s)
/**

* Write the String into imagPartText.
*/

{
imagPartText.setText(s);
}

/**
* Get the value of debug.
* @return value of debug.
*/

public boolean isDebug() {
return debug;

}

/**
* Set the value of debug.
* @param v Value to assign to debug.
*/

public void setDebug(boolean v) {
this.debug = v;

}

}// ComplexCalcUI_Stage9

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;
import java.text.*;
/**
* ComplexCalcController.java
*
*
* Created: Sat Aug 26 22:17:25 2000
*
* @author Ulrich Raich
* @version 0.1
*/

public class ComplexCalcController implements ActionListener {
static final int plus=1;
static final int minus=1;
ComplexCalcUI_Stage9 complexUI;

99

int operator;
ComplexModel model;
boolean debug=false;

public ComplexCalcController (ComplexCalcUI_Stage9 ui)
{

/* save the identifier to the View */
complexUI = ui;
model = new ComplexModel();
if(debug)
System.out.println("ComplexController");
}

/**
* Get the value of debug.
* @return value of debug.
*/

public boolean isDebug() {
return debug;

}

/**
* Set the value of debug.
* @param v Value to assign to debug.
*/

public void setDebug(boolean v) {
this.debug = v;

}

private double getRealPartFromUI()

{
JTextField rp;

String numberString;
double value;

rp = complexUI.getRealPartText();
numberString = rp.getText();
value = Double.parseDouble(numberString);
System.out.println("real part value: " + value);
return(value);
}

private double getImagPartFromUI()
{

JTextField ip;
String numberString;

100 Graphical User Interfaces

double value;

ip = complexUI.getRealPartText();
numberString = ip.getText();
value = Double.parseDouble(numberString);
if(debug)
System.out.println("real part value: " + value);

return(value);
}

public void actionPerformed(ActionEvent e)
{

JButton activatedButton;
String buttonLabel;
double value;
byte[] buttonChars;

if(debug)
System.out.println("Class name:" +
e.getSource().getClass().getName());

if (e.getActionCommand().equals("SetReal"))
{
if(debug)
System.out.println("Real part ");

model.setReal();
return;

}
if (e.getActionCommand().equals("SetImag"))
{
if(debug)
System.out.println("Imag part ");

model.setImag();
return;

}

activatedButton = (JButton)e.getSource();
buttonLabel = activatedButton.getText();

if (buttonLabel.equals("+"))
{
if(debug)

System.out.println("Add Button");
model.setOperator(ComplexModel.ADD);
model.copyNumbers();
return;

}
if (buttonLabel.equals("-"))

101

{
if(debug)

System.out.println("Sub Button");
model.copyNumbers();
model.setOperator(ComplexModel.SUB);
return;

}
if (buttonLabel.equals("*"))

{
if(debug)

System.out.println("Mult Button");
model.copyNumbers();
model.setOperator(ComplexModel.MUL);
return;

}
if (buttonLabel.equals("/"))

{
model.setOperator(ComplexModel.DIV);
model.copyNumbers();
if(debug)

System.out.println("Div Button");
return;

}
if (buttonLabel.equals("Norm"))

{
model.setOperator(ComplexModel.NORM);
if(debug)

System.out.println("Norm Button");
model.execute();
setResult();
return;

}
if (buttonLabel.equals("+/-"))

{
if(debug)

System.out.println("Change Sign Button");
model.changeSign();
setResult();
return;

}
if (buttonLabel.equals("="))

{
if(debug)

System.out.println("Equals Button");
model.execute();
setResult();
return;

102 Graphical User Interfaces

}
if (buttonLabel.equals("."))

{
if(debug)

System.out.println("Dot Button");
model.setPoint();
return;

}
if (buttonLabel.equals("Clear"))
{
model.clear();
setResult();

}
for (int i=0;i<10;i++)

if (buttonLabel.equals(Integer.toString(i)))
{
if(debug)

{
System.out.println("Number:" + i);
System.out.println("Actual result:" +
model.getResult().toString());

}
buttonChars = buttonLabel.getBytes();
if(debug)

System.out.println("Button Byte" +
buttonChars[0]);
model.addDigit(buttonChars[0]);
setResult();

}
}

private void setResult()
{
Complex result = model.getResult();
DecimalFormat df = new DecimalFormat("0.0######");
String resultString=df.format(result.getReal());
complexUI.setRealPartText(resultString);
resultString=df.format(result.getImaginary());
complexUI.setImagPartText(resultString);

}

private void clearResult()
{
complexUI.setRealPartText("0.0");
complexUI.setImagPartText("0.0");

}

103

}// ComplexCalcController

/**
* ComplexModel.java
*
*
* Created: Sun Nov 11 17:59:36 2001
*
* @author Ulrich Raich
* @version
*/

import java.text.*;

public class ComplexModel {

public static final int INVALID=0;
public static final int ADD =1;
public static final int SUB =2;
public static final int MUL =3;
public static final int DIV =4;
public static final int NORM =5;

Complex firstNumber,result;
int operator;
boolean realPoint,imagPoint;
boolean real = true;
boolean newNumber = true;
byte[] realIntPart,imagIntPart;
byte[] realFloatPart,imagFloatPart;
int realIntIndex,realFloatIndex;
int imagIntIndex,imagFloatIndex;
boolean debug = false;

/**
* The ComplexModel is a model for the complex
* calculator. It has properties to save the numbers
* that are about to be entered and it stores the number
* entered before and operator. The operator is stored
* as well.
*/

public ComplexModel (){
realIntPart = new byte[50];
realFloatPart = new byte[50];

imagIntPart = new byte[50];
imagFloatPart = new byte[50];

104 Graphical User Interfaces

realPoint = imagPoint = false;
result = new Complex(0.0,0.0);
firstNumber = new Complex(0.0,0.0);
clearAll();
operator = INVALID;

}
public ComplexModel (Complex c){
this();
result=c;

}
public ComplexModel (double r, double i){
this();
result.setReal(r);
result.setImaginary(i);

}

public void setOperator(int op)
{
if ((operator < ADD) && (operator > DIV))
return;

if(debug)
System.out.println("Operator set to " + op);

operator = op;
newNumber = true;

}

public int getOperator()
{
return operator;

}

/**
* Get the value of debug.
* @return value of debug.
*/

public boolean isDebug() {
return debug;

}

/**
* Set the value of debug.
* @param v Value to assign to debug.
*/

public void setDebug(boolean v) {
this.debug = v;

}

105

public void execute()

{
boolean tmpRealImag;
String resultString;
byte[] tmpInt,tmpFloat;
int tmpIntIndex,tmpFloatIndex;
int i,j;

tmpInt = new byte[50];
tmpFloat= new byte[50];

if ((operator < ADD) || (operator > NORM))
return;

result=getResult();
/* assemble byte strings into complex */
switch(operator) {
case ADD:
result=firstNumber.add(result);
clearFirstNumber();
if(debug)

System.out.println("Execution result:" +
result.getReal() + " " +
result.getImaginary());
break;

case SUB:
result=firstNumber.sub(result);
clearFirstNumber();
if(debug)

System.out.println("Execution result:" +
result.getReal() + " " +
result.getImaginary());
break;

case MUL:
result=firstNumber.mul(result);
clearFirstNumber();
if(debug)

System.out.println("Execution result:" +
result.getReal() + " " +
result.getImaginary());

break;
case DIV:
result=firstNumber.div(result);
clearFirstNumber();
if(debug)

System.out.println("Execution result:" +

106 Graphical User Interfaces

result.getReal() + " " +
result.getImaginary());

break;
case NORM:
result.setReal(result.norm());
result.setImaginary(0.0);
clearFirstNumber();
if(debug)

System.out.println("Execution result:" +
result.getReal() + " " +
result.getImaginary());
break;

}

newNumber = true;
clearFirstNumber();
tmpInt = double2IntArray(result.getReal());
copyByteArray(tmpInt,realIntPart);
realIntIndex = tmpInt.length;
if(debug)
System.out.println("execute: realIntPart: " +
new String(tmpInt));

tmpFloat = double2FloatArray(result.getReal());
copyByteArray(tmpFloat,realFloatPart);
realFloatIndex = tmpFloat.length;
if(debug)
System.out.println("execute: realFloatPart: " +
new String(tmpFloat));

tmpInt = double2IntArray(result.getImaginary());
copyByteArray(tmpInt,imagIntPart);
imagIntIndex = tmpInt.length;

tmpFloat = double2FloatArray(result.getImaginary());
copyByteArray(tmpFloat,imagFloatPart);
imagFloatIndex = tmpFloat.length;

}

public void clearFirstNumber()
{
firstNumber.setReal(0.0);
firstNumber.setImaginary(0.0);
return ;

}

107

public Complex getFirstNumber()
{
return firstNumber;

}
public Complex getResult()
{
return result;

}

private void assembleResult()
{
double real,imag;
byte[] intTmp,floatTmp;

intTmp = adaptByteArray(realIntPart, realIntIndex);
floatTmp = adaptByteArray(realFloatPart,realFloatIndex);
if (intTmp.length == 0)
{

if(debug)
System.out.println("zero length byte array");

return;
}

String numberString = new String(intTmp) + "."
+ new String(floatTmp);

if(debug)
System.out.println("assembleResult: real numberString: " +
numberString);

real = Double.parseDouble(numberString);

intTmp = adaptByteArray(imagIntPart, imagIntIndex);
floatTmp = adaptByteArray(imagFloatPart,imagFloatIndex);

numberString = new String(intTmp) + "." +
new String(floatTmp);

imag = Double.parseDouble(numberString);

if(debug)
System.out.println("assembleResult: imag numberString: " +
numberString);

result = new Complex(real,imag);
}

private byte[] adaptByteArray(byte[] unadaptedByteArray,int index)
{

byte[] adaptedByteArray;
if (index==0)

108 Graphical User Interfaces

{
adaptedByteArray = new byte[1];
adaptedByteArray[0]=’0’;
return adaptedByteArray;

}
else
{

adaptedByteArray = new byte[index];
for (int i=0;i<index;i++)
{
adaptedByteArray[i] = unadaptedByteArray[i];
if(debug)
System.out.println(i +

"Copy char:" +
new String(adaptedByteArray));

}
}

return adaptedByteArray;
}

public String[] getResultStrings()
{
String[] complexStrings = new String[2];
byte[] intTmp,floatTmp;

if(debug)
System.out.println("realIntIndex : " + realIntIndex);

intTmp = adaptByteArray(realIntPart, realIntIndex);
floatTmp = adaptByteArray(realFloatPart,realFloatIndex);

complexStrings[0] = new String(intTmp) + "." + new String(floatTmp);

intTmp = adaptByteArray(imagIntPart, imagIntIndex);
floatTmp = adaptByteArray(imagFloatPart,imagFloatIndex);

complexStrings[1] = new String(intTmp) + "."
+ new String(floatTmp);

if(debug)
System.out.println("result Strings: " +
complexStrings[0] + " " +

complexStrings[1]);
return complexStrings;

}

public void copyNumbers()

109

{
firstNumber = new Complex(result);
result.setReal(0.0);
result.setImaginary(0.0);
clearAll();

}

public void clearAll()
{
clear();
real = !real;
clear();
real = !real;

}

public void clear()
{
if (real)
{

realIntPart[0] = ’0’;
realFloatPart[0] = ’0’;
result.setReal(0.0);
realIntIndex = 1;
realFloatIndex = 0;

}
else
{

imagIntPart[0] = ’0’;
imagFloatPart[0] = ’0’;
result.setImaginary(0.0);
imagIntIndex = 1;
imagFloatIndex = 0;

}
realPoint = imagPoint = false;

}

public void addDigit(byte digit)
{
String resultString;
double newRealPart,newImagPart;
String integerPartString,floatPartString;
byte[] intBytes,floatBytes;
int intIndex,floatIndex;
byte[] intPart,floatPart;
boolean point;

if (newNumber) {

110 Graphical User Interfaces

clear();
newNumber = false;

}
if(debug)
System.out.println("addDigit: " + digit);

if (real)
{

intIndex = realIntIndex;
floatIndex = realFloatIndex;
intPart = realIntPart;
floatPart = realFloatPart;
point = realPoint;

}
else
{

intIndex = imagIntIndex;
floatIndex = imagFloatIndex;
intPart = imagIntPart;
floatPart = imagFloatPart;
point = imagPoint;
if(debug)
System.out.println("Imag addDigit");
}

if (point)
{

if (floatIndex > 7)
return;

floatPart[floatIndex] = digit;
floatIndex++;

floatBytes = new byte[floatIndex];
for (int i=0;i<floatIndex;i++)
floatBytes[i] = floatPart[i];

resultString = new String(floatBytes);
if(debug)
System.out.println("New result: " + resultString);

newRealPart = Double.parseDouble(resultString);
if(debug)
System.out.println(
"new value:" + new Double(newRealPart).toString());
result.setReal(newRealPart);
}

else
{

if (intIndex > 7)

111

return;
if(debug)
System.out.println("intIndex: " + intIndex);

if ((intIndex == 1)&&(intPart[0]==’0’))
{
if (digit == ’0’)
return;

intPart[0] = digit;
}

else
{
intPart[intIndex] = digit;
intIndex++;

}

intBytes = new byte[intIndex];
for (int i=0;i<intIndex;i++)
intBytes[i] = intPart[i];

resultString = new String(intBytes);
if(debug)
System.out.println("New result: " + resultString);

newRealPart = Double.parseDouble(resultString);
if(debug)
System.out.println("new value:" + new Double(newRealPart).toString());

result.setReal(newRealPart);

}
if (real)
{

realIntIndex = intIndex;
realFloatIndex= floatIndex;

}
else
{

imagIntIndex = intIndex;
imagFloatIndex= floatIndex;

}
assembleResult();

}

public void setPoint()
{
if (real)
realPoint = true;

else

112 Graphical User Interfaces

imagPoint = true;
}

public void setReal()
{
real = true;

}

public void setImag()
{
real = false;

}

public void changeSign()
{
if (real)
{

realIntPart = changeSign(realIntPart);
if (realIntPart[0] == ’-’)
realIntIndex++;

else
realIntIndex--;

if(debug)
{
System.out.println("After Change Sign " +

new String(realIntPart) + "." +
new String(realFloatPart));

System.out.println("realIntIndex: " + realIntIndex);
}
}

else
{

imagIntPart = changeSign(imagIntPart);
if (imagIntPart[0] == ’-’)
imagIntIndex++;

else
imagIntIndex--;
}

assembleResult();
}

public byte[] changeSign(byte[] inArray)
{
byte[] outArray = new byte[50];
if (inArray[0] == ’-’)
{

113

for (int i=0;i<inArray.length-1;i++)
outArray[i] = inArray[i+1];

return outArray;
}

else
{

outArray[0] = ’-’;
for (int i=0;i<inArray.length-1;i++)
outArray[i+1] = inArray[i];

return outArray;
}

}

public void copyByteArray(byte[] src, byte[] dest)
{
for (int i=0;i<src.length;i++)
dest[i] = src[i];

}

public double byteArray2Double(byte[] intArray, byte[] floatArray)
{
double result;
String numberString = new String(intArray) +

"." +
new String(floatArray);

result = Double.parseDouble(numberString);
if (debug)
System.out.println("byteArray2Double: double value " + result);

return result;
}

/**
* extracts the integer part from a double
* in form of a character array
*
*/

public byte[] double2IntArray(double val)
{
DecimalFormat df;
String valString;
byte[] intArray,tmpAll;
int i,length;

df = new DecimalFormat("0.0######");

114 Graphical User Interfaces

valString=df.format(val);
/*
extract the byte array from the String
should be in the form ii.fff
with a least 1 i and 1 f

*/

length = 0;
tmpAll = valString.getBytes();
for (i=0;i<tmpAll.length;i++)
{

/*
get at the position of the decimal point

*/
if (tmpAll[i] == ’.’)
break;

else
length++;
}

intArray = new byte[length];
for (i=0;i<length;i++)
intArray[i] = tmpAll[i];

return intArray;
}

public byte[] double2FloatArray(double val)
{
DecimalFormat df;
String valString;
byte[] floatArray,tmpAll;
int i,length,dotPos;

df = new DecimalFormat("0.0######");
valString=df.format(val);
/*
extract the byte array from the String
should be in the form ii.fff
with a least 1 i and 1 f

*/

tmpAll = valString.getBytes();
for (i=0;i<tmpAll.length;i++)
{

/*
get at the position of the decimal point

*/
if (tmpAll[i] == ’.’)

115

break;
}

dotPos=i;
length = tmpAll.length - dotPos - 1;

floatArray = new byte[length];
for (i=0;i<length;i++)
floatArray[i] = tmpAll[dotPos+i+1];

return floatArray;
}

}

