Course on VLSI Design Techniques.
 Puebla - Mexico, 29 Nov – 17 Dec, 2004

MICROPROCESSOR LABORATORY

Second Central American Regional Course on Advanced VLSI Design Techniques
29 November - 17 December 2004
Puebla – Mexico

Exercise 7

Adder Accumulator using Datapath Entities

Problem Description
Re-design the 4-bit adder accumulator that you designed in Exercise 4 using datapath entities. In this design example you will learn to:


Describe the circuit in the Fpgen language.


Compile and generate the structural description using Fpgen.


Place and route the chip and generate the layout file using Dpr.


Place the pads using Genlib language and generate the structural description with pads.

· Simulate the structural using Asimut.

· Place and route the pads using Ring.

· Extract back the circuit from the layout using Lynx.

· Use Tas to perform the static timing analysis.

· Make a layout verification by comparing the extracted netlist with the structural description using Lvx.

[image: image1.wmf]Fpgen

accum.vst

Tas

Vi or Pico Text Editor

Fpgen Language

Description of

Adder Accumulator

 (accum.c)

Dpr

accum.ap

Vi or Pico

Text Editor

Fpgen Language

Description of

Register (memory_us.c)

Fpgen

memory_us.vst

Vi or Pico Text Editor

Genlib Language

Description of Pads

& core (accumchip.c)

Genlib

accumchip.vst

Ring

Vi or Pico Text Editor

Relative position

of Pads

(accumchip.rin)

accumchip.ap

Vi or Pico Text Editor

Test Vectors using

Genpat Language

(accumtest.c)

Genpat

accumtest.pat

Vi or Pico Text Editor

Modify Test Vectors

(accumtest.pat)

Asimut

Lynx

Graal

accumchip.al

Lvx

filename.pat

(to be checked

for correct

functionality)

S2r

accumchip.cif

(Chip ready

for foundry)

accumchip.ttv

Fig 1. Design Flow for the Adder Accumulator

A 4-Bit Adder Accumulator Using Data Path Entities

This design example differs from other examples in the sense that you will not make the behavioural description of the circuit. Instead the circuit will be described as a netlist of components from the data-path elements library. Fig 1 below shows the block diagram of the circuit with the components from the data-path library with names of the intermediate nodes. This circuit will be translated into the Fpgen language. Fig 3 shows a possible pin out for the chip. Table 1 summarises the function of the chip.

4 Bit Slices

[image: image2.wmf]4 Bit Slices of 2 to 1

 MUX

4 Bit Adder

4 Bit Latch

1-bit

inverter

4

4

4

4

4

4

CTRL

A [3:0]

SEL

B [3:0]

CLK

VDD

VSS

DP_MUX2CS

DP_ADSB2F

MEMORY_US

SUM [3:0]

ndrv_dp

MUXOUT[3:0]

CSUM [3:0]

Fig 2. Block Diagram of the Adder Accumulator using Data Path Components.

[image: image3.wmf]VSS

VDD

CK

SEL

 B(3)

 B(2)

 B(1)

A(3)

A(2)

A(1)

A(0)

B(0)

SUM(3)

SUM(2)

SUM(1)

SUM(0)

ADDER

NC

NC

NC

CTRL

Fig. 3 The Adder Accumulator chip (a possible pinout diagram).

	CLK
	SEL
	CTRL
	SUM

	Rising Edge
	0
	0
	A + B

	Rising Edge
	1
	0
	A + SUM

	No Rising Edge
	X
	X
	SUM

Table 1. Truth Table for the 4-bit presetable counter

When the SEL is ‘0’ two 4-Bit numbers A and B are added, latched and presented, at the 4-Bit SUM output at the rising edge of the CLK. When SEL is ‘1’ the SUM output is fed back to the adder and is added with A. The value is latched and presented at the SUM output at the rising edge of the CLK.

[image: image4.wmf]
Solution
Legend

[image: image5.wmf]
commands are to be given at the command line.

[image: image6.wmf]H

Edit and save into a file

[image: image7.wmf]
Explanation of a topic

[image: image8.wmf]

Environmental variables are to be set

Creating the Design

Begin by creating a design directory, at a convenient position in your workspace:
[image: image9.wmf]

mkdir accum
Change into this directory:
[image: image10.wmf]

cd accum

Create with the text editor a file called “accum.c”. Enter the following and save the file.

[image: image11.wmf]H

#include <genlib.h>

#include <fpgen.h>

main()

{

DP_DEFLOFIG("ACCUM", 4, LSB_INDEX_ZERO);

/* Interface declaration */

printf("Interface\n");

 DP_LOCON("vdd",IN,"vdd");

 DP_LOCON("vss",IN,"vss");

 DP_LOCON("A[3:0]",IN,"A[3:0]");

 DP_LOCON("B[3:0]",IN,"B[3:0]");

 DP_LOCON("SUM[3:0]",OUT,"SUM[3:0]");

 DP_LOCON("SEL",IN,"SEL");

 DP_LOCON("CLK",IN,"CLK");

 DP_LOCON("CTRL",IN,"CTRL");

 DP_MUX2CS("MUXINST",

 4,

 0,

 "SEL",

 "SUM[3:0]",

 "B[3:0]",

 "MUXOUT[3:0]",

 EOL);

 DP_ADSB2F("ADDER",

 "A[3:0]",

 "MUXOUT[3:0]",

 "CARRY",

 "OVF",

 "CSUM[3:0]",

 "CTRL",

 EOL);

/* heterogeneous operator */

LOINS ("ndrv_dp","CLKINV","CLK","NCLK","vdd","vss",0);

DP_IMPORT("memory_us","MEMINS","CSUM[3:0]","SUM[3:0]","NCLK",EOL);

DP_SAVLOFIG();

 exit(0);

}

[image: image12.wmf]
Fpgen is a set of C functions dedicated to data path synthesis. Fpgen creates a hierarchical netlist that can be given to the data path route tool Dpr.

To compile with Fpgen, two include files, “genlib.h” and “fpgen.h” are required which have to be declared through the C include statement at the top of the file. Then the circuit is described inside a procedure like any normal main procedure in C.

main()

{

Here is your circuit description.

exit(0);

}

Inside the main procedure , the circuit is described as macro-functions. The man pages of fpgen or fplib (man fpgen or man fplib) contains a list of macro-functions that are allowed inside the main procedure. The macro-functions consists of gate level logical functions like inverter, and, or, xor, etc. It also consists of generator functions like adder and barrel shifter. Register function like Dflip-flop is also provided. With these functions most data paths can be constructed.

Each of the macro-functions has its man pages and it is recommended that they be consulted before the circuit is constructed !.

Coming to our circuit, the adder accumulator has been described in the above file. In this file the DP_IMPORT function has been use to instanciate a part called “memory_us” that has been constructed out of heterogeneous functions. We have to generate this file too, if our circuit has to work. The man pages of dplib (man dplib) gives a list of heterogeneous operators that are allowed. The man pages of a particular heterogeneous operator gives in detail the order and type of the arguments for that operator (e.g. man ms_dp).

Create with the text editor a file called “memory_us.c”. Enter the following and save the file. This file describes the 4-bit edge triggered register that has been built from a heterogeneous block “ms_dp”. The instance name of the heterogeneous operator ms_dp end with a “_#” so that the data path router, Dpr knows that “#” is the slice number (the level) at which the block is to be placed.

[image: image13.wmf]H

#include <genlib.h>

#include <fpgen.h>

main ()

{

 /* creating a new data-path figure for accumulator-adder */

 DEF_LOFIG("memory_us");

 /* logical connectors */

 LOCON("i[3:0]", IN ,"i[3:0]");

 LOCON("o[3:0]", OUT ,"o[3:0]");

 LOCON("clk", IN ,"clk");

 LOCON("vdd", IN ,"vdd");

 LOCON("vss", IN ,"vss");

 /* data path netlist description */

 LOINS("ms_dp","mem_0","i[0]","clk","o[0]","vdd","vss", EOL);

 LOINS("ms_dp","mem_1","i[1]","clk","o[1]","vdd","vss", EOL);

 LOINS("ms_dp","mem_2","i[2]","clk","o[2]","vdd","vss", EOL);

 LOINS("ms_dp","mem_3","i[3]","clk","o[3]","vdd","vss", EOL);

 /* save the model on disk */

 SAVE_LOFIG();

 }

Set the environmental variables as shown below.
[image: image14.wmf]
setenv MBK_CATA_LIB .:/alliance/archi/Linux_elf/cells/fplib:

/alliance/archi/Linux_elf/cells/dplib:

/alliance/archi/Linux_elf/cells/rsa:

/alliance/archi/Linux_elf/cells/sclib:

/alliance/archi/Linux_elf/cells/padlib

setenv MBK_IN_LO vst

setenv MBK_OUT_LO vst

setenv MBK_IN_PH ap

setenv MBK_OUT_PH ap

setenv MBK_WORK_LIB .

[image: image15.wmf]
 fpgen -v memory_us
Give the following command at the command line.
[image: image16.wmf]

fpgen -v accum
These commands generate the structural of the respective parts of the hierarchy.

Placement and Routing of the core

[image: image17.wmf]
The core consisting of datapath elements, is routed using the data path router Dpr.

This tool can use some information from a <filename>.dpr file in order to customise the resulting layout. By mean of this file it is possible to define the abutment-box, the width of the power supplies tracks, the exact position of the connectors, etc. Type man dpr for a detailed information on.

Create this small file called “accum.dpr”. Enter the following and save the file.

[image: image18.wmf]H

DP_DEFAB –20 +20

DP_POWER 0 10

Now give the following command at the command line:
[image: image19.wmf]

dpr -p -r accum accum
-p
-

placement option

-r
-

routing option

The “accum.ap” file is created which can be viewed with Graal.
Describing the Pads and Core using the Procedural Design Language
[image: image20.wmf]
When the chip is described physically in Alliance, it consists of two separate parts that are brought together, the core and the pads. In Alliance, the core and the pads are brought together in a C description file. This file when treated with Genlib, produces the structural description of the chip with the pads. The pads are placed physically, one by one in the C file. Placing the pads require the structural and functional knowledge of the pads. One of the types of pads that is used in this example is the pvsseck_sp, a cell of PAD-Lib, a library of pads provided with Alliance.

Give the following command at the command line to see a description of this pad.
[image: image21.wmf]

man pvsseck_sp

The procedural description language is actually a set of C functions that allows you to describe circuit objects like pads and the core and their connectivity.

Create, edit and save into the file “accumchip.c” the following:
[image: image22.wmf]H

#include <genlib.h>

main()

{

 DEF_LOFIG("accumchip");

 LOCON("a[3:0]",'I',"a[3:0]");

 LOCON("b[3:0]",'I',"b[3:0]");

 LOCON("y[3:0]",'O',"y[3:0]");

 LOCON("sel",'I',"sel");

 LOCON("ck",'I',"ck");

 LOCON("ctrl",'I',"ctrl");

 LOCON("vdde",'I',"vdde");

 LOCON("vsse",'I',"vsse");

 LOCON("vdd",'I',"vdd");

 LOCON("vss",'I',"vss");

/* Instance of pads of the chip. The instance_name of the pads is the one that is to be given to the Ring tool for it to understand the names for pad placement on the chip. On passing this file through Genlib, a .vst file is generated. This file has the output input and IO pins as specified in the above list. Asimut understands only these as the pins for simulation */

 LOINS ("pvsse_sp", "Vss", "cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS ("pvdde_sp", "Vdd", "cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS ("pvssi_sp", "Vssi", "cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS ("pvddi_sp", "Vddi", "cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("pi_sp","sl","sel","sl","cki","vdde","vdd","vsse","vss",0);

 LOINS("pi_sp","ct","ctrl","ct","cki","vdde","vdd","vsse","vss",0);

 LOINS("pck_sp", "clk", "ck", "cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("pvsseck_sp", "clkcore",

 "clkcore", "cki",

 "vdde", "vdd", "vsse", "vss", 0);

 LOINS("pi_sp","a0","a[0]","ina[0]","cki","vdde","vdd","vsse","vss",0);

 LOINS("pi_sp","a1","a[1]","ina[1]","cki","vdde","vdd","vsse","vss",0);

 LOINS("pi_sp","a2","a[2]","ina[2]","cki","vdde","vdd","vsse","vss",0);

 LOINS("pi_sp","a3","a[3]","ina[3]","cki","vdde","vdd","vsse","vss",0);

 LOINS("pi_sp","b0","b[0]","inb[0]","cki","vdde","vdd","vsse","vss",0);

 LOINS("pi_sp","b1","b[1]","inb[1]","cki","vdde","vdd","vsse","vss",0);

 LOINS("pi_sp","b2","b[2]","inb[2]","cki","vdde","vdd","vsse","vss",0);

 LOINS("pi_sp","b3","b[3]","inb[3]","cki","vdde","vdd","vsse","vss",0);

 LOINS("po_sp","y0","out[0]","y[0]","cki","vdde","vdd","vsse","vss",0);

 LOINS("po_sp","y1","out[1]","y[1]","cki","vdde","vdd","vsse","vss",0);

 LOINS("po_sp","y2","out[2]","y[2]","cki","vdde","vdd","vsse","vss",0);

 LOINS("po_sp","y3","out[3]","y[3]","cki","vdde","vdd","vsse","vss",0);

/* The first name is the name of the .vst file that is to be used for reference. The second name is the instance_name and can be anything. The names that follow can be anything except that they should be in the same order as in the .vst file. Bus signals should have the same dimensions. Names given should be the inputs or outputs of other instances which means that the block is physically connected to other blocks in the description and is not left hanging */

LOINS("accum","core","vdd","vss","ina[3:0]","inb[3:0]","out[3:0]","sl","clkcore","ct",0);

SAVE_LOFIG();

}

[image: image23.wmf]

genlib –v accumchip
This creates a “accumchip.vst” structural description file with pads.

Test Pattern Generation and Simulation of the Structural Description
[image: image24.wmf]H

Write a pattern file for simulation and validation with Asimut.

 Check that the adder accumulator performs satisfactorily.

Placing and routing the pads

Now the chip’s pads and the core has to be connected together physically in a layout. This is done by using Ring.

Edit and save the following in the file “accumchip.rin”:
[image: image25.wmf]H

east (clk sl b0 b1 b2 b3)

south (a0 a1 vssi a2 a3)

west (y0 y1 clkcore y2 y3)

north (vdd vddi ct vss)

This file describes the relative position of the pads on the four sides of the chip.

Give the command at the command line:

[image: image26.wmf]

ring accumchip accumchip
The “accumchip.ap” file is created that can be examined by using Graal.

Examine the layout using Graal.
Static Timing analysis

[image: image27.wmf]
The “accumchip.ap” contains the layout information. However we do not know if the physical description produced reflect the desired behaviour. Therefore to check the layout we use two tools, Lynx and Tas.

Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout. The file created by Lynx will be the input file for Tas.

Tas is a switch level timing analyser for CMOS circuits.

Give the following command at the command line:
[image: image28.wmf]
setenv MBK_OUT_LO al
This tells that the output file should be in the “.al” (Alliance) format.

[image: image29.wmf]
lynx -v -t accumchip accumchip
-v

-
verbose

-t

-
build the netlist to the transistor level.

first accumchip

-
take the “accumchip.ap” layout file as input.

second accumchip

generate the “accumchip.al” netlist file.

Give the following command at the command line:
[image: image30.wmf]
setenv MBK_IN_LO al
This tells that the input file for Tas must be in the “.al” (Alliance) format.

[image: image31.wmf]
tas -tec=/alliance/archi/Linux_elf/etc/prol10.elp accumchip

-tec

-
selects the technology file prol10.elp.

Layout Extraction and Netlist Comparison
The “accumchip.ap” contains the layout information. However we do not know if the physical description produced reflect the initial description. Therefore to check the layout we use two tools, Lynx and Lvx.

Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout.

For this you have to set some environmental variables. You have to specify the format in which the extracted netlist is generated.

Set the environmental variable MBK_OUT_LO as shown below:
[image: image32.wmf]

setenv MBK_OUT_LO al
This tells that the output file should be in the “.al” (Alliance) format.

Give the command at the command line:
[image: image33.wmf]

lynx -v -f accumchip accumchip
-v

-
verbose

-f

-
asks Lynx to generate the netlist from the Standard-

cells level.

first accumchip

-
Take the “accumchip.ap” layout file as input.

second accumchip
-
Generate the “accumchip.al” netlist file.

Lvx is a netlist comparison software that compares two netlists. Along with the comparison it re-orders the interface terminals to produce a consistent netlist interface.

Give the command at the command line
[image: image34.wmf]

lvx vst al accumchip accumchip -f
-f

-
build the netlist to the standard cell level.

vst

-
take the first file in .vst format.

al

-
take the second file in .al format.

first accumchip

-
“accumchip.vst” file.

second accumchip
-
“accumchip.al” file.
The comparison should not produce any errors. If errors are produced by the program, then there is some problem with the layout. The router has done something funny and corrective action is to be taken at the layout level by studying the error messages.

The Lvx has also re-ordered and built the netlist in the “.al” to the standard cell format. This file can be simulated using Asimut.

Simulating the Extracted netlist file

The netlist file “accumchip.al” can be simulated using Asimut and the test vector file that has been created to test the structural file “accumchip.vst”.

Give the following command at the command line:
[image: image35.wmf]

setenv MBK_IN_LO al
to set the input file to the “.al” format, before doing the simulation using Asimut. Any error during simulation means that you will have to retrace your steps back to find out the source of the error.
Real Technology Conversion

Up till now all the files describe the circuit only as symbolic cells. The foundry requires the layout of the chip, described in terms of rectangles and layers in the gds or the cif format. This can be done in Alliance, by using S2r.

Set the environmental variables, as shown below:

[image: image36.wmf]

setenv RDS_TECHNO_NAME /alliance/archi/Linux_elf/etc/prol10_7.rds
setenv RDS_OUT cif

setenv RDS_IN cif

This chooses the 1.0m generic CMOS process whose technology file is the prol10.rds. The output format of the chip is in cif format. The symbolic pads are replaced with their real equivalent. The pads due to their technology dependence are maintained as a cif file in the library.

Give the command:
[image: image37.wmf]

s2r -cv accumchip accumchip
-c

-
deletes connectors at the highest hierarchy. (Use

man to see full description)

-v

-
verbose mode on

first accumchip

-
“accumchip.ap” file as input

second accumchip
-
“accumchip.cif” file as output.

This completes the design of the adder accumulator chip.
[image: image38.wmf]
1
Exercise 7, Adder Accumulator using Datapath Entities.

