Course on VLSI Design Techniques.

 Puebla - Mexico, 29 Nov – 17 Dec, 2004

MICROPROCESSOR LABORATORY

Second Central American Regional Course on Advanced VLSI Design Techniques
29 November - 17 December 2004
Puebla – Mexico

Exercise 3

Design of an Octal Tri-state Transceiver chip

Problem Description
This design example is a transceiver chip similar to the 74HC245. In this design example you will learn to:

· Describe and simulate the behaviour of the transceiver in VHDL.

· Simulate bi-directional signals and about IO pads.

· Make the layout of the chip.

· Extract the circuit from the layout.

· Extract the behavioural description from the netlist and compare with the original behaviour file you have created, to complete formal verification.

This design example consists of two phases. The first phase is to describe the behaviour of the chip as is seen at the pins of the chip. The second phase is to describe the functions of the core of the chip, and then connect it to the pads.

In the first phase you will:

· Describe the transceiver’s behaviour using VHDL (xceiver.vbe).

· Write test pattern files.

· Simulate the behavioural description using the pattern file by using Asimut.

In the second phase you will:

· Describe the behaviour of the core in VHDL as is seen inside the chip by the pads (xceivercore.vbe).

· Synthesise the logic and structural descriptions using Bop and Scmap (xceivercorel.vbe and xceivercorel.vst).

· Use the standard cell router called Scr to place and route the core (xceivercorel.ap).

· Add the necessary pads for the chip and compile using Genlib (xceiverchip.vst).

· Use Asimut to simulate the ‘xceiverchip.vst’ file using a pattern file created by Genpat in the first phase.

· Place the pads and generate the layout of the chip with pads using Ring (xceiverchip.ap).

· Use Lynx to extract the netlist from the layout file ‘xceiverchip.ap’ (xceiverchip.al).

· Use Tas to perform the static timing analysis.
· Use Lvx to compare the extracted circuit ‘xceiverchip.al’ and the original ‘xceiverchip.vst’ file created by Genlib.

· Use Yagle to extract the behaviour, ‘xceiverchip.vbe’ from the ‘xceiverchip.al’ netlist file.

· Use Proof to compare the extracted behaviour file, ‘xceiverchip.vbe’ and the behavioural file created in the first phase, ‘xceiver.vbe’.

[image: image1.wmf]DIR

A0

A1

A3

A4

A5

A6

A7

A2

VSS

VDD

ENABLE

B0

B1

B2

B3

B4

B5

B6

B7

XCEIVER

Fig 1. Design flow for the Transceiver Chip
Transceiver Chip General Description

The transceiver chip that is proposed in this example is similar to the 74HC245 transceiver chip. The pin diagram of the transceiver chip and the truth table of the controls shown below explain the operation of the chip as looked from outside.

[image: image45.emf]Proof

xceiverchip.al

Scr

Vi or Pico Text Editor

VHDL Description of

Transceiver Chip

 (xceiver.vbe)

Yagle

xceiverchip.vbe

 Text Editor

VHDL Description of

Tranceiver core

 (xceivercore.vbe)

Scmap

xceivercorel.vst

Vi or Pico Text Editor

Genlib Language

Description of Pads

& core (xceiverchip.c)

Genlib

xceiverchip.vst

Ring

Vi or Pico Text Editor

Relative position

of Pads

(xceiverchip.rin)

xceiverchip.ap

Vi or Pico Text Editor

Test Vectors using

Genpat Language

(xceiver.c)

Genpat

xceiver.pat

Vi or Pico Text Editor

Modify Test Vectors

(xceiver.pat)

Asimut

Lynx

Graal

xceiverchip.al

Lvx

filename.pat

(to be checked

for correct

functionality)

S2r

xceiverchip.cif

(Chip ready

for foundry)

xceivercorel.ap

xceivercorel.vbe

Bop

Proof

xceiverchip.al

Scr

Vi or Pico Text Editor

VHDL Description of

Transceiver Chip

 (xceiver.vbe)

Yagle

xceiverchip.vbe

 Text Editor

VHDL Description of

Tranceiver core

 (xceivercore.vbe)

Scmap

xceivercorel.vst

Vi or Pico Text Editor

Genlib Language

Description of Pads

& core (xceiverchip.c)

Genlib

xceiverchip.vst

Ring

Vi or Pico Text Editor

Relative position

of Pads

(xceiverchip.rin)

xceiverchip.ap

Vi or Pico Text Editor

Test Vectors using

Genpat Language

(xceiver.c)

Genpat

xceiver.pat

Vi or Pico Text Editor

Modify Test Vectors

(xceiver.pat)

Asimut

Lynx

Graal

xceiverchip.al

Lvx

filename.pat

(to be checked

for correct

functionality)

S2r

xceiverchip.cif

(Chip ready

for foundry)

xceivercorel.ap

xceivercorel.vbe

Bop

Fig. 2. Pinout of 74HC245 transceiver chip.

	ENABLE
	DIR
	Operation

	L
	L
	Data Transmitted from Bus B to Bus A

	L
	H
	Data Transmitted from Bus A to Bus B

	H
	X
	Busses Isolated (High-Impedance State)

Table 1. Truth Table for the controls of the transceiver chip

[image: image2.wmf]
 Solution
Legend

[image: image3.wmf]
Give the command that appear immediately after this symbol, at the command line.

[image: image4.wmf]H

Edit and save into a file, all that appears after this symbol.

[image: image5.wmf]
Explanation of a topic

[image: image6.wmf]

Set the environmental variables as shown immediately after this symbol.

Creating the Design

Begin by creating a design directory, at a convenient position in your work space:
[image: image7.wmf]
mkdir xceiver
Change into this directory:

[image: image8.wmf]
cd xceiver
Before starting the design you will have to set the environmental variables as shown below so that you will not run into problems later.

[image: image9.wmf]

setenv MBK_CATA_LIB .:/alliance/archi/Linux_elf/cells/sclib:

/alliance/archi/Linux_elf/cells/padlib
setenv MBK_IN_LO vst

setenv MBK_OUT_LO vst

setenv MBK_IN_PH ap

setenv MBK_OUT_PH ap

setenv MBK_WORK_LIB .

Create with the “pico” (or “vi”) editor a file called “xceiver.vbe”. Enter the following and save the file.
[image: image10.wmf]H

-- Octal Tristate Non-inverting Bus transceiver ---

-- 6th Course on VLSI Design - Trieste

ENTITY xceiver IS

PORT (Vdd, Vss, Vdde, Vsse: IN BIT;

 A, B: inout MUX_VECTOR (7 downto 0) BUS;

 dir, enable : IN BIT);

END xceiver;

ARCHITECTURE xceiver_b OF xceiver IS

begin

b1: BLOCK (dir ='0' and enable = '0')

BEGIN

A <= guarded B;

END BLOCK b1;

b2: BLOCK (dir = '1' and enable = '0')

BEGIN

B <= guarded A;

END BLOCK b2;

end xceiver_b;

Typographical or syntax errors can be found when the file is passed through Asimut in the compilation mode. Before using Asimut you will have to set the environmental variables as shown previously.
Give the following command at the command line

[image: image11.wmf]
asimut -b -c xceiver
Creating the test pattern for simulation
If the above step functions without giving syntax errors, then the behavioural description is ready for simulation.

A file with the test patterns in the pat format is required for the simulation. The pat format file has a declaration part and a description part of the signals. The declaration part consists of a list of inputs, outputs, internal signals and registers of the design. Inputs are forced to a particular value while the outputs are observed during the simulation.

Edit this file and make changes to the file like the one shown below. Save the modified pattern file.

[image: image12.wmf]H

-- description generated by Pat driver v104

--

-- date : Sep 14 21:00:18 1999

--

sequence : xceiver

-- input / output list :

in vdd B;

in vss B;

in
 vdde B;

in
 vsse B;;;;;;

inout a (7 downto 0) X;;

inout b (7 downto 0) X;;;

in dir B;;;

in enable B;;;

begin

-- Pattern description :

-- vvvv a b d e

-- dsds i n

-- dsds r a

-- ee b

-- l

-- e

-- Beware : unprocessed patterns

 : 1010 ?00 00 0 0 ;

 : 1010 ?55 55 0 0 ;

 : 1010 ?00 00 0 0 ;

 : 1010 00 ?00 1 0 ;

 : 1010 55 ?55 1 0 ;

 : 1010 00 ?00 1 0 ;

 : 1010 ?00 00 0 0 ;

 : 1010 ?AA AA 0 0 ;

 : 1010 ?00 00 0 0 ;

 : 1010 00 ?00 1 0 ;

 : 1010 AA ?AA 1 0 ;

 : 1010 00 ?00 1 0 ;

 : 1010 ?55 55 0 0 ;

 : 1010 ?55 55 0 0 ;

 : 1010 ?55 55 0 0 ;

 : 1010 55 ?55 1 0 ;

 : 1010 55 ?55 1 0 ;

 : 1010 55 ?55 1 0 ;

 : 1010 ?AA AA 0 0 ;

 : 1010 ?AA AA 0 0 ;

 : 1010 ?AA AA 0 0 ;

 : 1010 AA ?AA 1 0 ;

 : 1010 AA ?AA 1 0 ;

 : 1010 AA ?AA 1 0 ;

 : 1010 ?55 55 0 0 ;

 : 1010 ?55 55 0 0 ;

 : 1010 ?55 55 0 0 ;

 : 1010 AA ?AA 1 0 ;

 : 1010 AA ?AA 1 0 ;

 : 1010 AA ?AA 1 0 ;

 : 1010 ?AA AA 0 0 ;

 : 1010 ?AA AA 0 0 ;

 : 1010 ?AA AA 0 0 ;

 : 1010 55 ?55 1 0 ;

 : 1010 55 ?55 1 0 ;

 : 1010 55 ?55 1 0 ;

 : 1010 ?** ?** 0 1 ;

 : 1010 55 55 0 1 ;

 : 1010 ?** ?** 0 1 ;

 : 1010 ?** ?** 1 1 ;

 : 1010 AA AA 1 1 ;

 : 1010 ?** ?** 1 1 ;

end;

********************************** Optional ************************************

We suggest you to skip this part (thtat isn’t essential to the exercise) the first time. You can come back to this part later or in a second time. Go ahead to the next paragraph: Simulating the Behavioural Description (page 10).
Genpat is a set of C functions that allows a procedural description of input patterns file for the logic simulator Asimut. The genpat command accepts a C file as input and produces a pattern description file as output. Information on the functions that are allowed in genpat is given in the man pages (man genpat).

A file with test patterns is required for the simulation. You will have to write a C file that when treated with Genpat will generate the pattern file for you.

Create a file called “xceiver.c” and enter the following:
[image: image13.wmf]H

/***\

Trieste, microprocessor laboratory

File

:
xceiver

Date

:
10 21 1999

Version

:
3

***/

/*---\

 Includes

\---*/

#include <mut321.h>

#include <stdio.h>

#include <genpat.h>

/*---\

 defines

\---*/

#define maxcycle 5

/*---\

 inttostr

\---*/

char *inttostr(integer, len)

 int integer;

 int len;

{

 char *str;

 str = (char *) mbkalloc (len * sizeof (char) + 1);

 sprintf (str, "%.32d", integer);

 return(&str[32-len]);

}

/*---\

\---*/

void dir()

{

 int i;

 for (i=0;i < (maxcycle*6);i=i+6)

 {

 AFFECT(inttostr(i,32),"dir","0b0");

 AFFECT(inttostr(i+1,32),"dir","0b0");

 AFFECT(inttostr(i+2,32),"dir","0b0");

 AFFECT(inttostr(i+3,32),"dir","0b1");

 AFFECT(inttostr(i+4,32),"dir","0b1");

 AFFECT(inttostr(i+5,32),"dir","0b1");

 }

}

/*---\

 power

\---*/

void power()

{

 AFFECT(inttostr(0,32),"vdd","0b1");

 AFFECT(inttostr(0,32),"vss","0b0");

 AFFECT(inttostr(0,32),"vdde","0b1");

 AFFECT(inttostr(0,32),"vsse","0b0");

}

/*---\

 enable

\---*/

void enable()

{

 AFFECT(inttostr(0,32),"B","0B0");

 AFFECT(inttostr(0,32),"enable","0B0");

}

/*---\

 main

\---*/

int main()

{

/* int i,j;*/

 /* Declaring name of pattern file */

 DEF_GENPAT("xceiver");

 DECLAR("vdd",":0","B",IN,"");

 DECLAR("vss",":5","B",IN,"");

 DECLAR("vdde",":0","B",IN,"");

 DECLAR("vsse",":5","B",IN,"");

 DECLAR("A",":1","x",INOUT,"7 downto 0");

 DECLAR("B",":2","x",INOUT,"7 downto 0");

 DECLAR("dir",":2","B",IN,"");

 DECLAR("enable",":2","B",IN,"");

 /* initilisation of the enable, vdd, vss, and it */

 dir();

 power();

 enable();

 /* the end */

 SAV_GENPAT();

}

Give the following command at the command prompt:
[image: image14.wmf]

genpat xceiver
This command typically generates the following display.
[image: image15.wmf]
[cicuttin@mlab-42]$ genpat xceiver
 @@@@ @ @@@@@@@

 @@ @@ @@ @@ @

 @@ @ @@ @@ @@

 @@ @@@@@ @@@ @@@ @@ @@ @@@@ @@

 @@ @ @ @@@ @ @@ @@ @@ @ @@@@@@@@

 @@ @@@@@ @@ @@ @@ @@ @@@@@ @@ @@ @@

 @@ @ @@ @@@@@@@@@ @@ @@ @@ @@@@@ @@

 @@ @ @@ @@ @@ @@ @@ @@ @@ @@

 @@ @@ @@ @ @@ @@ @@ @@ @@ @@

 @@ @@ @@ @@ @@ @@ @@ @@ @@@ @@ @

 @@@@ @@@@ @@@@ @@@@ @@@@@@ @@@@ @@ @@@@

 Procedural GENeration of test PATterns

 Alliance CAD System 3.2b, genpat 3.1

 Copyright (c) 1991-1999, ASIM/LIP6/UPMC

 E-mail support: alliance-support@asim.lip6.fr

[cicuttin@mlab-42]$
A pattern file “xceiver.pat” is created by Genpat. You can easily learn how the C file works by changing some of the parameters in the C code and inspecting the correspondent changes in the generated pattern file “xceiver.pat”.

Simulating the Behavioural Description
Now the behavioural file “xceiver.vbe” can be simulated with this pattern file.

Give the following command at the command prompt to start simulating.
[image: image16.wmf]
asimut -b xceiver xceiver r1
-b

-
chooses the behavioural simulation option

first xceiver
-
takes the xceiver.vbe as input

second xceiver
 -
takes the xceiver.pat vector file for simulation

r1

-
result of simulation is put in r1.pat

The simulation should proceed without any errors. If errors appear, check the xceiver.vbe or the xceiver.pat file.
Describing the core of the chip
[image: image17.wmf]
The above description that we have made in the “xceiver.vbe” file simulates the transceiver as is seen from the pins of the chip. We did not care about the pads that drive the pins. However when a chip is described physically in Alliance, it consists of two separate parts that are brought together, the core or heart of the chip and the pads. In Alliance, the core and the pads are brought together in a C description file. This file when treated with Genlib, produces the structural description of the chip with the pads. In practice the core can be synthesised automatically form a behavioural description, whereas the pads should be placed physically, one by one in the C file. Placing the pads require the structural knowledge of the pads. One of the type of pads that is used in this example is the piot_sp IO pad, a cell of “padlib”, a library of pads provided with Alliance.

Give the following command at the command line to see a description of this pad.
[image: image18.wmf]
man piot_sp
[image: image19.wmf]
As will be seen from the behavioural description, this pad has towards the outside a tri-state, while towards the core, a data input, a data output and a control line that controls the direction of the data.
[image: image20.wmf]b

i

t

PAD

Fig. 3. Schematic of the IO pad piot_sp

	b
	PAD
	t

	1
	i
	PAD

	0
	High Z when looked from i
	PAD

Table 2. Truth Table for controls of the IO pad piot_sp
Thus for an IO pad, the core will have

-
a data output that is connected to the data input of the pad,

-
a data input that will be connected to the data output of the pad and,

-
a control line output that will be connected to the control line input of the pad.
Behavioural Description of the Core
With the above knowledge of the IO pads, we are now ready to describe the functions of the core.

Edit a new file called “xceivercore.vbe” and give the description as shown below:
[image: image21.wmf]H

-- Octal Tristate Non-inverting Bus transceiver ---

-- 6th Course on VLSI design TRIESTE ---

ENTITY xceivercore IS

PORT (Vdd, Vss: IN BIT;

 AIN, BIN: in BIT_VECTOR (7 downto 0);

 AOUT, BOUT: out BIT_VECTOR (7 downto 0);

 ACONT, BCONT: OUT BIT;

 dir, enable : IN BIT);

END xceivercore;

ARCHITECTURE xceiver_b OF xceivercore IS

signal enab: BIT_VECTOR (7 downto 0);

begin

ASSERT (vdd = '1' and vss = '0')

REPORT "Wrong power supplies"

SEVERITY WARNING;

enab(0) <= enable;

enab(1) <= enable;

enab(2) <= enable;

enab(3) <= enable;

enab(4) <= enable;

enab(5) <= enable;

enab(6) <= enable;

enab(7) <= enable;

AOUT <= BIN ;

BOUT <= AIN ;

ACONT <= (not dir) and (not enable);

BCONT <= dir and (not enable);

end xceiver_b;

Synthesising the Logic and the Structure of the Core

We use Bop to synthesise the logic and Scmap to synthesise the structural description of the transceiver core.

Give the following command at the command line:

[image: image22.wmf]
bop –o xceivercore xceivercorel
-o

-
option for global optimization

xceivercore

-
xceivercore.vbe (input file)

xceivercorel

-
xceivercorel.vbe (output file)

The logic description of the core is created in the file “xceivercorel.vbe”. From this file we proceed to synthesise the structural view of the core. To do this give the following command at the command line:

[image: image23.wmf]

scmap xceivercorel xceivercorel
The structural description of the core is created in the file “xceivercorel.vst”.

Placement and Routing of the core
The core cells can now be placed and routed using Scr. Give the following command at the command line:
[image: image24.wmf]
scr -p -r -l 5 -i 1000 xceivercorel
-p
-

placement option

-r
-

routing option

-l
-

number of rows

-i
-

iteration number

A “xceivercorel.ap” file is created which can be viewed with Graal.
Describing the Pads and Core using the Procedural Design Language
The procedural description language is actually a set of C functions that allows you to describe circuit objects like pads and the core and their connectivity (structural view).

Edit and save into the file “xceiverchip.c” the following:
[image: image25.wmf]H

/* Transceiver chip */

/* Date: 07-17-99 */

#include <genlib.h>

main()

{

 DEF_LOFIG("xceiverchip");

 LOCON("VDD", 'I', "VDD");

 LOCON("VSS", 'I', "VSS");

 LOCON("VDDE", 'I', "VDDE");

 LOCON("VSSE", 'I', "VSSE");

 LOCON("A[0:7]", 'X', "A[0:7]");

 LOCON("B[0:7]", 'X', "B[0:7]");

 LOCON("DIR", 'I', "DIR");

 LOCON("ENABLE", 'I', "ENABLE");

 LOCON("NC", IN, "NC"); /* */

 LOINS("pvsse_sp", "vss","cki", "vdde", "vdd", "vsse","vss", 0);

 LOINS("pvdde_sp", "vdd","cki", "vdde", "vdd", "vsse","vss", 0);

 LOINS("pvddi_sp", "ivdd","cki","vdde", "vdd", "vsse", "vss", 0);

 LOINS("pvssi_sp", "ivss","cki","vdde", "vdd", "vsse", "vss", 0);

 LOINS("pck_sp","NCpad","NC","cki","vdde","vdd","vsse","vss",0);

 LOINS("piot_sp", "A0", "AOUT[0]", "ACONT", "AIN[0]","A[0]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "A1", "AOUT[1]", "ACONT", "AIN[1]","A[1]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "A2", "AOUT[2]", "ACONT", "AIN[2]","A[2]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "A3", "AOUT[3]", "ACONT", "AIN[3]","A[3]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "A4", "AOUT[4]", "ACONT", "AIN[4]","A[4]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "A5", "AOUT[5]", "ACONT", "AIN[5]","A[5]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "A6", "AOUT[6]", "ACONT", "AIN[6]","A[6]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "A7", "AOUT[7]", "ACONT", "AIN[7]","A[7]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "B0", "BOUT[0]", "BCONT", "BIN[0]","B[0]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "B1", "BOUT[1]", "BCONT", "BIN[1]","B[1]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "B2", "BOUT[2]", "BCONT", "BIN[2]","B[2]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "B3", "BOUT[3]", "BCONT", "BIN[3]","B[3]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "B4", "BOUT[4]", "BCONT", "BIN[4]","B[4]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "B5", "BOUT[5]", "BCONT", "BIN[5]","B[5]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "B6", "BOUT[6]", "BCONT", "BIN[6]","B[6]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("piot_sp", "B7", "BOUT[7]", "BCONT", "BIN[7]","B[7]","cki", "vdde", "vdd", "vsse", "vss", 0);

 LOINS("pi_sp", "dir", "dir", "pdir", "cki","vdde", "vdd", "vsse", "vss", 0);

 LOINS("pi_sp", "enable", "enable", "penable", "cki","vdde", "vdd", "vsse", "vss", 0);

LOINS("xceivercorel","xceiver","vdd","vss","ain[7:0]","bin[7:0]","aout[7:0]","bout[7:0]","acont", "bcont", "pdir", "penable", 0);

 SAVE_LOFIG();

 exit(0);

}

Give the command at the command line:
[image: image26.wmf]
genlib –v xceiverchip
This creates a “xceiverchip.vst” structural description file with pads. Use “more” to browse through the structural description.

Simulating the Structural Description

You can now simulate this structural description with the test vector file that we developed for “xceiver.vbe”.

Give the command at the command line:
[image: image27.wmf]
asimut xceiverchip xceiver r2
xceiverchip
-
The structural description “xceiverchip.vst” with pads

xceiver

-
The “xceiver.pat” test vector file.

r2

-
Result to be place in “r2.pat” file.

There should be no errors, which means that the structural description is functionally equivalent to the behavioural description.
Placing and routing the pads

Now the chip’s pads and the core has to be connected together physically in a layout. This is done by using Ring.
Edit and save the following in the file “xceiverchip.rin”:
[image: image28.wmf]H

File used by ring tool to define the relative position of pads

north (a0 dir vdd enable b0 b1)

west (a4 a3 ivss a2 a1)

south (a5 a6 NCpad vss a7 b7 b6)

east (b5 b4 ivdd b3 b2)

This file describes the relative position of the pads on the four sides of the chip.

Give the command at the command at the command line:
[image: image29.wmf]
ring xceiverchip xceiverchip
The physical file “xceiverchip.ap” is created that can be examined by using Graal.

Examine the layout using Graal.

Static Timing Analysis

[image: image30.wmf]
The “xceiverchip.ap” contains the layout information. However we do not know if the physical description produced reflect the desired behaviour. Therefore to check the layout we use two tools, Lynx and Tas.

Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout. The file created by Lynx will be the input file for Tas.

Tas is a switch level timing analyser for CMOS circuits.

Give the following command at the command line:
[image: image31.wmf]
setenv MBK_OUT_LO al
This tells that the output file should be in the “.al” (Alliance) format.

[image: image32.wmf]
lynx -v -t xceiverchip xceiverchip
-v

-
verbose

-t

-
build the netlist to the transistor level.

first xceiverchip

-
take the “xceiverchip.ap” layout file as input.

second xceiverchip

-
generate the “xceiverchip.al” netlist file.

Give the following command at the command line:
[image: image33.wmf]
setenv MBK_IN_LO al
This tells that the input file for Tas must be in the “.al” (Alliance) format.

[image: image34.wmf]
tas -tec=/alliance/archi/Linux_elf/etc/prol10.elp xceiverchip

-tec

-
selects the technology file prol10.elp.

Layout Extraction and Netlist Comparison
The “xceiverchip.ap” contains the layout information. However we do not know if the physical description produced reflect the behavioural description. Therefore to check the layout we use two tools, Lynx and Lvx.

Give the command at the command line:
[image: image35.wmf]
lynx -v -f xceiverchip xceiverchip
-v

-
verbose

-f

-
asks Lynx to generate the netlist from the Standard-

cells level.

first xceiverchip

-
Takes the “xceiverchip.ap” layout file as input.

second xceiverchip
-
Generate the “xceiverchip.al” netlist file.

Lvx is a netlist comparison software that compares two netlists. Along with the comparison it re-orders the interface terminals to produce a consistent netlist interface.

Give the command at the command line
[image: image36.wmf]
lvx vst al xceiverchip xceiverchip –f -o
vst

-
takes the first file in .vst format.

al

-
takes the second file in .al format.

first xceiverchip

-
“xceiverchip.vst” file.

second xceiverchip
-
“xceiverchip.al” file.

-f

-
build the netlist to the standard cell level.

-o

-
to have ordered connectors in the output netlist

The comparison should not produce any errors. If errors are produced by the program, then there is some problem with the layout. The router has done something funny and corrective action is to be taken at the layout level by studying the error messages.

The Lvx has also re-ordered and built the netlist in the “.al” to the standard cell format. This file can be simulated using Asimut.
Simulating the Extracted netlist file

The netlist file “xceiverchip.al” can be simulated using Asimut and the test vector file “xceiver.pat”.

Give the following command at the command line:

[image: image37.wmf]
setenv MBK_IN_LO al
This sets the input file format for Asimut for the “.al” format.

Give the following command at the command line.

[image: image38.wmf]
asimut xceiverchip xceiver r3
xceiverchip

-
take the “xceiverchip.al” as input file

xceiver

-
take the “xceiver.pat” test vector file

r3

-
deliver the results in file “r3.pat”.

Any error means that you will have to retrace your steps back to find out the source of the error.
Functional Abstraction

yagle is a program that extracts from a transistor netlist the behaviour of the circuit. Essentially a VHDL file is created from a standard cell connectivity list! This VHDL file can be simulated in turn to verify the function of the chip.

Give the command at the command line:

[image: image39.wmf]
yagle -v xceiverchip
-v

-
vectorize

xceiverchip

-
Takes the “xceiverchip.al” as input.

The extracted VHDL description is put in the file “xceiverchip.vbe”. Give the command:
[image: image40.wmf]
asimut -b xceiverchip xceiver r4
to simulate the extracted behavioural file.

Alliance has a program that compares the extracted behavioural file with the original behavioural file to formally prove the functional congruence of the described and the extracted circuit.

Give the command:
[image: image41.wmf]
proof -d xceiverchip xceiver
-d

-
displays logical functions as they are processed

xceiverchip
-
extracted “xceiverchip.vbe” file.

xceiver

-
original “xceiver.vbe” file.
Real Technology Conversion

Up till now all the files describe the circuit only as symbolic cells. The foundry requires the layout of the chip, described in terms of rectangles and layers in the gds or the cif format. This can be done in Alliance, by using S2r.

[image: image42.wmf]

setenv RDS_TECHNO_NAME /alliance/archi/Linux_elf/etc/prol10_7.rds
setenv RDS_OUT cif

setenv RDS_IN cif
This chooses the 1.0m CMOS process, chooses the output form of the chip in cif format and, replaces the symbolic pads with their real equivalent.
Give the command:
[image: image43.wmf]
s2r -cv xceiverchip xceiverchip
-c

-
deletes connectors at the highest hierarchy. (Use

man to see full description)

-v

-
verbose mode on

first xceiverchip

-
“xceiverchip.ap” file as input

second xceiverchip
-
“xceiverchip.cif” file as output.
This completes the design of the transceiver chip.

[image: image44.wmf]
1
Exercise 3, Design of an Octal Tri-state Transceiver chip.

_882889577

_1002095826.doc

