
Outline

- Introduction "Is there a limit?"
- Transistors "CMOS building blocks"
- Parasitics I "The [un]desirables"
- Parasitics II "Building a full MOS model"
- The CMOS inverter "A masterpiece"
- Technology scaling "Smaller, Faster and Cooler"
- Technology "Building an inverter"
- Gates I "Just like LEGO"
- The pass gate "An useful complement"
- Gates II "A portfolio"
- Sequential circuits "Time also counts!"
- DLLs and PLLs " A brief introduction"
- Storage elements "A bit in memory"

- Scaling objectives
- Scaling variables
- Scaling consequences:
 - Device area
 - Transistor density
 - Gate capacitance
 - Drain current
 - Gate delay
 - Power
 - Power density
 - Interconnects

Scaling, why is it done?

Paulo Moreira

- Technology scaling has a <u>threefold objective</u>:
 - Increase the transistor density
 - Reduce the gate delay
 - Reduce the power consumption
- At present, between two technology generations, the objectives are:
 - Doubling of the transistor density;
 - Reduction of the gate delay by 30% (43% increase in frequency);
 - Reduction of the power by 50% (at 43% increase in frequency);

- How is scaling achieved?
 - All the device dimensions (lateral and vertical) are reduced by $1/\alpha$
 - Concentration densities are increased by $\boldsymbol{\alpha}$
 - Device voltages reduced by $1/\alpha$ (not in all scaling methods)
 - Typically $1/\alpha = 0.7$ (30% reduction in the dimensions)

• The **scaling variables** are:

 Supply voltage: 	V_{dd}	\rightarrow	V _{dd} / $lpha$
 Gate length: 	L	\rightarrow	L/α
 Gate width: 	W	\rightarrow	W/α
 Gate-oxide thickness: 	t _{ox}	\rightarrow	t _{ox} / α
 Junction depth: 	X _j	\rightarrow	X_j / $lpha$
 Substrate doping: 	N _A	\rightarrow	$N_A \times \alpha$

This is called **<u>constant field</u>** scaling because the electric field across the gate-oxide does not change when the technology is scaled

If the power supply voltage is maintained constant the scaling is called **<u>constant voltage</u>**. In this case, the electric field across the gate-oxide increases as the technology is scaled down.

Due to gate-oxide breakdown, below 0.8µm only "constant field" scaling is used.

Some consequences of 30% scaling in the constant field regime ($\alpha = 1.43$, $1/\alpha = 0.7$):

• Device/die area:

$$W \times L \rightarrow (1/\alpha)^2 = 0.49$$

- In practice, microprocessor <u>die size grows</u> about 25% per technology generation! This is a result of added functionality.
- Transistor density:

(unit area) /(W \times L) $\rightarrow \alpha^2$ = 2.04

 In practice, <u>memory density</u> has been scaling as expected. (not true for microprocessors...)

• Gate capacitance:

$$W \times L / t_{ox} \rightarrow 1/\alpha = 0.7$$

• Drain current:

$$(W/L)\times(V^2/t_{ox})\rightarrow 1/\alpha=0.7$$

• Gate delay:

 $(C \times V) / I \rightarrow 1/\alpha = 0.7$ Frequency $\rightarrow \alpha = 1.43$

 In practice, microprocessor frequency has doubled every technology generation (2 to 3 years)! This faster increase rate is due to highly pipelined architectures ("less gates per clock cycle")

• Power:

$$C \times V^2 \times f \rightarrow (1/\alpha)^2 = 0.49$$

• Power density:

$$1/t_{ox} \times V^2 \times f \rightarrow 1$$

 Active capacitance/unit-area: Power dissipation is a function of the operation <u>frequency</u>, the power <u>supply voltage</u> and of the <u>circuit size</u> (number of devices). If we normalize the power density to V² × f we obtain the <u>active</u> <u>capacitance per unit area</u> for a given circuit. This parameter can be compared with the oxide capacitance per unit area:

$$1/t_{ox} \rightarrow \alpha = 1.43$$

 In practice, for microprocessors, the active capacitance/unitarea only increases between 30% and 35%. Thus, the twofold improvement in logic density between technologies is not achieved.

Paulo Moreira

- Interconnects scaling:
 - Higher densities are only possible if the interconnects also scale.
 - Reduced width \rightarrow increased resistance
 - Denser interconnects \rightarrow higher capacitance
 - To account for <u>increased parasitics</u> and <u>integration</u> <u>complexity</u> more interconnection layers are added:
 - thinner and tighter layers \rightarrow local interconnections
 - thicker and sparser layers \rightarrow global interconnections and power

Interconnects are scaling as expected

Parameter	Constant Field	Constant Voltage		
Supply voltage (V _{dd})	1/α	1	↑	
Length (L)	1/α	1/α		
Width (W)	1/α	1/α	Scaling Variables	
Gate-oxide thickness (t _{ox})	1/α	1/α		
Junction depth (X _j)	1/α	1/α		
Substrate doping (N _A)	α	α	\mathbf{I}	
Electric field across gate oxide (E)	1	α	Device Repercussion	
Depletion layer thickness	1/α	1/α		
Gate area (Die area)	$1/\alpha^2$	1/α ²		
Gate capacitance (load) (C)	1/α	1/α		
Drain-current (I _{dss})	1/α	α		
Transconductance (g _m)	1	α	\checkmark	
Gate delay	1/α	1/α ²	Circuit	
Current density	α	α^3		
DC & Dynamic power dissipation	1/α ²	α		
Power density	1	α^3	Repercussion	
Power-Delay product	1/α ³	1/α		
Paulo Moreira	Technology scaling		1	