i} the

s st abdus salam
S international centre for theoretical physics
NS/ 40(1;‘)}1:lfféf‘ﬂ;f‘}"
international atomic ‘1‘7::-4} ‘I
em:rg):':ggcncy

301/1590 -6

MICROPROCESSOR LABORATORY SECOND CENTRAL
AMERICAN COURSE ON ADVANCED VLSI DESIGN TECHNIQUES
29 November - 17 December 2004

Puebla - MEXICO

INTRODUCTION TO UNIX/LINUX

Maria Liz CRESPO
ICTP
Trieste
Italy

These lecture notes are intended for distribution to participants only

trada costiera, | | - 34014 trieste italy - tel. +39 040 22401 1 | fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

The LINUX Users’ Guide

Copyright © 1993, 1994, 1996 Larry Greenfield

All you need to know to start using LINUX, 2 free Unix clone. This manual covers the basic Unix
commands, as well as the more specific LINUX ones. This | is intended for the beginning Unix
user, although it may be useful for more experienced users for reference purposes.

UNIX is a trademark of X/Open

MS-DOS and Microsoft Windows are trademarks of Microsoft Corporation

05/2 and Operating System/2 are trademarks of IBDM

X Window System is a trademark of X Cousortium, Inc.

Motif is a trademark of the Open Software Foundation

LiNUX is not a trademark, and has no connection to UNIX, Unix System Labratories, or to X/Open.
Please bring all unacknowledged trademarks to the attention of the author.

Copyright © Larry Greenfield
427 Harrison Avenue
Highland Park, NJ

08904

leg+Qandrev.cmu. edu

Permission is granted to make and distribute verbatim copes of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided also that the sections that reprint “The GNU General Public License”,
“The GNU Library General Tublic License”, and other clearly marked sections held under seperate
copyright are reproduced under the conditions given within them, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language under

- the conditions for modified versions. “The GNU General Public License” and “The GNU Library

General Public License” may be included in a transtation approved by the Free Software Foundation
instead of in the original English.

At your option, you may distribute verbatin and modified versions of this document under the
terms of the GNU General Public License, excepting the clearly marked sections held under seperate
copyright.

Exceptions to these rules may he granted for various purposes: Write to Larry Greenfield at
the above address or email leg+0andrev.cmu. edu, and ask. It is requested (but not required) that
you notify the author whenever commercially or large-scale printing this document. Royalties and
donations are accepted and will encourage further editions.

These are some of the typographical conventions used in this book.

Bold Used to mark new concepts, WARNINGS, and keywords in a language.
italics Used for emphasss in text.
slanted Used to mark tneta-variables in the text, especially in representations of the

command fine. For example, “1s -1 foo” where foo would “stand for” a filename, ACknOWled gment S
such ns /bin/cp.
Typevriter Used to represent screeu interaction.

Also used for code exnmples, whether it is “C" code, a shell script, or something
else, and to display general files, such as configuration files. When necessary for
clarity's sake, these examples or figures will be enclosed in thin boxes.

The author would like to thank the following people for their invaluable help either with Linux
itself, or in writing The LiNux Users’ Guide:

Key Represents a key to press. You will often see it in this foru: “Press to Linus Torvalds for providing something to write this inanual about.
continue.”
Karl Fogel has given me much help with writing my LINUX documentation and wrote sost of

[A diamond in the margiu, like a black diamond on a ski hill, marks “danger” or Chapter 8 and Chapter 9. I cannot give him enough credit.
“caution.” Read paragraphs marked this way carefully.

Maurizio Codogno wrote much of Chapter 11.
David Channon wrote the appendix on vi. (Appendix A)

This X in the margin indicates special instructions for users of the X Window

S Yggdrasil Computing, Inc. for their generous (and voluntary) support of this manual.
ystem.

Red Hat Software for their (inore recent and still voluntary!) support.

The fortune program for supplying me with many of the wonderful quotes that start each chap-
ter. They cheer me up, if no one else.

This indicates a paragraph that contains special information that should be read
carefully.

Chapter 2

What’s Unix, anyway?

Ken Thompson has an bile which he helped design. Unlike most automobiles, it has
neither speedometer, nor gas gage, nor any of the numerous idiot lights which plague the
modern driver. Rather, if the driver makes any mistake, a giant “?" lights up in the center
of the dashboard. “The experienced driver,” he says, “will usually know what’s wrong.”

2.1 Unix History

In 1965, Bell Telephone Laboratories (Bell Labs, a division of AT&T) was working with General
Electric and Project MAC of MIT to write an operating system called Multics. To make a long
story slightly shorter, Dell Labs decided the project wasn't going anywhere and broke out of the
group. This left Bell Labs without a good operating system.

Ken Thownpson and Dennis Ritchie decided to sketch out an operating system that would meet
Bell Labs’ needs. When Thompson needed a development environment (1970) to run on a PDP-7,
he implemented their ideas. As a pun on Multics, Brian Kernighan, another Dell Labs researcher,
gave the systemn the name Unix.

Later, Dennis Ritchie invented the “C” programming language. In 1973, Unix was rewritten in
C instead of the original assembly language.! In 1977, Unix was moved to a new machine through
a process called porting away from the PDP machines it had run on previously. This was aided by
the fact Unix was written in C since much of the code could simply be recompiled and didn’t have
to be rewritten.

In the late 1970's, AT< was forbidden from competing in the computing industry, so it licensed
Unix to various colleges and universities very cheaply. It was slow to catch on outside of academic
institutions but was eventually popular with businesses as well. The Unix of today is different
from the Unix of 1970. It has two major variations: System V, from Unix System Laboratories

e Assembly language® i a very basic computer language thet is tied to & particular type of computer. It is vsually
considered 4 challenge to program in.

10 CHAPTER 2. WHAT'S UNIX, ANYWAY?

(USL), a subsiderary of Noveli?, and the Berkeley Software Distribution (BSD). The USL version
is now up to its forth release, or SVR43, while BSD's latest version is 4.4, However, there are many
different versions of Unix besides these two. Most commercial versions of Unix derive from one of
the two groupings. The versions of Unix that are actually used usually incorporate features from
both variations.

Current commercial versions of Unix for Intel PCs cost between $500 and $2000.

2.2 Linux History

The primary author of LINUX is Linus Torvalds. Since his original versions, it has been improved by
countless numbers of people around the world. 1t is a clone, written entirely from scratch, of the Unix
operating system. Neither USL, nor the University of California, Berkeley, were involved in writing
LiNux. One of the more interesting facts about LiNUX is that development occurs simulataneously
around the world. People from Austrialia to Finland contributed to LiNuxand will hopefully continue
1o do so.

Linux began with a project to explore the 386 chip. One of Linus’s earlier projects was a program
that would switch between printing AAAA and BBBB. This later evolved to Linux.

LiNux has been copyrighted under the terms of the GNU General Public License (GPL). This
is a license written by the Free Software Foundation (FSF) that is designed to prevent people from
restricting the distribution of software. In brief, it says that although you can charge as much as
you'd like for a copy, you can’t prevent the person you sold it to from giving it away for free. It also
means that the source code! must also be available. This is usefu! for programmers. Anybody can
modify Linux and even distributed his/her modifications, provided that they keep the code under
the same copyright.

Linux supports most of popular Unix software, inchuding the X Window System. The X Window
System was created at the Massachusetts Institute of Technology. It was written to allow Unix
systems to create graphical windows and easily interact with each other. Today, the X Window
System is used on every version of Unix available.

In addition to the two variations of Unix, System V and BSD, there is also a set of standardization
documents published by the IEEE entitled POSIX. LiNux is first and foremost compliant with the
POSIX-1 and POSIX-2 documents. Its look and feel is much like BSD in some places, and somewhat
like System V in others. It is a blend (and to most people, a good one} of all three standards.

Many of the utilities included with LiNux distributions are from the Free Software Foundation
and are part of GNU Project. The GNU Project is an effort to write a portable, advanced operating
system that will look a lot like Unix. “Portable” means that it will run on a variety of machines,
not just Intel PCs, Macintoshes, or whatever. The GNU Project's operating system is called the
Hurd. The main difference between Linux and GNU Hurd is not in the user interface but in the

71t was recently sold Lo Novell. Previously, USL was owned by AT&T.

3A cryptic way of saying “system five, 1clease four™,

“T'he source code of & program is what the programmer reads and writes. 1t is later translated into unreadable
machine code that the computer interprets.

2.2. LINUX HISTORY 11

programmer's interface—the Hurd is a modern operating system while LiINuX borrows more from
the original Unix design.

The above history of LINUX is deficient in mentioning anybody besides Linux Torvalds. For
instance, H. J. Lu has maintained gec and the Linux C Library (two items needed for all the
programs on LINUX) since very early in LINUX's life. You can find a list of people who descrve to
be recognized on every LINUX system in the file /usr/src/linux/CREDITS.

2.2.1 Linux Now

The first number in LINUX'S version number indicates truly huge revisions. These change very slowly
and as of this writing (February, 1996) only version “17 is available. The second number indicates
less major revisions. Even second numbers signify miore stable, dependable versious of Linuxwhile
odd numibers are developing versions that are more prone to bugs. The final version number is the
minor release number—every time a new version is released that may just fix sinall problems or add
minor features, that number is increased by one. As of February, 1996, the latest stable version is
1.2.11 and the latest development version is 1.3.61.

LiNuX is a large system and unfortunately contains bugs which are found and then fixed. Al-
though somne people still experience bugs regularly, it is normally because of non-standard or faulty
hardware; bugs that effect everyone are now few and far between.

Of course, those are just the kernel bugs. Bugs can be present in almost every facet of the system,
and inexperienced users have trouble seperating different programs from each other. For iustance,
a problein might arise that all the characters are some type of gibberish—is it a bug or a “feature”?
Surprisingly, this is a feature—the gibberish is caused by certain control sequences that somehow
appeared. Hopefully, this book will help you to tell the different situations apart.

2.2.2 A Few Questions and Answers

Before we embark on our long voyage, let’s get the ultra-important out of the way.
Question: Just how do you pronounce LiNux?

Answer: According to Linus, it should be pronounced with a short i sound, like print, mln-
Imal, etc. Linux should thyme with Minix, another Unix clone. It should not be pronounced fike
(American pronounciation of) the “Peanuts” character, Linus, but rather LIH-nucks. And the uis
sharp as in rule, not soft as in ducks. LINUX should almost rhyme with “cynics”.

Question: Why work on Linyx?

Answer: Why not? LiNUX is generally cheaper {or at least no more expeunsive) thas other
operating systems and is frequently less problematic than many commercial systems. It might not
be the best system for your particular applications, but for someone who is interested in using Unix
applications available on LINUX, it is a high-performance system.

12 CHAPTER 2. WHAT'S UNIX, ANYWAY?

2.2.3 Commercial Software in LINUX

There is a lot of commercial software available for LINUX. Starting with Motif, a user interface for
the X Window System that vaguely resembles Microsoft Windows, LiNux has been gaining more
and more conunercial software. These days you can buy anything from Word Perfect (a popular
word processor) to Maple, a complex symbolic manipulation package, for LINUX.

For any readers interested in the legalities of LINUX, this is allowed by the LiNux liccuse. While
the GNU General Public License (reproduced in Appendix B) covers the LINuX kernel and would
seemingly bar commercial software, the GNU Library General Public License (reproduced in Ap-
pendix C) covers most of the computer code applications depend on. This allows conunercial software
providers to sell their applications and withhold the source code.

Please note that those two documents are copyright notices, and not licenses to use. They do
not regulate how you may use the software, merely under what circumstances you can copy it and
any derivative works. To the Free Software Foundation, this is an important distinction: LiNux
doesn’t involve any “shrink-wrap” licenses but is merely protected by the same law that keeps you
from photocopying a book.

Chapter 3

Getting Started

This login session: $13.99, but for you $11.88.

You may have previous experience with MS-DOS or other single user operating systems, such
as 0S/2 or the Macintosh. In these operating systems, you didn't have to identify yourself to the
computer before using it; it was assumed that you were the only user of the system and could access
everything. Well, Unix is a multi-user operating system—not only can more than one person use it
at a time, different people are treated differently.

To tell people apart, Unix needs a user to identify him or herself! by a process called logging in.
When you first turn on the computer a complex process takes place before the computer is ready
for someone to use it. Since this guide is geared towards Linux, I'll tell you what happens during
the Linux boot-up sequence.

If you're using LINUX on some type of computer besides an Intel PC, some things in this chapter
won't apply to you. Mostly, they'll be in Section 3.1.

If you're just interested in using your computer, you can skip all the inforiation in the chapter
except for Section 3.3,

3.1 Power to the Computer

The first thing that happens when you turn an Intel PC on is that the BIOS executes. BIOS stands
for Basic Input/Output System. It’s a program pernenantly stored in the computer on read-only
chips. It performs some minimal tests, and then looks for a floppy disk in the first disk drive. If it
finds one, it looks for a “boot sector” on that disk, and starts executing code from it, if any. If there
is a disk, but no boot sector, the BIOS will print a message like:

Nou-system disk or disk error

YFyom here on in this book, § shall be using the masculine pronouns o identify all people. Thiy is the standard
English c jon, and prople shouldn't take it as a that only men can use computers.

i3

4 CHAPTER 3. GETTING STARTED

Figure 3.1 The path an Intel PC takes to get to a shell prompt. init may or may not start the X
Window System. If it does, xdm runs. Qtherwise, getty runs.
the kernel

LILO » Linux init

F—J_V

BIOS login getty xdm

the X Window System

bash |
the shell

Removing the disk and pressing a key will cause the boot process to continue.

If there isn't a Aoppy disk in the drive, the BIOS looks for a master boot record (MBR) on
the hard disk. It will start executing the code found there, which loads the operating system. On
Linux systems, LILO, the LInux LOader, can occupy the MBR position, and will load LiNnux. For
now, we'll assume that happens and that LINUX starts to load. (Your particular distribution may
handle booting from the hard disk differently. Check with the documentation included with the
distribution. Another good reference is the LILO documentation, [1).)

3.2 Lminux Takes Over

After the BIOS passes control to LILO, LILO passes control to the LiNuX kernel. A kernel is the
central program of the operating system, in control of all other programs. The first thing that LiNux
does once it starts executing is Lo chiange to protecied mode. The 80336% CI'U that controls your
computer has two modes called *real mode” and “protected mode”. DOS runs in real mode, as does
the BIOS. However, for more advanced operating systems, it is necessary to run in protected mode.
Therefore, when LINuX boets, it discardes the BIOS.

Other CPUs will get to this stage differently. No other CPU needs to switch into protected mode
and few have to have such a heavy framework around the loading procedure as LILO and the BIOS.
Once the kernel starts up, LINUX works much the samne.

Linux then looks at the type of hardware it’s running on. It wants to know what type of hard
disks you have, whether or not you have a bus monse, whether or not youn're on a network, and other
bits of trivia like that. LINUX can’t remember things between boots, so it has to ask these questions
each time it starts up. Luckily, it isn't asking you these questions--it is asking the hardware!

2When | refer to the 80386, 1 am also talking sbout the 80486, Pentium, and Pentium Pro computers unless |
specifically say so. Also, I'll be abbreviating 80386 as 386.

32 LINUX TAKES OVER 15

During boot-up, the LINUX kernel will print variations on several messages. You can read about the
messages in Section 3.4. This query process can some cause problems with your system but if it was
going to, it probably would have when you first installed LiNuX. If you're having problems, consult
your distribution's documentation.

The kernel crely manages other programs, so once it is satisfied everything is okay, it must
start another program to do anything useful. The program the kernel startg is called init . (Notice
the diffecence in fout. Things in this font are usually the names of programs, files, directories, or
other computer related items.) After the kernel starts init, it never starts another program. The
kernel becomes a manager and a provider, not an active program,

So to see what the computer is doing after the kernel boots up, we'll have to examine nit. init
goes through a complicated startup sequence that isn't the same for all computers. LINUX has wany
ditferent versions of init, and each docs things its own way. It also matters whether your computer
is on a network and what distribution you used to install LINUX. Some things that might happen
once init ig started:

o The file systems might Le checked. What is a file system? A file system is the layout of files on
the hard disk. It let’s LINUX know which parts of the disk are already used, and which aren't.
(It's like an index to a rather large filing system or a card catalog to a library.) Unfortunately,
due to various factors such as power losses, what the file system information thinks is going
on in the rest of the disk and the actually layout of the rest of the disk are occasionally in
conflict. A special program, called £sck, can find these situations and hopefully correct them.

Special routing programs for networks are run. These programs tell your computer how it's
suppose to contact other computers.

Temporary files left by some programns may be deleted.

The system clock can be correctly updated. This is trickier then one might think, since Unix,
by default, wants the time in UCT (Universal Coordinated Time, also known as Greenwich
Mean Time) and your CMOS clock, a battery powered clock in your computer, is probably set
on local time. This means that some programn must read the time from your hardware clock
and correct it to UCT.

After init is finished with its duties at boot-up, it goes on to its regularly scheduled activities.
init can be called the parent of all processes on a Unix system. A process is simply a running
program. Since one program can be running two or wmore times, there can be two or more processes
for any particular program.

In Unix, a process, an instance of a progran, is created by a system call-—a service provided by
the kernel—called fork. (It's called “fork” since one process splits off into two seperate ones.) init
forks a couple of processes, which in turn fork sowe of their own. On your LINUX systemn, what init
runs are several iustances of a programn called getty. getty is the program that will allow a user to
login and eventually calls a program called login.

16 CHAPTER 3. GETTING STARTED

3.3 The User Acts

3.3.1 Logging In

The first thing you have to do to use a Unix machine is to identify yoursell. The login is Unix's way
of knowing that users are authorized to use the system. It asks for an account namne and password.
An account name is normally similar to your regular name; you should have already received one
from your system administrator, or created your own if you are the system administrator. (Infor-
mation on doing this should be available in Installation and Getting Started or The LiNux Systemn
Adminstrator’s Guide.)

You should sce, after all the boot-up procedures are done, something like the following (the first
line is merely a greeting message—it might be a disclaimer or anything else):

Velcome to the mousehouse. Please, have some cheese.
mousehouse login:

However, it's possible that what the system presents you with does not look like this. Instead of
a boring text mode screen, it is graphical. However, it will still ask you to login, and will function
mostly the same way. If this is the case on your system, you are going to be using The X Window
System. This means that you will be pr § with a windowing system. Chapter § will discuss
some of the differences that you'll be facing. Logging in will be similar as will the basics to much of
Unix. If you are using X, look for a giant X is the margin.

This is, of course, your invitation to login. Throughout this manual, we'll be using the fictional
(or not so fictional, depending on your machine) user larry. Whenever you see larry, you should
be substituting your own account name. Account names are usually based on real names; bigger,
more serious Unix systems will have accounts using the user’s last name, or some combination of
first and last name, or even some numbers. Possible accounts for Larry Greenfield might be: larry,
greenfie, lgreenti, 1g19.

mousehouse is, by the way, the “name” of the machine I'm working on. It is possible that when
you installed LINUX, you were prompted for some very witty name. It isn’t very important, but
whenever it comes up, I'll be using mousehouse or, rarely, 1ionsden when I need to use a second
system for clarity or contrast.

After entering larry and pressing [return], I'm faced with the following;
B 3

mousehouse login: larry
Passvord:

What LiNuX is asking for is your password. When you type in your password, you won't be
able to see what you type. Type carefully: it is possible to delete, but you won't be able to see
what you are editing. Don't type too slowly if people are watching—they'll be able to learn your
password. If you mistype, you'll be presented with another chance to login.

If you've typed your login name and password correctly, a short message will appear, called
the message of the day. This could say anything—the system adminstrator decides what it should

3.3. THE USER ACTS 17

be. After that, a prompt appears. A prompt is just that, something prompting you for the next
command to give the system. It should look something like this:

/home/larrys

If you've already determined you're using X, you'll probably see a prompt like the one above
in a “window” somewhere on the screen. (A “window” is a rectangular box.) To type into the
prompt, move the mouse cursor (it probably looks like a big “x” or an arrow) using the mouse into
the window.

3.3.2 Leaving the Computer

Do not just turn off the computer! You risk losing valuable data!

Unlike most versions of DOS, it's a bad thing to just hit the power switch when you're done
using the computer. It is also bad to reboot the machine (with the reset button) without first taking
proper precautions. LINUX, in order to improve performance, has a disk cache. This means it
temporarily stores part of the computer’s permanent storage in RAM.3 The idea of what LiNux
thinks the disk should be and what the disk actually contains is syncronized every 30 seconds. In
order to turn off or reboot the computer, you'll have to go through a procedure telling it to stop
caching disk information.

If you’re done with the computer, but are logged in (you've entered a usernaine and password),
first you must logout. To do so, enter the command logout. All commands are sent by pressing
. Untit you hit return nothing will happen and you can delete what you've done and start

over.
/home/larrys logout
Velcome to the mousshouse. Please, bave some cheese.

mousehouse login:

Now another user can login.

3.3.3 Turning the Computer Off

If this is a single user system, you might want to turn the computer off when you're done with it.*
To do so, you'll have to log into a special account called root. The root account is the system
adminstrator's account and can access any file on the system. If you're going to turn the computer

¥The difference between “RAM™ and a hard disk is like the difference between short term inemory and long term
memory. Shutting off the power i like giving the computer a knock on the head—it'l} forget everything in short term
memory. But things saved in long term memory, the hard disk, will be okay. The disk is thousands of times slower
than RAM.

4To avoid pussibly kening some hard: P only turn off the computer when you'se done for the
day. Turning the computer on and off once a day is probably the best compromive between energy and wear & tear
on the system.

18 CHAPTER 3. GETTING STARTED

off, get the password from the system adminstrator. (In a single user system, that's you! Make sure
you know the root password.) Login as root:

mousehouse login: root
Passvord:

Linux version 1.3.55 (root@mousehouse) #1 Sun Jan 7 14:56:26 EST 1996
/% shutdovn nov
Vhy? end of the day

URCENT: message from the sysadmin:
System going down NOW

. end of the day ...
Now yon can turn off the pover...

The command shutdovn nov prepares the system to be reset or turned off. Wait for a message
saying it is safe to and then reset or turn off the system. (When the system asks you “Why?”, it
is merely asking for a reason to tell other users. Since no one is using the system when you shut it
down, you can tell it anything you want or nothing at all.)

A quick message to the lazy: an alternative to the logout/login approach is to use the command
su. As a normal user, from your prompt, type su and press . It should prompt you for
the root password, and then give you root privileges. Now you can shutdown the system with the
shutdovn nov command.

3.4 Kernel Messages

When you first start your computer, a seties of messages flash across the screen describing the
hardware that is attached to your computer. These messages are printed by the LiNux kernel. In
this section, Il attempt to descsibe wnd explain those messages.

Naturally, these messages ditfer from machine to machine. Il deseribe the messages 1 get for
my machine. The following example contaius all of the standard messages and some specific ones.
(In general, the machine I'm taking this from is a minimally configured one: you won't see a lot of
device specific configuration.) This was made with Linux version 1.3.55 - one of the most recent as
of this writing. ’

1. The first thing LiNUX does is decides what type of video card and screen you have, so it can
pick a good font size. (The smaller the font, the more that can fit on the screen on any one
time.) LINUX 1nay ask you if you want a special font, or it might have had a choice compiled
ind
in.

Console: 16 point font, 400 scans
Console: colour VGA+ 80125, 1 virtual console (max 63)

SuCompiled” is the process by which a computer programn that 8 human writes gets translated into something the
computer understands. A feature that has been “compiled in” has been included in the program.

34,

KERNEL MESSAGES 19

~

FN

In this example, the machine owner decided he wanted the standard, large font at compile time.
Also, note the misspelling of the word “color.” Linus evidently learued the wrong version of
English.

. The next thing the kernel will report is how fast your systens is, as measured by “BogoMIPS".

A “MIP™ stands for a million instructions per second, and a “BogoMIP” is a “bogus MIP”: how
many times the computer can do absolutely nothing in one second. (Since this loop doesn’t
actually do anything, the nnmber is not actually a measure of how fast the system is.) Linux
uses this number when it needs to wait for a hardware device,

Calibrating delay loop.. ok ~ 33.28 BogoMIPS

. The LINUX kernel also telly you a little about memory usage:

Hemory: 23380%/24576k available {644k kernel code, 384k reserved, 468k data)

This said that the machine had 24 megabytes of memory. Some of this memory was reserved
for the kernel. The rest of it can be used by programs. This is the temporary RAM that is
used only for short term storage. Your computer also has a permanent wmemory called a hard
disk. The hard disk's coutents stay around even when power is turned off.

. Throughout the bootup procedure, LINUX tests different parts of the hardware and prints

messages about these tests.

This processor honours the WP bit even vhen in aupervisor mode. Good.

. Now LINuUX moves outo the network configuration. The following should be described in The

LiNUX Networking Guide, and is beyond the scope of this document.

Svansea University Computer Society NET3.033 for Linux 1.3.50
IP Protocols: ICHMP, UDP, TCP

. LINUX supports a FPU, a floating point unit. This is a special chip (or part of a chip, in the

case of a 80486DX CPU) that performs arithinetic dealing with non-whole numbers. Some of
these chips are bad, and when LiNuXx tries to identify these chips, the machine “crashes”. The
machine stops functioning. If this happens, you'll see:

Checking 386/387 coupling...
Otherwise, you'll see:

Checking 386/387 coupling... Ok, fpu using exception 16 error reporting.
if you're using a 486DX. If you are using a 386 with a 387, you'll see:

Checking 386/387 coupling... Ok, fpu using irql3 error reporting.

. It now runs another test on the “halt” instruction.

Checking 'hlt’ instruction... Ok.

. After that initial configuration, LINUX prints a line identifying itself. It says what version it

is, what version of the GNU C Compiler compiled it, and when it was compiled.

Linax version 1.3.55 (rootCmousehouse) (gcc version 2.7.0) #1 Sun Jan 7 14:56:26 EST 1996

20

CHAPTER 3. GETTING STARTED

9. The serial driver has started to ask questions about the hardware. A driver is a part of the

10.

11

12

13.

4.

kernel that controls a device, usually a peripheral. It is responsible for the details of how
the CPU communicates with the device. This allows people who write user applications to
concentrate on the application: they don’t have to worry about exactly how the computer
works.

Serial driver version 4.11 with no serial options enabled
tty00 at 0x03f8 (irq = 4) 1s a 16450
tty01 at 010218 (irq = 3) is a 16450
tty02 at 0x03e8 (ixq = 4) is a 16450

Here, it found 3 serial ports. A serial port is the equivalent of a DOS COM port, and is a device
normally used to conununicate with modems and mice.

What it is trying to say i3 that serial port 0 (COM1) has an address of 0x0318. When it
interrupts the kernel, usually to say that it has data, it uses IRQ 4. An IRQ is another means
of a peripheral talking to the software. Each serial port also has a controller chip. The usual
one for a port to have is a 16450; other values possible are 8250 and 16550.

Next comes the parallel port driver. A parallel port is normally connected to a printer, and
the naimes for the parallel ports (in LiNux) start with 1p. 1p stands for Line Printer, although
in modern times it makes more sense for it to stand for Laser Printer. (However, Linux will
happily conununicate with any sort of parallel printer: dot matrix, ink jet, or laser.)

1p0 at 0x03bc, (polling)
That message says it has found one parallel port, and is using the standard driver for it.

LiNuX next identifies your hard disk drives. In the example system I'm showing you, mousehouse,
I've instailed two IDE hard disk drives.

hda: WDC AC2340, 325MB w/127KB Cache, CHS=1010/12/56
hdb: WDC AC2850F, 814MB w/64KB Cache, LBA, CHS827/32/63

The kernel now moves onto looking at your floppy drives. In this example, the machine has
two drives: drive “A” is a 5 1/4 inch drive, and drive “B" is a 3 1/2 inch drive. LiNuX calls
drive “A” £d0 and drive “B” £d1.

Floppy drive(s): 1d0 is 1.44M, fd1 is 1.2M
floppy: FDC O is a National Semiconductor PC87306

The next driver to start on my example system is the SLIP driver. It prints out a message
about its configuration.

SLIP: version 0.8.3-NET3.019-NEWTTY (dynamic channels, max=256) (6 bit encapsulation enabled)

CSLIP: code copyright 1989 Regents of the University of California

The kernel also scans the hard disks it found. It will look for the different partitions on each
of them. A partition is a logical separation on a drive that is used to keep operating systems
from interfering with each other. In this example, the computer had two hard disks {hda, hdb)
with four partitions and one partition, respectively.

3.4. KENNEL MESSAGES 21

Partition check:
bda: hdal hda2 hdad hdad
hdb: hdbi

15. Finally, Linux mounts the root partition. The root partition is the disk partition where
the LINUX operating system resides. When LINUX “mounts™ this partition, it is making the
partition available for use by the user.

VFS: Hounted root (ext2 filesystem) readomly.

22

CHAPTER 3. GETTING STARTED

Chapter 4

The Unix Shell

Making files is easy under the UNIX operating system. Therefore, users tend to create

numerous files using large amounts of file space. It has been said that the only standard

thing about all UNIX systems is the message-of-the-day telling users to clean up their files.
System V.2 administrator’s guide

4.1 Unix Commands

When you first log into a Unix system, you are presented with something that looks like the following:

/home/larrys

That “something” is called a prompt. As its name would suggest, it is prompting you to enter
a command. Every Unix comunand is a sequence of letters, numnbers, and characters. There are no
spaces, however. Some valid Unix commands are mail, cat, and CHU_is _Number~5. Some characters
aren’t allowed—we’ll go into that later. Unix is also case-sensitive. This means that cat and Cat
are different commands.!

The prompt is displayed Ly a special program called the shell. Shells accept commands, and
run those commands. They can also be programmed in their own language, and programs written
in that language are called “shell scripts”.

There are two major types of shells in Unix: Bourne shells and C shells. Bourne shells are named
after their inventor, Steven Bourne. Steven Bourne wrote the original Unix shell sh, and most shells
since then end in the letters sh to indicate they are extentions on the original idea. There are many
implementations of his shell, and all those specitic shell programs are calied Bourne shells. Another
class of shells, C shells (originally implemented by Bill Joy), are also common. Traditionally, Bourne
shells have been used for shell scripts and compatibility with the original sh while C shells have been

'Case sensitivity is a very personal thing. Some operating systems, such as 05/2 or Windows NT are case
preserving, but not case sensitive. In practice, Unix rarely uses the different cases. ft is unusual to have a situation
where cat and Cat are different commands.

23

24 CHAPTER 4. THE UNILX SHELL

used for interactive use. (C shells have had the advantages of hiaving better interactive features but
somewhat harder programming features.)

LiNUX comes with a Bourne shell called bash, written by the Free Software Foundation. bash
stands for Bourne Again Shell, one of the many bad puns in Unix. It is an “advanced” Bourne
shell: it contains the standard programining features found in all Bourne shells with many interactive
features commonly found in C shells. bash is the default shell to use running Linux.

When you first login, the prompt is displayed by bash, and you are running your first Unix
program, the bash shell. As long as you are logged in, the bash shell will constantly be running.

4.1.1 A Typical Unix Command

The first command to know is cat. To use it, type cat, and then :

/home/1larrys cat

If you now have a cursor on a line by itself, you've done the corvect thing. There are several
variances you could have typed—some would work, some wouldn't.
o If you misspelled cat, you would have seen
/home/larry® ct
ct: command not found

/home/larrys

Thus, the shell informs you that it couldn't find a program named “ct” and gives you another
prompt to work with. Remember, Unix is case sensitive: CAT is a misspelling.

o You could have also placed whitespace before the command, like this:?
/home/larry® ausaicat
This produces the correct result and runs the cat program.
* You might also press return on a line by itsell. Go right ahead—it does absolutely nothing.
1 assume you are now in cat. Hopefully, you're wondering what it is doing. No, it is not a game.

cat is a useful utility that won't seemn useful at first. Type anything and hit return. What you
should have scen is:

/home/larry® cat
Help! I'm stuck in a Linux program!
Help! I'm stuck in a Linux program!

¥The *' indicates that the user typed a space.

Ao

4.2. HELPING YOURSELF 25

(The slanted text indicates what I typed to cat.) What cat seems to do is echo the text right
back at yourself. This is useful at times, but isn’t right now. So let's get out of this program and
move onto commands that have more obvious benefits.

To end many Unix ¢ t.ypelCul-d I’. ‘Cul-dl is the end-of-file character, or EOF for
short. Alternatively, it stands for end-of-text, depending on what book you read. I'll refer to it as
an end-of-file. It is a control character that tells Unix programs that you (or another program) is
done entering data. When cat sees you aren't typing anything else, it terminates.

For a similar idea, try the program sort. Ags its name indicates, it is a sorting program. If
you type a couple of lines, then press , it will output those lines in a sorted order. These
types of programs are called filters, because they take in text, filter it, and output the text slightly
differently. Both cat and sort are unusual filters. cat is unusual because it reads in text and
performs no changes on it. sort is unusual because it reads in lines and doesn't output anything
until after it's seen the EQF character. Many filters run on a line-by-line basis: they will read in a
line, perform some computations, and output a different line.

4.2 Helping Yourself

The man command displays reference pages for the command* you specify. For example:

/home/1larry# man cat
cat (1) cat(1)

NAME
cat - Concatenates or displays files

SYNOPSIS
cat [-benstuvAET] (--number) [--number-ponblank] [--squeeze-blank}
(--shov-nonprinting] [--shov-ends] (--show-tabs] [--shou-all)
{-~help) [--version]) (tile...]}

DESCRIPTION
This manusl page documents the GNU versjon of cat ...

There's about one full page of information about cat. Try running man now. Don't expect to
understand the page given. Manpages usually quite a bit of Unix knowledge—knowledge
that you might not have yet. When you've read the page, there’s probably a little black block at the
bottom of your screen similar to “--more--" or “Line 1". This is the more-prompt, and you'll
fearn 1o love it.

told down the key labeled “Ctel” and press *d”, then let go of both.

‘san will also display information on a system call, a subroutine, a file format, and more. In the original version
of Unix it showed the exact same infonination the printed documentation would. For now, you're probably only
interested in getting help on commands,

14

26 CHAPTER 4. THE UNIX SHELL

Instead of just letting the text scroll away, man stops at the end of each page, waiting for you
to decide what to do now. If you just want to go on, press lSpace and you'll advance a page. If
you want to exit (quit) the manual page you are reading, just press E] You'll be back at the shell
prompt, and it'll be waiting for you to enter a new command.

There's also a keyword function in man. For example, say you're interested in any commands
that deal with Postscript, the printer control language from Adobe. Type man -k ps or man -k
Postscript, you'll get a listing of all commands, system calls, and other documented parts of Unix
that have the word “ps” (or “Postscript”) in their name or short description. This can be very useful
when you're looking for a tool to do something, but you don't know it’s name—or if it even exists!

4.3 Storing Information

Filters are very useful once you are an experienced user, but they have one small problem. How do
you store the information? Surely you aren't expected to type everything in each time you are going
to use the program! Of course not. Unix provides files and directories.

A directory is like a folder: it contains pieces of paper, or files. A large folder can even hold
other folders—directories can be inside directories. In Unix, the collection of directories and files is
called the file system. Initially, the file system consists of one directory, called the “root” directory.
Inside this directory, there are more directories, and inside those directories are files and yet more
directories.’

Each file and each directory has a name. It has both a short name, which can be the same as
another file or directory sotnewhere else on the system, and a long name which is unique. A short
name for a file could be joe, while it's “full name” would be /home/larry/joe. The full name is
usually called the path. The path can be decade into a sequence of divectories. For example, here
is how /home/larry/joe is read:

/home/larry/joe
The initial slash indicates the root directory.
This significs the directory called home. It is inside the root directory.
This is the directory larry, which is inside home.
joe is inside larry. A path could vefer to either a divectory or a filename,
so joe could be either. All the items before the short name must be directories.

An easy way of visualizing this is a tree diagram. To see a diagram of a typical LINUX system,
look at Figure 4.1. Please note that this diagram isn’t complete - a full LINUX systens has over 8000
files! - and shows only sowe of the standard directories. Thus, there may be some directories in
that diagram that aren’t on your system, and your system ahmost certainly has directories not listed
there,

SPhere may or may not be a Hmit 1o how “deep” the file system can go. {1've never reached it—one can easily
have disectories 10 levels deep.)

4.3. STORING INFORMATION 27

Figure 4.1 A typical {(abridged) Unix directory tree.

/—T7—bin
—dev
|—etc
—home larey
—L——smn’
—1lib
| proc
}-—tmp
L—usr =1 X11R6
F—bin
emacs
[etc
L— g++-include
—include
F—lib
—local——T—bin
—emacs
—etc
—lib
F—an
— spool
—St¢ linux
L— tinp

4.3.1 Looking at Directories with 1s

Now that you know that files and directories exist, there must be some way of manipulating them.
Indeed there is. The command 1s is one of the inore important ones. It lists files. If you try 1s as
a command, you'll see:

/home/larrys 1ls
/home/larrys

That's right, you'll sce nothing. Unix is intensionally terse: it gives you nothing, not even “no
files” if there aren’t any files. Thus, the lack of output was 1s’s way of saying it didu’t find any files.

But I just said there could be 8000 or more files Iying around: where are they? You've run into
the concept of a “current” directory. You can see in your prompt that your current directory is
/home/darry, where you don’t have any files. 1f you want a list of files of a more active directory,
try the root directory:

4.

28 CHAPTER 4. THE UNIX SHELL

/home/larrys 1s /

bin etc izstall mt root user var
dev home 1ib Proc tmp usr vmlinux
/home/larrys

In the above comwmand, “ls /", the directory (“/") is a parameter. The first word of the
«C] i3 the c } name, and anything after it is a parameter. Parameters generally modify
what the program is acting on—for 1s, the parameters say what directory you want a list for. Some
commands have special parameters called options or switches. To see this try:

/home/larrys 1a -F /

bin/ ote/ install/ mat/ 100t/ user/ var®
dev/ home/ b/ proc/ tmp/ usr/ volinux
/home/larrys

The ~F is an option. An option is a special kind of parameter that starts with a dash and
modifies how the program runs, but not what the program ruus on. For 1s, -F is an option that
lets you see which ones are directories, which ones are special files, which are programs, and which
are normal files. Anything with a slash is a directory. We'll talk more about 18's features later. It's
a surprisingly complex program!

Now, there are two lessons to be learned here. First, you should learn what 1s does. Try a few
other directoties that are shown in Figure 4.1, and see what they contain. Naturally, some will be
empty, and some will have many, many files in them. I suggest you try 1s both with and without
the -F option. For example, 1s /usr/local looks like:

/home/larrys 1s /usr/local
archives bin emacs etc ka%q lib tcl
/home/larry®

The second lesson is more general. Many Unix commands are like 1s. They have options, which
are generally one character after a dash, and they have parameters. Unlike 1s, some commands
require certain parameters and/or options. To show what comnmands generally look like, we'll use
the following form:

1s [-aRF] [directory]

I'll generally use command templates like that before I introduce any command from now on.
The first word is the command (in this case 1s). Following the command are all the parameters.
Optional parameters are contained in brackets (“[> and “|”). Meta-variables are slanted—they’re
words that take the place of actual parameters. (For example, above you see directory, which should
be replaced by the nane of a real directory.)

Options are a special case. They're enclosed by brackets, but you can take any one of them
without using all of them. For instance, with just the three options given for 1s you have eight
different ways of running the command: with or without each of the options. (Contrast 1s -R with
1s -F.)

4.3. STORING INFORMATION 29

4.3.2 The Current Directory and cd

pud

Using directories would be cumbersome if you had to type the full path each time you wanted
to access a directory. Instead, Unix shells have a feature called the “current” or “present” or
“working” directory. Your setup most likely displays your directory in your prompt: /home/larry.
If it doesn't, try the col d pvd, for p t working directory. (Sometimes the prompt will
display the machine name. This is only really useful in a networked environment with lots of
different machines.)

mousehouse>pud
/home/larry
mousshouse>

cd {directory]

As you can see, pud tells you your current directory®—a very simple cc d. Most ¢ i
act, by default, on the current directory. For instance, 1s without any parameters displays the
contents of the current directory. We can change our current directory using cd. For instance, try:

/home/Yarryd cd /bome

/homes 1s -F
larry/ san/ shutdovn/ steve/ useri/
/bomes

If you omit the optional parameter directory, you're returned to your home, or original, directory.
Otherwise, cd will change you to the specified directory. For instance:

/homes cd
/bome/larrys cd /
/8 <d home

/home# cd /usr
/usrs cd local/bin
fusr/local/bing

As you can see, cd allows you to give either absolute or relative pathnames. An absolute path
starts with 7 and specifies all the directories before the one you wanted. A relative path is in
relation to your current directory. In the above example, when I was in /usr, | made a relative
move to local/bin—1local is a directory under usr, and bin is a directory under local! (cd home
was also a relative directory change.)

SYouu'll see all the terms in this book: present working directory, cucrent directory, or working directory. U prefer
“current directory®, slthough st times the other furins will be used for stylistic purpuses.

13

30 CHAPTER 4. THE UNIX SHELL

There are two directories used only for relative pathnames: “.” and “..”. . The directory “.”
refers to the current directory and “.." is the parent directory. These are “shortcut” directories.
They exist in every directory, but don't really fit the “folder in a folder” concept. Even the root
directory has a parent directory - it's its own parent!

The file ./chapter-1 would be the file called chapter-1 in the current directory. Occasion-
ally, you need to put the “./” for some commands to work, although this is rare. In most cases,
./chapter-1 and chapter-1 will be identical. '

The directory “..” is most useful in “backing up”:

/usr/local/bins cd ..
/usr/localf 1s -F

archives/ bin/ emacs® etc/ xadq/ 1ib/ tcle
/usr/locals ls -F ../sre

cveb/ linuz/ xmris/

/uar/locals

In this example, I changed to the parent directory using cd .., and I listed the directory
/usr/src from /usr/local using ../src. Note that if | was in /home/larry, typing 1s -F ../src
wouldn’t do me any good!

The directory =/ is an alias for your home directory:

/usr/locals 1s -F =/
/usr/locals

You can see at a glance that there isn't anything in your home directary! =/ will become more
useful as we learn more about how to manipulate files.

4.3.3 Creating and Removing Directories

mkdir dircctoryl [directory? .. directoryN|

Creating your own directories is extremely simple under Unix, and can be a useful organizational
tool. To create a new directory, use the conumand mkdir. Of course, mkdir stands for make
directory.

Let's do a sall example to see how this works:

/home/larry# 1s -F
/home/larry8 mkdir report-1993
/home/larrys ls -F
report-1993/

/home/larry# cd report-1993
/home/larry/report-19938

4:4. MOVING INFORMATION 31

mkdir can take more than one parameter, interpreting each parameter as another directory to
create. You can specify either the full pathnane or a relative pathname; report-1993 in the above
example is a relative pathname.

/home/larry/report~19938 mkdir /home/larry/report-1993/chapl “/report-1993/chap2
/home/larry/report-19938 1s -F

chapl/ chap2/

/home/laxry/report-1993s

rndir directory] [directory2 ... dircetoryNj

The opposite of mkdir is rmdir (remove directory). emdir works exactly like mkdir.

Au exnmple of radir is:

/home/larry/report-19938 rmdir chapi chap3
rmdir: chap3d: No such file or directory
/bome/larry/report-1993s# ls -F

chap2/

/home/)arry/report-19938 cd ..
/home/larry$ rmdir report-1993

rmdir: report-1993: Directory not empty
/home/larry$

As you can see, rmdir will refuse to remove a non-existant directory, as well as a directory that
has anything in it. (Remember, report-1993 has a subdirectory, chap?, in it!) There is one more
interesting thing to think about rmdir: what happens if you try to remove your current directory?
Let’s find out:

/home/larry# cd report-1993
/home/larry/report-1993% 1s -F
chap2/

/bome/larry/report-1993#¢ rmdir chap2
/home/larry/report-19938 rmdir .
rmdir: .: Operation not permitted
/home/larry/report~19934

Another situation you might want to consider is what happens if you try to remove the parent of

your current directory. This turns out not to be a problem since the parent of your current directory
isn’t empty, so it can't be removed!

4.4 Moving Information

All of these fancy directories are very nice, but they really don't help unless you have some place to
store you data. The Unix Gods saw this problem, and they fixed it by giving the users files.

Al

32 CHAPTER 4. THE UNIX SHELL

We will learn more about creating and editing files in the next few chapters.

The primary cc is for ipulating files under Unix are cp, mv, and rm. They stand for
copy, move, and remove, respectively.

4.4.1 cp Like a Monk

cp [-i] source destination
cp [-] filel file2 ... fileN destination-dircctory’

cp is a very useful utility under Unix, and extremely powerful. It enables one person to copy
more information in a second than a fourteenth century monk could do in a year.

Be careful with cp if you don’t have a lot of disk space. No onie wants to see a “Disk full” message
when working on important files. cp can also overwrite existing files without warning--I'll talk more
about that danger later.

We'll first talk about the first line in the command template. The first parameter to cp is the file
to copy—the second is where to copy it. You can copy to either a different filename, or a different
directory. Let's try some examples:

/home/larry$ 1s -F /etc/passvd
/etc/passud

/bome/larrys cp /etc/passvd .
/bene/larrys 1a -F

passud

/bome/larrys cp passvd frog
/home/larrys 1s -F

frog passvd

/home/larrys

The first cp command I ran took the file /etc/passwd, which contains the names of all the
users on the Unix systein and their (encrypted) passwords, and copied it to my home directory. cp
doesn't delete the source file, so I didn't do anything that could harm the system. So two copics of
/etc/passvd exist on my system now, both named passwd, but one is in the directory /etc and
one is in /home/larry.

Then I created a third copy of /etc/passwd when I typed cp passwd frog—the three copies
are now: /etc/passwd, /home/larry/passvd and /home/larry/frog. The contents of these three
files are the same, even if the names aren’t.

cp can copy files between directories if the first parameter is a file and the second parameter is
a directory. In this case, the short name of the file stays the same.

Tep has two lines in its
number of paramelers.

because the ing of the second parameter can be different depending on the

4.4. MOVING INFORMATION 33

It can copy a file and change it’s name if both parameters are file names. Here is one danger of
cp. If I typed cp /etc/passvd /etc/group, cp would normally create a new file with the contents
identical to passvd and name it group. However, if /etc/group already existed, cp would destroy
the old file without giving you a chance to save it! (It won't even print out a message reminding
you that you're destroying a file by copying over it.)

Let's look at another example of zp:

/bone/larrys is -F

frog passvd

/bowe/larrys mkdir passvd_version
/bhome/larry® cp frog passud passvd_version
/home/larrys 1s -F

frog passvd passvd_version/
/home/larrys ls -F passvd_version

frog passvd

/home/larrys

How did T just use cp? Evidentally, cp can take more than two parameters. (This is the second
line in the command template.) What the above command did is copied all the files listed (frog
and passvd) and placed them in the passwd_version directory. In fact, cp can take any number of
parameters, and interprets the first n ~ 1 parameters to be files to copy, and the n*" parameter as
what directory to copy them too.

You cannot rename files when you copy more than one at a time—they always keep their short
name. This leads to an interesting question. What if type cp frog passud toad, where frogand
passvd exist and toad isn't a directory? Try it and see.

4.4.2 Pruning Back with mm

m [-i] filel file2 ... fileN

Now that we've learned how to create millions of files with cp (and believe me, yow'll find new
ways to create more files soon), it may be useful to learn how to delete them. Actually, it's very
simple: the command you're looking for is ra, and it works just like you'd expect: any file that's a
parameter to rm gets deleted.

For example:

/howe/larrys 1s -F

frog passud passud_version/
/home/larrys rm frog toad passud

Tm: toad: No such file or directory
/home/larrys 1s -F

passud_version/

/home/larrys

15

34 CHAPTER 4. THE UNIX SHELL

As you can see, rm is extremely unfriendly. Not only does it not ask you for confirmation, but
it will also delete things even if the whole command line wasn't correct. This could actually be
dangerous. Cousider the difference between these two commands:

/home/larryt 1s ~F

toad frog/

/home/larrys 1s -F frog
toad

/home/laxryt rm frog/toad
/bome/larrys

and this

/bome/larry# rm frog toad
rm: frog is a directory
/bome/larrys 1s -F

frog/

/home/larry#

As you can see, the difference of one character made a world of difference in the outcome of the
command. It is vital that you check your command lines before hitting !

4.4.3 A Forklift Can Be Very Handy

nv [-i] old-name new-name
av {-i] filel file2 ... fileN new-directory

Finally, the other file command you should be aware of is mv. mv looks a lot like cp, except that
it deletes the original file after copying it. It's a lot like using cp and rm together. Let's take a look
at what we can do:

/home/larrys cp /etc/passud .
/home/larrys 1s -F

passvd

/home/larrys mv passvd frog
/home/larrys le -F

1rog

/home/larry$ mkdir report
/homa/larrys wv frog report
/home/larry® 1s -F

report/

/home/larry# 1s -F report
frog

/home/1larrys

As you can see, mv will rename a file if the second parameter is a file. If the second parameter is
a directory, mv will move the file to the new directory, keeping it's shortname the same.

4.4. MOVING INFORMATION 35

You should be very careful with mv—it doesn’t check to see if the file already exists, and will
remove any old file in its way. For instance, if I had a file named frog already in my directory
report, the command nv frog report would delete the file ~/report/frog and replace it with
~/1rog.

In fact, there is one way to make rm, cp and mv ask you before deleting files. All three of these
commands accept the -i option, which makes them query the user before removing any file. If you
use an alias, you can make the shell do rm -i automatically when you type rm. You'll learn more
about this later in Section 9.1.3 on page 90.

A6

36

CHAPTER 4. THE UNIX SHELL

Chapter 5

The X Window System

The nice thing about standards is that there are so many of them to choose from.
Andrew S. Tanenbaum

This chapter only applies to those using the X Window System. If you encounter a screen with
multiply windows, colors, or a cursor that is only movable with your mouse, you are using X. (If
your screen consists of white characters on a black background, you are not currently using X. If
you want to start it up, take a look at Section 5.1.)

5.1 Starting and Stopping the X Window System

5.1.1 Starting X

Even if X doesn't start automatically when you login, it is possible to start it from the regular text-
made shell prompt. There are two possible commands that will start X, either startx or xinit.
Try startx first. If the shell complains that no such command is found, try using xinit and see if
X starts. If neither command works, you may not have X installed on your system - - consult local
documentation for your distribution.

If the command runs but you are eventually returned to the black screen with the shell prompt,
X is installed but not configured. Consult the documentation that came with your distribution on
how to setup X.

5.1.2 Exiting X

Depending on how X is configured, there are two possible ways you might have to exit X. The first
is if your window manager controls whether or not X is running. If it does, you'll have to exit X
using a menu (see Section 5.4.8 on page 43). To display a meny, click a button on the background.

37

A3

38 CHAPTER 5. THE X WINDOW SYSTEM

The important menu entry should be “Exit Window Manager™ or “Exit X” or some entry con-
taining the word “Exit”. Try to find that entry (there could be more than one menu—try different
mouse huttonst) and choose it.

The other method would be for a special xterm to control X, If this is the case, there is probably
a window labeled “login® or “system xterm®. To exit from X, move the mouse cursor into that
window and type “exit”.

If X was automatically started when you logged in, one of these methods should log you out.
Simply login again to return. If you started X manually, these methods should return you to the
text mode prompt. (If you wish to logout, type logout at this prompt.)

5.2 What is The X Window System?

The X Window System is a distributed, graphical method of working developed primarily at the
Massachusetts Institute of Technology. It has since been passed to a consortium of vendors (aptly
named “The X Consortiumn™) and is being waintained by them.

The X Window System (hereafter abbreviated as “X"!) has new versions every few years, called
releases. As of this writing, the Jatest revision is X11R6, or release six. The eleven in X11 is officially
the version number but there hasn't been a new version in many years, and one is not currently
planned.

There are two terms when dealing with X that you should be familiar. The client is a X program.
For instance, xterm is the client that displays your shell when you log on. The server is a program
that provides services to the client program. For instance, the server draws the window for xtern
and communicates with the user.

Since the client and the server are two separate programs, it is possible to run the client and the
server on two physically separate machines. In addition to supplying a standard method of doing
graphics, you can run a program on a remote machine (across the country, if you like!) and have it
display on the wotkstation vight in front of you.

A third tenn you shonld be Guniliar with is the window manager, The window manager is a
special client that tells the server where (o position various windows and provides a way for the user
to maove these windows around. The server, by itself, does nothing for the user. It is merely there
to provide a buffer between the user and the client.

5.3 What’s This on my Screen?

Wien you first start X, several programs are started. First, the server is started. Then, several
clients are usually started. Unfortunately, this is not standardized across various distributions. It is
likely that among these clients are a window manager, either fvvm or tvm, a prompt, xterm, and a
clock, xclock.

Plhere are several acceptable ways to tefer 1o The X Window System. A common though incorrect way of referring
to X ig X Windows”.

5.3. WHAT'S THIS ON MY SCREEN? 39

Figure 5.1 An annotated example of a standard X screen. In this example, the user is running tvm.
The standard clock has been replaced by a transparent clock called oclock.

'\;» ravcrmarsi bt it} L IR Lirsien (91400 ¢11CD)
b vcvanttatt i A S0 Imma 010 11000}

Boifore Milos lo;?dll Search LaloN Comnand Nalp
1 thwee will wink the
-u- !

L]
FREITET T TY T T- TR0

| want @ snall wpace sfter 182
)

3)
[vencomnara wof }Oheyr 1 -0 T shortant 1ike ot

chaps Uw flostatyle for ipre
Slostatyletruledd

Mmac_
[157

aary ber Vo ¢ collaction of M nn-m- wtng the acae,
004 mares e b4 dhown 1

hradiny
ith et brirm r— mu d
ove filen. By emt-\ tM' el lh Cotegory that coma
[the commurde te auit the proy

gt vpr o} DO Nabak (11 -mervber)

[\egintcontor

e

v,

\eaptiontOML mmacsd eI} changs 113 seru bar Grparding o the type of
4 (110 su're wrking an, Jere 19 o powsible e ber.) nl
Yol e f igrod

pbrertioniiorol] s} J

soved vharw oou b sierted %

5.3.1 XClock

xclock [-digital] [-analog] [-update seconds] [-hands color]

I'll explain the simpliest one first: xclock functions exactly as you'd expect it would. It ticks off
the seconds, minutes and hours in a small window.

No amounts of clicking or typing in xclock’s window will affect it—that’s all it does. Or is it?
In fact, there are various different options you can give to the program to have it act in different
ways. For instance, xclock -digital will create a digital clock. xclock -update 1 will create a
second hand that moves every second, while -update 5 will create a second hand that moves every
3 seconds.

For more information on xclock's options, consult its manpage—man xclock. If you're going to
try running a few of your own xclocks, you should probably read Section 6.4 (Multitasking) to learn

18

40 CHAPTER 5. THE X WINDOW SYSTEM

how to run them in addition to your current programs. (If you run an xclock in the foreground—the
usual way of running a program—and want to get out of it, type [cttc].)

5.3.2 XTerm

The window with a prompt in it (something that probably looks like /home/larry#) is being con-
trolfled by a program called xternm. xterm is a deceptively complicated program. At first glace,
it doesn't scem to do much, but it actually has to do a lot of work. xterm emulates n tesminal so
that regular text-mode Unix applications work correctly. It also maintaing a buffer of information
so that you can refer back to old commands. (To see how to use this, lovk at Section 5.6.3.)

For much of this book, we're going to be learning about the Unix commmand-line, and you'll find
that inside your xterm window. In order to type into xterm, you usually have to move your monse
cursor (possibly shaped like an “X” or an arrow) into the xterm window. However, this behavior is
dependent on the window manager.

One way of starting more programs under X is through an xtern. Since X prograins are standard
Unix programs, they can be run from normal command prompts such as xterms. Since running a
long term program fromn a xterm would tie up the xtera as long as the program was running, people
normally start X programs in the background. For more information about this, sce Section 6.4.

5.4 Window Managers

On Linux, there are two different wind: gers that are ¢ ly used. One of them, called
twvm is short for “Tab Window Manager”. It is larger than the other window manager usually used,
fvwm. (fvvm stands for “F(?) Virtual Window Manager” —the author neglected to tie down exactly
what the f stood for.) Both tvm and fvwm are highly configurable, which means I can’t tell you
exactly what keys do what in your particular setup.

To learn about twm's configuration, look at Section 9.2.1. fvwm's configuration is covered in
Section 9.2.2.

5.4.1 When New Windows are Created

There are three possible things a window manager will do when a new window is created. It is
possible to configure a window manager so that an outline of the new window is shown, and you are
allowed to position it on your screen. That is called manual placement. If you are presented with
the outline of a window, simply use the mnouse to place it where you wish it to appear and click the
left mouse button.

1t is also possible that the window manager will place the new window somewhere on the screen
by itself. This is known as random placement.

Finally, sotnetimes an application wil} ask for a specific spot on the screen, or the window manager
will be configured to display certain applications on the same place of the screen all the time. (For

5.4. WINDOW MANAGERS 41

instance, I specify that T want xclock to always appear in the upper right hand comer of the screen.)

5.4.2 Focus

The window manager controls some important things. The first thing you'll be interested in is
focus. The focus of the server is which window will get what you type into the keyboard. Usually
in X the focus is determined by the position of the mouse cursor. If the mouse cursor is in one
xterm's window?, that xterm will get your keypresses. This is different from many other windowing
systems, such as Microsoft Windows, 0S/2, or the Macintosh, where you must click the mouse in
a window before that window gets focus. Usually under X, if your mouse cursor wanders from a
window, focus will be lost and you'll no longer be able to type there.

Note, however, that it is possible to configure both tum and fvwm so that you must click on or
in a window to gain focus, and click somewhere else to lose it, identical to the behavior of Microsoft
Windows. Either discover how your window manager is configured by trial and error, or consult
local documentation.

5.4.3 Moving Windows

Another very configurable thing in X is how to move windows around. In my personal configuration
of tum, there are three different ways of moving windows around. The most obvious method is to
move the mouse cursor onto the title bar and drag the window around the screen. Unfortunately,
this may be done with any of the left, right, or middle buttons®. (To drag, move the cursor above
the title bar, and hold down on the button while moving the mouse.) Most likely, your configuration
is set to move windows using the left mouse buttons.

Another way of moving windows may be holding down a key while dragging the mouse. For
instance, in my configuration, if I hold down the key, move the cursor above a window, I can
drag the window around using the left mouse button.

Again, you may be able to understand how the window manager is configured by trial and error,
or by seeing local docummentation. Alternatively, if you want to try to interpret the window manager's
configuration file, see Section 9.2.1 for twm or Section 9.2.2 for fvvm.

5.4.4 Depth

Since windows are allowed to overlap in X, there is a concept of depth. Even though the windows and
the screen are both two dimensional, one window can be in front of another, partially or completely
obscuring the rear window.

There are several operations that deal with depth:

2You cun have more then one copy of Ttera running at the same time!
3Many 1’Ce have only two button mice. If this is the cuse for you, you should be able tu emmulate a middle button
by using the left und right buttons simultancously.

Aq

42 CHAPTER 5. THE X WINDOW SYSTEM

¢ Naising the window, or bringing a window to the front. This is usually accomplished by
clicking on a window's title bar with one of the buttons. Depending on how the window
manager i8 configured, it conld be any one of the huttons. (It is alse possible that more then
one button will do the job.)

Lowering the window, or pushing the window to the back. This can generally be accomplished
by a different click in the title bar. It is also possible to configure some window managers so
that one click will bring the window foward if there is anything over it, while that same click
will lower it when it is in the front.

Cycling through windows is another operation many window managers allow. This brings
each window to the front in an orderly cycle.

5.4.5 Iconization

There are several other operations that can obscure windows or hide them completely. First is the
idea of “iconization”. Depending on the window manager, this can be done in many different ways.
In tvm, mnany people configure an icon manager. This is a special window that contains a list of
all the other windows on the screen. If you click on a name (depending on the setup, it could be
with any of the buttons!) the window disappears —it is iconified. The window is still active, but you
can’t see it. Another click in the icon manager restores the window to the screen.

This is quite useful. TFor instance, you could have remote xterms to many different computers
that you occasionally use. However, since you rarely use all of them at a given time, you can keep
most of the xterm windows iconified while you work with a small subset. The only problem with
this is it becomes easy to “lose” windows. This canses you to create new windows that duplicate
the functionality of iconified windows.

Other window managers might create actual icons across the bottom of the screen, or might just
leave jeond on the root window.

5.4.6 Resizing

There are several different methods to resize windows under X. Again, it is dependent on your
window manager and exactly how your window mmanager is configured. The method many Microsoft
Windows users are familiar with is to click on and drayg the border of a window. If your window
manager creates large borders that change how the mouse cursor looks when it is moved over them,
that is probably the method used to resize windows.

Another method used is to create a “resizing” button on the titlebar. In Figure 5.3, a small
button is visible on the right of each titlebar. To resize windows, the mouse is moved onto the resize
button and the left mouse button is held down. You can then wove the mouse outside the borders
of the window to resize it. The button is released when the desired size has been reached.

5.5. X ATTRIBUTES 43

5.4.7 Maximization

Most window managers support maximization. In tum, for instance, you can maximize the height,
the wideh, or both dimensions of a window. This is called “zoomiug” in tvm's language although 1
prefer the term maximization. Different applications respoud diflerently to changes in their window
size. (For instance, xterm woun't make the fout bigger but will give you a larger workspace.)

Unfortunately, it is extremely non-atandard on how to wmaximize windows.

5.4.8 Menus

Another purpose for window managers is for them to provide menns for the user to quickly accomplish
tasks that are done over and over. For instance, 1 might make a menu choice that automatically
Iaunchies Emacs or an additional xterm for me. That way I don't need to type in an xtern an
especially good thing if there aren’t any running xterms that I need to type in to start a new
program!

In general, different menus can be accessed by clicking on the root window, which is an inmovable
window behind all the other ones. By default, it is colored gray, but could look like anything.* To
try to see a meny, click and hold down a button on the desktop. A menu should pop up. To make
a selection, move (without releasing the mouse button) the cursor over one of the items any then
release the mouse button.

5.5 X Attributes

Thetre are many programs that take advantage of X. Sume programs, like emacs, can be run either
as a text-mode program or as a program that creates its own X window. However, most X prograuus
can only be run under X.

5.5.1 Geometry

There are a few things common to all programs running under X. In X, the concept of geometry
is where and how large a window is. A window's geometry has four components:

o The horizoutal size, usually measured in pixels. (A pixel is the smallest unit that can be
colored. Many X setups on Intel I'Cs have 1024 pixels horizontally and 768 pixels vertically.)
Some applications, like xterm and emacs, measure their size in terins of number of characters
they can fit in the window. (For instance, cighty characters across.)

o The vertical size, also usually measured in pixels. It's possible for it to be measured in char-
acters.

4One fun program to try is called zfisheank. it places a small aquarium in the background for you.

CHAPTER 5. THE X WINDOW SYSTEM

e The horizontal distance from one of the sides of the screen. For instance, +35 would mean
make the left edge of the window thisty-five pixels from the left edge of the screen. On the
other hand, -50 would mean make the right edge of the window fifty pixels from the right edge
of the screei. It's generally impossible to start the window off the screen, although a window
can be moved off the screen. (The mnain exception is when the window is very large.)

o The vertical distance from either the top or the bottom. A positive vertical distance is measured
from the top of the screen; a negative vertical distance is measured from the bottom of the
screen.

Al four components get put together into a geometry string that looks like: 503x73-78+0. (That
translates into a window 503 pixels long, 73 pixels high, put near the top right hand coruer of the
screen.) Another way of stating it is hsizexvsizexhiplacex vplace.

5.5.2 Display

Every X application has a display that it is associated with. The display is the name of the screen
that the X server coutrols. A display consists of three components:

o The machine name that the server is running on. At stand-alone LiNuX installations the server
is always running on the same system as the clients. In such cases, the machine name can be
omitted.

e The number of the server running on that machine. Since any one machine could have multiple
X servers running on it (unlikely for most LiNuX machines, but possible) each must have a
unique number.

o The screen number. X supports a particular server controlling more than one screen at a
time. You can imagine that someone wants a lot of screen space, so they have two monitors
sitting next to each other. Since they don’t want two X servers running on one machine for
performance reasons, they let one X server control both screens.

These three things are put together like so: machine:server-pumber.screen-number.

For instance, on mousehouse, all my applications have the display set to :0.0, which means the
first screen of the first server on the local display. However, if 1 ami using a remote computer, the
display might be set to mousehouse:0.0.

By default, the display is taken from the environment variable (see Section 9.1.4) named DISPLAY,
and can be overridden with a command-line option (see Figure 5.2). To see how DISPLAY is set, try
the command echo $DISPLAY.

5.6 Common Features

While X is a graphical user interface, it is a very uneven graphical user interface. It’s impossible
to say how any component of the system is going to work, because every component can easily be

5.6. COMMON FEATURES

45

Figure 5.2 Standard options for X programs.

Name Followed by Example

-geometry | geometry of the-window xterm -geometry 80x24+0+90
-display | display you want the program to appear | xterm -display lionsden:0.0
~1g the primary foreground color xterm ~fg yellow

~bg the primary background color xterm -bg blue

reconfigured, changed, and even replaced. This means it's hard to say exactly how to use various
parts of the interface. We've already encountered one cause of this: the different window managers
and how configurable each window manager is.

Another cause of this uneven interface is the fact that X applications are built using things
called “widget sets”. Included with the standard X distribution are “Athena widgets” developed at
MIT. These are commonly used in free applications. They have the disadvantage that they are not
particularly good-looking and are somewhat harder to use than other widgets.

The other popular widget set is called “Motif”. Motif is a commercial widget set shnilar to the
user interface used in Microsoft Windows. Many commercial applications use Motif widgets, as well
as some free applications. The popular World Wide Web Browser netscape uses Motif.

Let's try to go through some of the more usually things you'll encounter.

5.6.1 DButtons

Buttons are generally the easiest thing to use. A button is invoked by positioning the mouse cursor
over it and clicking (pressing and immediately releasing the mouse button) the left button. Athena
and Maotif buttony are functionally the same although they have cosmetic dilferences.

5.6.2 Menu Bars

A menu bar is a collection of commands accessible using the mouse. For instance, emacs’s menu bar
is shown in Figure 5.3. Fach word is a category heading of commands. File deals with commands
that bring up new files and save files. By convention, this is also the category that contains the
command to exit the program.

To access a command, inove the mouse cursor over a particular category {such as File) and press
and hold down the left mouse button. This will display a variety of commands. To select one of
the commands, move the mouse cursor over that conmand and release the left mouse button. Some
menu bars let you click on a category—if this is the case, clicking on the category will display the
menu until you click on either a command, another menu, or outside the menu bar (indicating that
you are not interested in running a particular command).

k|

46 CHAPTER 5. THE X WINDOW SYSTEM

Figure 5.3 emacs will change its menu bar depending on the type of file you're working on. Here
is one possible menu bar.

[Buffers Files Tools Edit Search Help

Figure 5.4 An Athena-type scroll bar is visible on the left of this xterm window. Next to it, a
Motif-type scroll bar is visible on the netscape window.

Y o ey ey

b Ty)
[of mousghousetom ¥
0,5 1.4 924 332 pp2 ¢
0.0 1.5 835 348 ppl §
1 00 0.4 848 100 7 ¢
00 00 0 07 ¢
0.0 0.3 840 84 7 €
00 1.2 804 300 ? ¢
0.0 0.2 88 60 7 ¢
0,0 0,7 884 172 ? ¢
0.0 0.4 920 9% 7 ¢
00 03 88 83 7 ¢
0.0 0.5 972 116 7 ¢
0.0 1.310% 304 ? ¢
0.0 0,5 888 124 vO4 €
0.0 0.4 832 112 01 ¢
0.0 1.91784 448 7 ¢
1.1 19.5 11000 4520 7
0.0 1.2 812 2% ? ¢
0.0 4.41824 1032 ? ¢
0.0 3.919% 812 ? ¢
0.0 412084 %0 ? ¢
0.0 1.4 916 228 502§
0.0 412080 956 ppl ¢
9.6 0.9 904 220 7 F

5.6.3 Scroll Bars

A seroll bar iy a method to allow people to display only pact of & document, while the vest is off
the screen. For instance, the xterm window iy cavvently displaying the bottem thivd of the text
available in Figure 5.4, 18 easy to see what part of the availahle text is current. heing displayed:
the darkened part of the scroll bar is relative to both the position and the amount of displayed text.
If the text displayed is all there is, the entire scroll bar is dark. 1f the middle half of the text is
displayed, the middle half of the scroll bar is darkened.

A vertical scroll bar may be to the left or right of the text and a horizontal one may be above or
below, depending the application.

Athena scroll bars

Athena scroll bars operate differently from scroll bars in other windowing systems. Fach of the three
buttons of the mouse operate dilferently. To scroll upwards (that is, display material above what
is currently visible) you can click the rightmost mouse button anywhere in the scroll bar. To scroll
downwards, click the left mouse button anywhere in the scroll bar.

5.6. COMMON FEATURES 47

You can also jump to a particular Jocation in the displayed material by clicking the middle mouse
button anywhere in the scroll bar. This causes the window to display material starting at that point
in the document.

Motif scroll bars

A Motif scroll bar acts uch more like a Microsoft Windows or Maciutosh scroll bar. An example of
one is on the right in Figure 5.4. Notice that in addition to the bar, it has arrows ahove and below
it. These are used for fine-tuming: clicking either the left or middle buttons on them will scroll a
anall amount such as oue line; the right button does nothing.

The behavior of clicking inside the scroll bar is widely different for Motif scroll bars than Athena
scroll bars. The right button has no effect. Clicking the left button above the current position scrolls
upward. Similarly, clicking below the current position scrolls downward. Clicking and holding the
left button on the cutrent position allows one to move the bar at will. Releasing the left button
positions the window.

Clicking the middle button anywhere on the bar will immediately julp to that location, similar
to the behavior of the Athena middle button. However, instead of starting to display the data at
the position clicked, that position is taken to be the midpoint of the data to be displayed.

QL2

48

CHAPTER 5. THE X WINDOW SYSTEM

Chapter 6

Working with Unix

A UNIX salestady, Lenore,

Enjoys work, but she likes the beach more.
She found a good way
To combine work and play:

She sells C shells by the seashore.

Unix is a powerful system for those who know how to harness its power. In this chapter, I'll try
to describe various ways to use Unix’s shell, bash, more efficently.

6.1 Wildcards

I the previous chapter, you learned about the file maintence cominands cp, mv, and rm. Occasionally,
you want to deal with more than one file at once —in fact, you might want to deal with many files at
once. For instance, you might want to copy all the files beginning with data into a directory called
“/backup. You could do this by either running many cp ¢ ls, or you could list every file on
one command line. Both of these methods would take a long time, however, and you have a large
chance of making an error.

A better way of doing that task is to type:

/bome/larry/reports 1s -F

1993-1 1994-1 datal datab
1993-2 data-nev data2
/bome/larry/reports mkdir “/backup
/home/larry/reports cp datae “/backup
/bome/larry/report# ls -F °/backup

data-nev datal data? data$
/home/larry/reports

As you can see, the asterix told cp to take all of the files beginning with data and copy them to
~/backup. Can you guess what cp dew ~/backup would have done?

49

a3

50 CHAPTER 6. WORKING WITH UNIX

6.1.1 What Really Happens?

Good question. Actually, there are a couple of special characters intercepted by the shell, bash. The
character “»”, an asterix, says “replace this word with all the files that will it this specification”. So,
the command cp datas ~/backup, like the one above, gets changed to cp data-nev datal data2
data5 ~/backup belore it gets run.

To illustrate this, let me introduce a new command, echo. echo is an extremely simple command;
it echoes back, or prints out, any parameters. Thus:

/home/larrys echo Hello!

Hello!?

/home/larry# echo How are you?

How are you?

/home/larrys cd report
/home/larry/reports ls -F

1993-1 1994-1 datal datal
1993-2 data-nev data2
/home/larry/report® echo 199+

1993-1 1993-2 1994-1
/home/larry/reports echo s4e

1994-1

/home/larry/report# echo 2+

1993-2 data2

/home/larry/report#

As you can see, the shell expands the wildcard and passes all of the files to the program you
tell it to run. This raises an interesting question: what happens if there are no files that meet the
wildeard specification? Try echo /rc/freog and bash passes the wildcard specification verbatim
to the program.

Other shells, like tesh, will, instead of just passing the wikleard verbatim, will reply No match.
Here's the siune conumand run under tesh:

mousehouse>ocho /re/freog
eocho: No match.
mousehouse>

The last question you might wiant to know is what if I wanted to have datas echoed back at me,
instead of the list of file names? Well, under both bash und tesh, just include the string in quotes:
/home/larry/report# ocho "datas" mousehouse>echo “datae”
datas OR datae
/home/larry/reports mousshouse>

6.1.2 The Question Mark

In addition to the asterix, the shell also interprets a question mark as a special character. A question
mark will match one, and only one character. For instance, 1s fetc/?? will display all two letter
files in the the /etc directory.

6.2. TIME SAVING WITH BASH 51

6.2 Time Saving with bash

6.2.1 Command-Line Editing

QOccasionally, you've typed a long command to bash and, before you hit return, notice that there
was a spelling mistake early in the line. You could just delete all the way back and retype everything
you need to, but that takes much too much effort! Instead, you cin use the arrow keys to move back
these, delete the bad character or two, and type the correct information.

There are wany special keys to help you edit. your conunand line, most of them similar to the
commands used in GNU Emacs. For fnstance, |C-l flips two adjacent characters.! You'll be able
to find most of the conmands in the chapter on Emaces, Chapter 8.

6.2.2 Command and File Completion

Another feature of bash is automatic completion of your command lines. For instance, let's look at
the following example of a typical cp command:

/home/larrys 1s -F

this-is-a-long-file

/home/larry8 cp this-is-a-long-file shorter
/home/larrys ls -F

shorter this-is-a-long-tile
/home/larrys

It's a big pain to have to type every letter of this-is-a-long-file whenever you try to access
it. So, create this-is-a-long-tile by copying /etc/passud to it2. Now, we're going to do the
above cp comimand very quickly and with a sinaller chance of mistyping.

Instead of typing the whole filename, type cp th and press and release the . Like magic,
the rest of the filename shows up on the comsnand line, and you can type in shorter. Unfortunately,
bash cannot read your thoughts, and you'll have to type all of shorter.

When you type , bash looks at what you've typed and looks for a file that starts like that.
For instance, if I type /usr/bin/ema and then hit , bash will find /usr/bin/emacs since that's
the only file that begins /usr/bin/ema on my system. However, if I type /usr/bin/1d and hit ,
bash beeps at me. That’s because three files, /usr/bin/1d, /usr/bin/1dd, and /usr/bin/1d86 all
start with /usr/bin/1d on my system.

If you try a completion and bash beeps, you can immediately hit again to get a list of all
the files your start matches so far. That way, if you aren’t sure of the exact spelling of your file, you
can start it and scan a much simaller list of files.

' means hold down the key labeled “Cirf”, then press the “t” key. Then release the “Ctel™ key.
2cp fotc/passwd this-is-a-long-file

M

52 CHAPTER 6. WORKING WITH UNIX

6.3 The Standard Input and The Standard Output

Let's try to tackle a simple problem: getting a listing of the /usr/bin directory. If all we do is 1s
/usr/bin, some of the files scroll off the top of the screen. How can we see all of the files?

6.3.1 Unix Concepts

The Unix operating system makes it very casy for progriuns to use the terminal. When a program
writes something to your screen, it is using something called standard output. Standard output,
abbreviated as stdout, is how the program writes things to a user. The nawme for what you tell
a progran i3 standard input (stdin). It's possible for a progran to communicate with the user
without using standard input or output, but most of the commands I cover in this book use stdin
and stdout.

For example, the 18 command prints the list of the directories to standard output, which is
normally “counected” to your terminal. An interactive command, such as your shell, bash, reais
your conunands from standard input.

It is also possible for a program to write to standard error, since it i3 very easy to make
standard output point somewhere besides your terminal. Standard error (stderr) is almost always
connected to a tertminal so an actual human will read the message.

In this section, we're going to examine three ways of fiddling with the standard input and output:
input redirection, output redirection, and pipes.

6.3.2 Output Redirection

A very important feature of Unix is the ability to redirect output. This allows you, instead of
viewing the resuits of a command, to save it in a file or send it directly to a printer. For instance,
to redirect the output of the command 1s /usr/bin, we place a > sign at the end of the line, and
say what file we want the output to be put in:

/hone/Yarrys s

/home/larry® 1s -F /usx/din > listing
/home/larrys ls

listing

/home/larrys

As you can see, instead of writing the names of all the files, the command created a totally new
file in your home directory. Let's try to take a look at this file using the command cat. If you think
back, you'll remember cat was a fairly useless command that copied what you typed (the standard
input) to the terminal (the standard output). cat can also print a file to the standard output if you
list the file as a parameter to cat:

/howe/larry® cat listing

/home/larrys

6.3. THE STANDARD INPUT AND THE STANDARD OUTPUT 53

The exact output of the command 1s /usr/bin appeared in the contents of 1isting. All well
and good, although it didn’t solve the original problem.?

However, cat does do some interesting things when it’s output is redirected. \What does the
command cat listing > nevfile do? Normally, the > nevfile says “take all the output of the
command and put it in newtile.” The output of the command cat listing is the file listing.
So we've invented a new (and not so efficient) method of copying files.

How about the command cat > tox? cat by itsell reads in each line typed at the terminal
(standard input) and prints it right back out (standard output) until it reads . In this case,
standard output has been redirected into the file fox. Now cat is serving as a rudimentary editor:

/home/larry# cat > fox
The quick brown fox jumps over the lazy dog.
press Ctrl-d

We've now created the file fox that contains the sentence “The quick brown fox jumps over the
lazy dog.” One last use of the versitile cat command is to concatenate files together. cat will
print out every file it was given as a parameter, one after another, So the command cat listing
fox will print out the directory listing of /usr/bin, and then it will print out our silly sentence.
Thus, the command cat listing fox > listandfox will create a new file containing the contents
of both listing and fox.

6.3.3 Input Redirection

Like redirecting standard output, it is also possible to redirect standard input. Instead of a program
reading from your keyboard, it will read from a file. Since input redirection is related to output
redirection, it seems natural to make the special character for input redirection be <. It too, is used
after the command you wish to run.

This is generally useful if you have a data file and a command that expects input from standard
input. Maost commands also let you specify a file to operate on, so <isn’t used as much in day-to-day
operations as other techniques.

6.3.4 The Pipe

Many Unix commands produce a large amount of information. For instance, it is not uncommon
for a command like 1s /usr/bin to produce more output than you can see on your screen. In order
for you to he able to see all of the information that a command like 1s /usr/bin, it's necessary to
use another Unix command, called more.* more will pause once every screenful of information. For
instance, more < fetc/rec will display the file /etc/rc just like cat /etc/rc would, except that

3¥or impatient readers, the command you might want 10 try is sore. However, there's still a bit more to talk about
before we get there,

‘more is named because that's the prompt it originally displayed: <-more==. In many versions of LINUX the more
command is identical to a more advanced comnmand thut docs all that more can do and more. Proving that computer
progr muke bud fi they naned this new prograim less.

L5

54 CHAPTER 6. WORKING WITH UNIX

more will let you read it. more also allows the command more /etc/rc, and that's the normal way
of invoking it.

However, that doesn’t help the problem that 1s /usr/bin displays more information than you
can see. more < 1s /usr/bin won't work input redirection only works with files, not commands!
You could do this:

/home/larry® 1s /usr/bin > temp-ls
/bome/larry# more temp-ls

/home/larry® rm temp-ls

However, Unix supplies a much cleaner way of doing that. You can just use the command 1s
/usr/bin | more. The character “i" indicates a pipe. Like a water pipe, a Unix pipe controls
flow. Instead of water, we're controlling the flow of information!

A useful tool with pipes are programs called filters. A filter is a program that reads the standard
input, changes it in some way, and outputs to standard output. more is a filter-~it reads the data
that it gets from standard input and displays it to standard output one screen at a time, letting
you read the file. more isn’t a great filter because its output isn’t suitable for sending to another
program.

Other filters include the programs cat, sort, head, and tail. For instance, if you wanted to
read only the first ten lines of the output from 1s, you could use 1s /usr/bin | head.

6.4 Multitasking

6.4.1 Using Job Control

Job control refers to the ability to put processes (another word for programs, essentially) in the
background and bring them to the foreground again, That ix to say, you want ta be able to make
something tan while you go and do other things, but have it he there again when you want to tell
it something or stop it. In Unix, the main (ool for job control is the shell it will keep track of jobs
for you, if you tearn how to speak its language.

The two most important words in that language are fg, for foreground, and bg, for background.
To find out how they work, use the command yes at a prompt.

/home/larry® yes

This will have the startling effect of running a long column of y's down the left hand side of your
screen, faster than you can follow.® To get them to stop, you'd normally type | ¢ to kill it, but
instead you should type this titme. It appears to have stopped, but there will be a message
before your prompt, looking more or less like this:

3There are good reasons for this strange command to exist. Occasional commands ask for confirmation —a “yes®
answer to a question. The yes command allows & programiner (o the resys o these

6.4. MULTITASKING 53

{1}+ Stopped . yes
It means that the process yes has been suspended in the background. You can get it running
again by typing fg at the prompt, which will put it into the foreground again. If you wish, you
can do other things first, while it's suspended. Try a few 1s’s or something before you put it back
in the foreground.

Once it's returned to the foreground, the y's will start coming again, as fast as before. You do
not need to worry that while you had it suspended it was “storing up™ wore y's to send to the
screen: when a program is suspended the whole program doesi’t ran until you bring it back to life.
{Nuw type |(ul-cl to Kill it for good, once you've seen enouglh).

Let's pick apart that message we got from the shell:
{1)+ Stopped yes

The number in Lrackets is the job number of this job, and will be used wlhen we need to refer
to it specifically. {Naturally, since job control is all about running multiple processes, we need some
way to tell one from another). The + following it tells us that this is the “current job™ — that is,
the one most recently moved from the foreground to the background. If you were to type fg, you
would put the job with the + in the forcground again. (More on that later, when we discuss running
multiple jobs at once). The word Stopped means that the job is “stopped”. The job isn’t dead,
but it isn't running right now. LINUX has saved it in a special suspended state, ready to jump back
into the action should anyone request it. Finally, the yes is the name of the process that has been
stopped.

Before we go on, let’s kill this job and start it again in a different way. The command is named
kill and can be used in the following way:

/home/larry# kill %1
(1])+ Stopped yes
/home/larry®

That message about it Leing “stopped” again is misleading. To find out whether it's still alive
(that is, either running or frozen in a suspended state), type jobs:

/home/larrys jobs
{1]+ Terminated yes
/home/larry®

There you have it—the job has been terminated! (It's possible that the jobs command showed
nothing at all, which just means that there are no jobs running in the background. If you just killed
a job, and typing jobs shows nothing, then you know the kill was successful. Usually it will tell you
the job was “terminated™.)

Now, start yes running again, like this:

/home/larry# yes > /dev/null

26

56 CHAPTER 6. WORKING WITH UNIX

If you read the section about input and output redirection, you know that this is sending the
output of yes into the special file /dev/null. /dev/null is a black hole that eats any output sent
to it {you can imagine that stream of y's coming out the back of your computer and drilling a hole
in the wall, if that makes you happy).

After typing this, you will not get your prompt back, but you will not see that column of y's
either. Although output is being sent into /dev/null, the job is still running in the foreground. As
usual, you can suspend it by hitting . Do that now to get the prompt back.

/home/larry® yee > /dev/null
{"yes" is running, and ve just typed ctrl-z)
[1)+ Stopped yos >/dev/null

/bome/larrys

Hinm. . . i3 there any way to get it to actually run in the background, while still leaving us the
prompt for interactive work? The connnand to do that is bg:

/home/larry$ bg
(1]+ yes >/dev/null &
/bome/larrys

Now, you'll have to trust me on this one: after you typed bg, yes > /dev/null began to run
again, but this time in the background. In fact, if you do things at the prompt, like 1s and stuff,
you might notice that your machine has been slowed down a little bit (endlessly generating and
discarding a steady streamn of y's does take some work, after all!) Other than that, however, there
are no effects. You can do anything you want at the prompt, and yes wili happily continue to
sending its output into the black hole.

There are now two diflerent ways you can kill it: with the ki1l command you just learned, or
by putting the job in the foreground again and hitting it with an interrupt, . Let's try the
second way, just to understand the relationship between £g and bg a little better;

/home/larrys fg
yes >/dev/pull

[now it’s in the foreground again. Imagine that I hit ctrl-c to terminate it)
/home/larry®
There, it's gone. Now, start up a few jobs running in simultaneously, like this:

/home/larrys yes > /dev/null &

(1] 1024

/home/larrys yes | sort > /dev/null &

{2} 1026

/home/larry® yes | nniq > /dev/mull

[and here, type ctrl-z to suspend it, please]

6.4. MULTITASKING 57

{3]+ Stopped
/home/larrys

yes | uniq >/dev/null

The first thing you might notice about those commands is the trailing & at the end of the first
two. Putting an & after a command tells the shell to start in running in the background right from
the very begiuning. (It's just a way to avoid having to start the program, type . and then
type bg.) So, we started those two commands running in the background. The third is suspended
and inactive at the moment. You may notice that the machine has become slower now, as the two
running ones require some amount of CPU time.

Each one told you it's job number. The first two also showed you their process identification
numbers, or PID’s, immediately following the job number. The P1D’s are normally not something
you need to know, but occasionally come in handy.

Let's kill the second one, since I think it's making your machine slow. You could just type kill
%2, but that would be 100 easy. Instead, do this:

/home/larrys tg %2
yes | sort >/dev/null
{type ctrl-c to kill it]

/home/larrys

As this demonstrates, 1g takes parameters beginning with % as well. In fact, you could just have
typed this:

/home/larrys %2
yes | sort >/dev/mull
{type ctrl-¢ to kill it

/bome/larrys$

This works hecause the shell automatically interprets a job number as a request to put that job
in the foreground. It can tell job munbers from other nunbers by the preceding %. Now type jobs
to gee which joby are left running:

/home/larrys jobs
[1]- Running
{3}+ Stopped
/home/larrys

yes >/dev/null &
yes | uniq >/dev/null

The “=" means that job number 1 is second in line to be put in the foreground, if you just type
tg without giving it any parameters. Ths “+" means the specified job is first in line—a fg without
parameters will bring job number 3 to the foreground. However, you can get to it by naming it, if
you wish:

/home/larrys tg X1
yos >/dev/null
[now type ctrl-z to suspend it)

W

58 CHAPTER 6. WORKING WITH UNIX

{1)+ Stopped
/home/larrys

yes >/dev/null

Having changed to job number 1 and then suspending it has also changed the priorities of all
your jobs. You can see this with the jobs commimd:

/home/larry# jobs
{1)+ Stopped
[3)- Stopped
/bome/larrys

yes >/dev/null
yes | uniq >/dev/null

Now they are both stopped (because both were suspended with), and numober 1 is next
in line to come to the foreground by default. This is because you put it in the foreground manually,
and then suspended it. The “+" always refers to the most recent job that was suspended from the
foreground. You can start it running again:

/bome/larry# bg

[1]+ yes >/dev/null &
/home/larry¥ jobs

(13- Rumning

[31+ Stopped
/home/larry®

yes >/dev/null
yes | uniq >/dev/null

Notice that now it is running, and the other job has moved back up in line and has the +. Now
let's kill them all so your system isn't permanently slowed by processes doing nothing.

/home/larry® kill %1 %3
{3] Terminated
/home/larry# jobs

{1}+ Terminated
/home/larrys

yes | uniq >/dev/null

yes >/dev/null

You should see varions messages nbout termination of joby nothing dies quictly, it seems. Fig-
ure 6.1 on the facing page shows a quick sunnary of what you should know for jobs control,

6.4.2 The Theory of Job Control

1t is important to understand that job control ix done by the shell. There is no program on the
system called £g: rather, £g, bg, &, jobs, and ki1l are all shell-builting (actually, sometimes ki1l is
an independent program, but the bash shell used by Linux has it built in). This is a logical way to
doit: since each user wants their own job control space, and each user already hag their own shell, it
is easiest to just have the shell keep track of the user's jobs. Therefore, each user's job munbers are
meaningful only to that user: my job number [1] and your job number (1} are probably two totally
different processes. In fact, if you are logged in more than ouce, each of your shells will have unique
job control data, so you as a user might have two different jobs with the smme number running in
two different shells.

64. MULTITASKING 59

Figure 6.1 A summary of commands and keys used in job control.

1g %job This is a shell command that returns a job to the foreground. To find out which
one this is by default, type jobs and look for the one with the +.
Parameters: Optional job number. The default is the process identified with +.

[3 When an & is added to the end of the command line, it tells the command to run in
the backgronnd automatically. This process is then subject to all the usual methods
of job control detailed here.

bg Hjob This is a shell command that canses a suspended job to tan in the backgronnd. To
find out which one this is by default, type jobs and ook for the one with the +.
Parameters: Optional job number. The default is the process identified with +,

kill Hjob I'ID
This ia & shell command that causes a backpround job, either suspended or nining,
to terminate. You should always specify the job nutber or P1D, and if you are using
job numbers, remember to precede them with a %.
Parameters: Either the job number (preceded by %) or PID (no 7% is necessary).
More than one process or job can be specified on one line.

jobs This shell command just lists information about the jobs currently running or sus-
peuding. Sometimes it also tells you about ones that have just exited or been
terminated.

This is the generic interrupt character. Usually, if you type it while a program is

rungting in the foreground, it will kill the programn (sometimes it takes a few tries).
However, not all programs will respond to this method of termination.

This key combination usually causes a program to suspend, although a few programs
ignore it. Once suspended, the job can be run in the background or killed.

The way to tell for sure is to use the Process 1D numbers (PID’s). These are system-wide — each
process has its own unique PID number. Two different users can refer to a process by its PID and
know that they are talking about the same process (assuming that they are logged into the same
machine!)

Let's take a look at one more command to understand what P1Ds are. The ps command will list
all running processes, including your shell. Try it out. It also has a few options, the most important
of which (to many people) are a, u, and x. The a option will list processes belonging to any user, not
just your own. The x switch will list processes that don’t have a terminal associated with them.®
Finally, the u switch will give additionally information about the process that is frequently useful.

To really get an idea of what your systew is doing, put them all together: ps -aux. You can
then see the process that uses the more memory by looking at the %MEM column, and the most CPU
by looking at the %CPU column. (The TIME column lists the total amount of CPPU time used.)

SThis only makes sense for certain syslem programs that don't have to talk to users through a keyboard.

28

60 CHAPTER 6. WORKING WITIH UNIX

Another quick note about PIDs. kill, in addition to taking options of the form %job#, will
take options of raw PIDs. So, put a yes > /dev/null in the background, run ps, and look for yes.
Then type kill PID.”

1€ you start to prograsn in C on your Linux system, you will soon learn that the shell’s job control
is just an interactive version of the function calls fork and execl. This is too complex to go into
here, but may be helpful to remember later on when you are progranuning and waat to run ultiple
processes from a single program.

6.5 Virtual Consoles: Being in Many Places at Once

Linux supports virtual consoles. These are a way of making your single machine seen like multiple
terminals, all connected to one Linux kernel. Thankfully, using virtual consoles is one of the simplest
things about Linux: there are “hot keys” for switching among the consoles quickly. To tey it, log in
to your Linux system, hold down the left key, and press (that is, the function key number
2).8

You should find yourself at another login prompt. Don’t panic: you are now on virtual console
(VC) number 2! Log in here and do some things ~- a few 1s's or whatever -— to confirm that this is
a real login shell. Now you can return to VC nutiber 1, by holding down the left and pressing
. Or you can move on to a third VC, in the obvious way (@).

Linux systems generally come with four VC’s enabled Ly default. You can increase this all the

way to eight; this should be covered in The LINUX Systemn Adminstrator's Guide. It involves editing
a file in /etc or two. However, four should be enough for most people.

Ouce you get used to them, VC's will probably become an indispensable tool for getting many
things done at once. For example, I typically run Emacs on VC 1 (and do most of iy work there),
while having a communications program up on VC 3 (so I can be downloading or uploading files by
modem while I work, or running jobs on remote machines), and keep a shell up on VC 2 just in case
I want to run something else without tying up VC 1.

Tin gencral, it’s casicr to just kill the job number instead of using I’1Ds.
€Make sure you are doing this (roin text consoles: if you are running X windows or some other graphical application,
it probably won't work, although sumor has it that X Windows will soon allow virtual console switching under Linux.

Chapter 7
Powerful Little Programs

better fpout lcry

better vatchout

1pr why

santa claus <porth pole >town

cat /etc/passud >list

ncheck list

acheck list

cat list | grep nsughty >nogiftlist
cat 1ist | grep nice >giftlist
santa claus <porth pole > tovs

vho | grep sleeping

vho | grep avake

vbo | egrep ‘badigood’

for (goodness sake) {
be good

}

7.1 The Power of Unix

The power of Unix is hidden in simall ¢ ds that don’t seem too useful when used alone, but
when combined with other commands (either directly or indirectly) produce a system that’s much
more powefful and flexible than most other operating systems. The commands I'm going to talk
ahout in this chapter include sort, grep, more, cat, vc, spell, diff, head, and tail. Unfortunately,
it isn’t totally intuitive what these nanes mean right now.

Let's cover what each of these utilities do seperately and then I'll give some examples of how to
use them together.!

'Please nute that the short summaries on commands in this chapter are not comprehensive. Please consult the

61

29

62 CHAPTER 7. POWERFUL LITTLE PROGRAMS

7.2 Operating on Files

In addition to the commands like cd, mv, and rm you learned in Chapter 4, there are other commands
that just operate on files but not the data in them. These include touch, chmod, du, and df. All
of these files don't care what is in the file--the merely change some of the things Unix remembers
about the file.

Some of the things these commands manipulate:

o The time stamp. Each file has three dates associated with it.? The three dates are the creation
time (when the file was created), the last modification time {when the file was last changed),
and the last access time (when the file was last read).

o The owner. Every file in Unix is owned by one user or the other.

o The group. Every file also has a group of users it is associated with. The most common group
for user files is calied users, which is usually shared by all the user account on the system.

o The permissions. Every file has permissions (sometimes called “privileges”) associated with it
which tell Unix who can access what file, or change it, or, in the case of programs, execute it.
Each of these permissions can be toggled seperately for the owner, the group, and all other
users.

touch filel file2 ... fileN

touch will update the time stamps of the files listed on the command line to the current time.
If a file doesn’t exist, touch will create it. It is also possible to specify the time that touch will set
files to—consult the the manpage for touch.

chmod [-Rfv] made filel file2 ... fileN

The command used to change the permissions on a file is called chmod, short for change mode.
Defore 1 go into how to use the command, let's discuss what permissions are in Unix. Each file has a
group of permissions associated with it. These permissions tell Unix whether or not the file can Le
read from, written to, or executed as a program. (In the next few paragraphs, Ull talk about users
doing these things. Any programs a user runs are allowed to do the same things a user is. This can
be a security problem if you don't know what a particular program does.)

Unix recognizes three different types of people: first, the owuer of the file (and the person allowed
to use chmod on that file). Second, the “group”. The group of most of your files might be “users”,
meaning the normal users of the system. (To find out the group of a particular file, use 1s -1 file.)

command’s manpage if you want 10 know cvery option.
20lder filesystems in LINUX only stored onc date, since they were derived from Minix. If you have one of these
filesystems, some of the information will merely be unavailable—operation will be mostly unchanged:

7.3. SYSTEM STATISTICS 63

Then, there's everybody else who isn't the owner and isn’t a member of the group, appropriately
called “other”. .

So, a file could have read and write permissions for the owner, read permissions for the group,
and no permissions for all others. Or, for some reason, a file could have read/write permissions for
the group and others, but ne permissions for the owner!

Let's try using chmod to change a few pevmissions. First, create a new file using cat, emacs, or
any other program. By default, you'll he able to read and write this file. (The permissions given
other people will vary depencing un how the system and your account ia setup.) Make sure you can
read the file using cat. Now, let's take away your read privilege by using chmod u-r filename. (The
parameter u-r decodes to “user minus read”.) Now if you try 1o read the file, you get a Permission
denjed error! Add read privileges back by using chmod u+r filename.

Directory permissions use the same three ideas: tead, write, and execute, but act slighuly ditfer-
ently. The read privilege allows the user (or group or others) to tead the divectory list the names
of the files. The write permission allows the user (or group or others) to add or remove files. The
execute permission allows the user o access files in the directory or any subdirectories. (If a user
doesn’t have execute permissions for a directory, they can't even cd to it!)

To use chmod, replace the mode with what to operate on, cither user, group, other, or all, and
what to do with them. (That is, use a plus sign to indicate adding a privilege or a minus sign
to indicate taking one away. Or, an equals sign will specify the exact permissions.) The possible
permissions to add are read, write, and execute.

chmod’s R flag will change a directory’s permissions, and all files in that directory, and all subdi-
recties, all the way down the line. (The ‘R’ stands for recursive.) The £ Hag forces chmod to attempt
to change permissions, even if the user isn't the owner of the file. (If chmod is given the f flag, it
won't print an error message when it fails to change a file’s permissions.) The v flag makes chmod
verbose—it will report on what it's done.

7.3 System Statistics

Comunands in this section will display statistics about the operating system, or a part of the operating
system.

du {-abs] {pathl path2 ... pathN]

du stands for disk usage. It will count the amount of disk space a given directory and oll its
subdirectories take up on the disk. du by itself will returt a list of how much space every subdirectory
of the current directory consumes, and, at the very bottom, how much space the current directory
{plus all the previously counted subdirectories) use. If you give it a paramneter or two, it will count
the amount of space used by those files or directories instead of the current one.

The a flag will display a count for files, as well as directories. An option of b will display, instead
of kilobytes (1024 characters), the total in bytes. One byte is the equivalent of one letter in a text

30

G4 CHAPTER 7. POWERFUL LITTLE PROGRAMS

document. And the s flag will just display the directories mentioned on the command-line and not
their subdirectories.

df

df is short for “disk filling”: it summarizes the ammount of disk space in use. For each fileaystrn
(remenber, ditferent filesysteius are either on different drives or partitions) it shows the total amount
of disk space, the amount used, the amount available, and the total capacity of the filesystem that’s
used.

One odd thing you might encounter is that it's possible for the capacity to go over 100%, or the
used plus the available not to equal the wtal. This is because Unix reserves some space on eacls
filesystem for root. That way if a user accidentally fills the disk, the system will atill have a little
room to keep on operating.

For most people, df doesn't have any useful options.

uptime

The uptime program does exactly what one would suspect. It prints the amount of time the
system has been “up”—the amount of time from the last Unix boot. '

uptime also gives the current time and the load average. The load average is the average number
of jobs waiting to run in a certain time period. uptime displays the load average for the last minute,
five mi and ten minutes. A load average near zero indicates the system has been relatively
idle. A load average near one indicates that the system has been almost fully utilized but nowhere
near overtaxed. High load averages are the result of several programs being run simultaneously.

Amazingly, uptime is one of the [ew Unix programs that have ne options!

who

vho displays the current users of the system and when they logged in. If given the parameters
am i (asin: vho am i), it displays the current user.

w {-f] [username]

The v prograin displays the current users of the system and what they’re doing. (It basically
combines the functionality of uptime and who. The header of v is exactly the same as uptime, and
each line shows a user, when the logged on (and how long they've been idle). JCPU is the total
amount of CPU time used by that user, while PCPY the the total amount of CPU time used by their
present task.

7.4. WHAT'S IN THE FILE? 65

I v is given the option 1, it shows the remote system they logged in from, if any. The optional
parameter restricts v to showing only the named user.

7.4 What’s in the File?

There are two major commands used in Unix for listing files, cat and more. I've talked about both
of them in Chapter 6.

cat [-nA) [filel file2 ... fileN]

cat is not a user friendly command-—it doesn’t wait for you to read the file, and is mostly used in
conjuction with pipes. However, cat does have some useful command-line options. For instance, n
will number all the lines in the file, and A will show control characters as normal characters instead of
(possibly) doing strange things to your screen. (Remember, to see some of the stranger and perhaps
“less useful” options, use the man command: man cat.) cat will accept input from stdin if no files
are specified on the command-line.

nore [-1] [+linenumber] [filel file2 ... fileN]

more is much more useful, and is the command that you'll want to use when browsing ASCH
text files. The only interesting option is 1, which will tell more that you aren't interested in treating
the character | Ctrl-L | 2s a “new page™ character. more will start on a specified linenumber.

Since more is an interactive ¢ 1, I've ized the major interactive conumands below:

Moves to the next screen of text.

@ This will scroll the screen by 11 lines, or about half a normal, 25-line, screen.

Scarches for a regular expression. While a regular expression can be quite complicated, you can

just type in a text string to search for. For example, / toa would search for the next
occurence of “toad” in your current file. A slash followed by a return will search for the next
occurence of what you last searched for.

[n] This will also search for the next occurence of your regular expression.
[n] 1f you specified more than one file on the command line, this will move to the next file.
DE] This will move the the previous file.

EI Exits from more.

66 CHAPTER 7. POWERFUL LITTLE PROGRAMS

head [-lines) |filel file2 ... fileN)

head will display the first ten lines in the listed files, or the first ten lines of stdin if no files are
specified on the command line. Any numeric option will be taken as the number of lines to print,
50 head ~15 frog will print the first fifteen lines of the file frog.

tail |-lines] [filel file2 ... fileN|

Like head, tail will display only a fraction of the file. Naturally, tail will display the end of the
file, or the last ten lines that come through stdin. tail also accepts a option specifying the number
of lines.

file [filel filo2 ... fileN]|

The file command attempts to identify what format a particular file is written in. Since not all
files have extentions or other easy to identify marks, the file command performs some rudimentary
checks to try and figure out exactly what it contains.

Be careful, though, because it is quite possible for file to make a wrong identification.
7.5 Information Commands

This section discusses the commands that will alter a file, pecformi a certain operation on the file,
or display statistics on the file.

grep [-uvwx] [-mumber] expression [filel file? ... fileN]

One of the most useful commands in Unix is grep, the generalized regular expression parser.
This is a fancy name for a utility which can only search a text file. The easiest way to use grep is
like this:

/home/larry$ cat animals

Animals are very interesting creatures. One of my favorite animals is
the tiger, a fearsome beast with large teeth.

I also like the lion---it's really neat!

/home/larry$ grep iger animals

the tiger, a fearsome beast vith large teeth.

/home/larrys R

One disadvantage of this is, although it shows you all the lines containing your word, it doesn't

7.5. INFORMATION COMMANDS 67

tell you where to look in the file—no line number. Depending on what you’re doing, this might be
fine. For instance, if you're looking for errors from a prograims output, you might try a.out | grep
error, where a.out is your program’s name.

If you're interested in where the match(es) are, use the n switch to grep to tell it to print line
numbers. Use the v switch if you want to see alt the lines that don’t match the specilied expression.

Another feature of grep is that it matches only parts of a word, like my example above where
iger matched tiger. To tell grep to only match whole words, use the v, and the x switch will tell
grep to anly match whole lines,

I you don't specify any tiles, grep will examine stdin.

we [-clw] {filel file2 ... fileN}

vc stands for word count. It simply counts the number of words, lines, and characters in the
file(s). If there aren’t any files specified on the command line, it operates on stdin.

The three parameters, clw, stand for character, line, and word respectively, and tell we which
of the three to count. Thus, we ~cw will count the number of characters and words, but not the
number of lines. wc defaults to counting everything-- words, lines, and characters.

One nice use of wc is to find how many files are in the present directory: 1s | we ~-w. If you
wanted to see how many files that ended with .c there are, try 1s #.c | wc -w.

spell [filel file2 ... fileN]

spell is a very simple Unix spelling program, usually for American Euglish.® spell is a filter,
like most of the other programs we've talked about, which sucks in an ASCII text file and outputs
all the words it considers misspellings. spell operates on the files listed in the command line, or, if
there weren’t any there, stdin.

A more sophisticated spelling program, ispell is probably also available on your machine.
ispell will offer possible correct spellings and a fancy menu interface if a filename is specified on
the command line or will run as a filter-like program if no files are specified.

While operation of ispell should be fairly obvious, consult the man page if you need more help.

cmp filel [file2]

cmp compares two files. The first must be listed on the command line, while the secoud is either
listed as the second parameter or is read in from standard input. cmp is very simple, and merely
tells you where the two files first differ.

3While there are versions of this for several other European languages, the copy on your Lixux machine is most
likely for American English.

32

68 CHAPTER 7. POWERFUL LITTLE PROGRAMS

diff filel file2

One of the most complicated standard Unix commands is called diff. The GNU version of dift
has over twenty commnand line options! It is 8 much more powerful version of cmp and shows you
what the differences are instead of merely telling you where the first one is.

Since tatking about even a good portion of diff is beyond the scope of this book, I'll just talk
about the basic operation of diff. In short, diff takes two paraineters and displays the differences
hetween them on a line-by-line basis. For instance:

/home/larry® cat frog

Animals are very interesting creatures. One of my favorite animals 1e
the tiger, a fearsome beast vith large teeth.

I also 1ike the lion--~it's really neat!

/home/larry$ cp frog toad

/home/larry® dift frog toad

/bome/larry# cat dog

Animals are very nteresting creatures. One of my favorite animals is

the tiger, a fearsome beast vith large teeth.

I alse like the lion---it's really neat!

/home/larrys diff frog dog

1c1,2

< Animals are very interesting creatures. One of my favorite animals is

> Animals are very nteresting creatures. One of my favorite animals is
>

3c4
< 1 also like the lion---it’s really neat!

> 1 also like the lion---it’s really neat!
/home/larry®

As you can see, diff outputs nothing when the two files are identical. Then, when I compared
two different files, it had a section header, 1c1,2 saying it was comparing line 1 of the left file, frog,
to lines 1-2 of dog and what differences it noticed. Then it comnpared line 3 of frog to line 4 of dog.
While it may seem strange at first to compare different line numbers, it is much more efficent then
listing out every siugle line if there is an extra return early in one file. .

gzip [-v#] [filel file2 ... fileN)
gunzip [-v] [filel file2 ... fileN]
zcat [filel file2 ... fileN]

These three programs are used to compress and decompress data. gzip, or GNU Zip, is the

7.5. INFORMATION COMMANDS 69

program that reads in the original file(s) and outputs files that are smaller. gzip deletes the files
specified on the command line and replaces them with files that have an identical name except that
they have “.gz" appended to them.

tr stringl string2

The “translate characters” ¢« 1 operates on standard input—it doesn't accept a filename as
a parameter. Instead, it's two parameters are arbitrary strings. It replaces all occurences of stringl
in the input with string2. In addition to relatively simple commands such as tr frog toad, tr
can accept more complicated commands. For instance, here's a quick way of converting lowercase
characters into uppercase ones:

/bome/larrys tr [:lover:) [:upper:]
this is a WEIRD sentence.

THIS 1S A WEIRD SENTENCE.

tr is fairly complex and usually used in small shell programs.

33

CHAPTER 7. POWERFUL LITTLE PROGRAMS

Chapter 9

I Gotta Be Me!

If God had known we'd ueed foresight, she would have given it to us.

9.1 bash Customization

One of the distinguishing things about the Unix philosophy is that the system’s designers did not
attempt to predict every need that users might have; instead, they tried to make it easy for each
individual user to tailor the environment to their own particular needs. This is mainly done through
configuration files. These are also known as “init files”, “rc files” (for “run control™}, or even
“dot files”, because the filenames often begin with “.”. If you'll recall, filenames that start with “."
aren’t normally displayed by 1s.

The most important configuration files are the ones used by the shell. Linux's default shell is
bash, and that’s the shell this chapter covers. Before we go into how Lo customize bash, we should
know what files bash looks at.

9.1.1 Shell Startup

There are several different ways bash can run. It can run as a login shell, which is how it runs
when you first login. The login shell should be the first shell you see.

Another way bash can run is as an interactive shell. This is any shell which presents a prompt
to a human and waits for input. A login shell is also an interactive shell. A way you can get a
non-login interactive shell is, say, a shell inside xterm. Any shell that was created by some other
way besides logging in is a non-login shell.

Finally, there are non-interactive shells. These shells are used for executing a file of commands,
much like MS-DOS’s batch files - the files that end in .BAT. These shell scripts function like mini-
programms. While they are usually much slower than a regular compiled program, it is often true
that they're easier to write.

89

34

90 CHAPTER 9. 1 GOTTA BE ME!

Depending on the type of shell, different files will be used at shell startup:

Type of Shell Action
Interactive login | The file .bash_profile is read and executed
Iuteractive The file .bashrc is read and executed
Non-interactive | The shell script is read and executed

9.1.2 Startup Files

Since most users want to have largely the same enviromuent no matter what type of interactive
shell they wind up with, whether or not it's a login shell, we'll start our configuration by putting
a very simple command into our .bashprotile: “source ~/.bashrc”. The source command
tells the shell to interprete the argument as a shell script. What it means for us is that everytime
.bash_profile is run, .bashrc is also run.

Now, we'll just add commands to our .bashre. If you ever want a command to only be run
when you login, add it to your .bash_profile.

9.1.3 Aliasing

What are some of the things you might want to customize? Here’s something that 1 think about
90% of Dash users have put in their ,bashrec:

alias 11=“1s ~1"

That command defined a shell alias called 11 that “expands” to the normal shell command
“ls ~1" when invoked by the user. So, assuming that Bash has read that command in from your
.bashrc, you can just type 11 to get the effect of “1s -1" in only halfl the keystrokes. What
happens is that when you type 11 and hit , Bash intercepts it, because it's watching for
aliases, replaces it with “Is -1, and runs that instead. There is no actual program called 11 on the
system, but the shell automaticaily translated the alias int6 a valid program.

Some sample aliases are in Figure 9.1.3. You could put them in your own .bashrc. One especially
interesting alias is the first one. With that alias, whenever someone types 1s, they automatically
have a -F flag tacked on. (The alias doesn’t try to expand itself again.) This is a common way of
adding options that you use every time you call a program.

Notice the comments with the # character in Figure 9.1.3. Whenever a # appears, the shell
ignores the rest of the line.

You might have noticed a few odd things about them. First of all, I leave off the quotes in a few
of the aliases—like pu. Strictly speaking, quotes aren't necessary when you only have one word on
the right of the equal sign.

It never hurts to have quotes either, so don't let me get you into any bad habits. You should
certainly use them if you're going to be aliasing a command with options and/or arguments:

alias rf="refrobnicate -verbose -prolix ~vordy ~o foo.out"

9.1. BASK CUSTOMIZATION 91

Figure 9.1 Some sample aliases for bash.
alias le="1s -F" give characters at the end of listing
alias 11s"1ls -1" special ls
aljas }
alias ro="rm ¢°; rm .+"" # this removes backup files created by Emacs
alias rd="rmdir"
alias md="mkdir”

s -2

saves typing!

alias puwpushd 8 pushd, popd, and dirs veren’t covered in this
alias po=popd # panual---you might vant to look them up
alias ds=dirs 8 in the bash manpage

& these all are just keyboard shortcuts

alias to"telnet cs.oberlin.edu”

alias ta="telnet altair.mcs.anl.gov”

aljas tge"telnet wombat.gpu.aj.mit.edu”

alias tko="tpalk koldOcs.oberlin.edu"

slias tjo="talk jimbécs.oberlin.edu"

alias mroe="more" # spelling correction!

alias moer="more"

alias email="emacs -f yrmail" 8 my mail reader

alias od2s"emacs -d floss:0 -fg \"grey95\" -bg \"grey50\""
one vay of invoking emacs

Also, the final alias has some fi nky quoting going on:
alias ed2s"emacs -d flosa:0 -fg \"grey95\" -bg \"grey50\""

As you might have guessed, I wanted to pass double-quotes in the options themselves, so I had
to quote those with a backslash to prevent bash from thinking that they signaled the end of the
alias.

Finally, I have actually aliased two common typing mistakes, “mroe” and “moer”, to the com-
mand T meant o type, more. Aliases do not interfere with your passing arguments to a program.
The following works just fine:

/home/larrys mroe hurd.txt

In fact, knowing how to make your own aliases is probably at least half of all the shell customiza-
tion you'll ever do. Experiment a little, find out what long commands you find yourself typing
frequently, and nake aliases for them. You'll find that it makes working at a shell prompt a much
more pleasant experience.

9.1.4 Environment Variables

Another major thing one does in a .bashrc is set environment variables. And what are environ-
ment variables? Let's go at it from the other direction: suppose you are reading the documentation
for the program truggle, and you run across these sentences:

35

92 CHAPTER 9. 1 GOTTA BE ME!

Fruggle normally looks for its configuration file, .frugglerc, in the user's home directory.
However, if the environment variahle FRUGGLEPATH is set to a different filename, it will
lock there instead.

Every program executes in an environment, and that environment is defined by the shell that
called the program'. The environment could be said to exist “within” the shell. Programmers
have a special routine for querying the environment, and the fruggle program makes use of this
routine. It checks the value of the environment variable FRUGGLEPATH. If that variable turns out
to be undefined, then it will just use the file .frugglerc in your home directory. If it is defined,
however, fruggle will use the variable’s value (which should he the name of a file that fruggle can
use} instead of the default .frugglerc.

Here's how you can change your environment in bash:
/home/larry# export PGPPATH=/home/larry/secrets/pgp

You may think of the export command as meaning “Please export this variable out to the
environment where I will be calling programs, so that its value is visible to them.” There are
actually reasons to call it export, as you'll see later.

This particular variable is used by Phil Zimmerman's infaunous public-key encryption program,
pgp. By default, pgp uses your home directory as a place to find certain files that it needs (containing
encryption keys), and also as a place t6 store temporary files that it creates when it's running. By
setting variable PGPPATH to this value, I have told it to use the directory /home/larry/secrets/pgp
instead. I had to read the pgp manual to find out the exact name of the variable and what it does,
but it is farily standard to use the name of the program in capital letters, prepended to the suffix
“PATH™,

Tt is also useful to be able to query the environment:

/home/larry® echo $PGPPATH
/homa/larry/.pgp
/home/larrys

Notice the “$"; you prefix an envirommnent variable with a dollar sign in order to extract the
variable's value. Had you typed it without the dollar sign, echo would have simply echoed its
argument(s):

/home/larrys echo PCPPATH
PGPPATH
/home/larrys

The “$” is used to evaluate enviromment variables, hut it only does so in the context of the
shell- that is, when the shell is interpreting. When is the shell interpreting? Well, when you are

'Now you see why shells ate so important. Tmagine if you had to pass a whole environument by hand every time
you called a program!

9.1. BASH CUSTOMIZATION 93

Figure 9.2 Some important environment variables.

Variable name Contains Example

HOME Your howe divectory /home/larry

TERM Your terminal type xterm, vt100, or console

SHELL The path to your shell /bin/bash

USER Your login name larry

PATH A list to search for programs { /bin:/usr/bin:/usr/local/bin:/usr/bin/X11

typing couunands at the prompt, or when bash is reading conunands from a file like .bashrc, it can
be said to be “interpreting” the commands.

There's anothier command that’s very useful for querving the enviroment: env. env will merely
list all the euvironment viwiables. It's possible, especially if you're using X, that the list will scroll
off the screen. 1f that happens, just pipe env through more: env | more.

A few of these variables can be fairly useful, so I'll cover them. Look at Figure 9.1.4. Those
four variables are defined automatically when you login: you don't set them in your .bashre or
.bash.login.

Let's take a closer look at the TERM variable. To understand that one, let's look back into the
history of Unix: The operating system needs to know certain facts about your console, in order
to perform basic functions like writing a character to the screen, moving the cursor to the next
line, etc. In the early days of computing, manufacturers were constantly adding new features to
their terminals: first reverse-video, then maybe European character sets, eventually even primitive
drawing functions (remember, these were the days before windowing systems and mice). However,
all of these new functions represented a problem to programmers: how could they know what a
terminal supported and didn’t support? And how could they support new features without making
old terminals worthless?

In Unix, the answer to these questions was /etc/termcap. /etc/termcap is a list of all of the
terminals that your system knows about, and liow they control the cursor. If a system administrator
got a new terminal, all they'd have to do is add an entry for that terminal into /etc/termcap
instead of rebuilding all of Unix. Sowetimes, it’s even simplier. Along the way, Digital Equipment
Corporation’s ¥t100 terminal became a pseudo-standard, and many new terminals were built so that
they could emulate it, or behave as if they were a vt100.

Under Linux, TERM's value is sometimes console, which is a vt 100-like terminal with some extra
features.

Another variable, PATH, is also crucial to the proper functioning of the shell. lere's mine:
/home/larry$ emv | grep "PATH

PATH=/home/larry/bin: /bin:/usr/bin:/usr/local/bin:/uar/bin/X11:/usr/TeX/bin
/home/larry#

Your PATH is a colon-separated list of the directories the shell should seacch for programs, when
you type the name of a program to run. When I type 1s and hit . for example, the Bash

94 CHAPTER 9. 1 GOTTA BE ME!

first looks in /home/larry/bin, a directory I made for storing prograins that I wrote. However, I
didn't write 1s {in fact, I think it might have been written bLefore I was born!). Failing to find it
in /home/larry/bin, Bash looks next in /bin—and there it has a hit! /bin/1s does exist and is
executable, so Bash stops searching for a program named 1s and runs it. There might well have
been another 1s sitting in the directory /usr/bin, but bash would never sun it unless I asked for it
by specifying an explicit pathname:

/home/larry# /usr/bin/lse

The PATH variable exists 3o that we don't have to type in complete pat! for every ¢ nd
When you type a command, Bash Jooks for it in the directories named in PATH, in order, and runs
itif it finds it. 1 i doesn't find it, you get a rude error:

/home/larzry# clubly
clubly: command not found

Notice that my PATH does not have the current directory, “.”, init. If it did, it might look like
this:

/bhome/larrys echo $PATH
.:/home/larry/bin:/bin: /uer/dbin: /usr/local /bin: /usr/bin/X11:/usr/Tek/bin
/home/larrys

This is a matter of some debate in Unix-circles (which you are now a member of, whether you
like it or not). The problem is that having the current directory in your path can be a security hole.
Suppose that you cd into a directory where somebody has left a “Trojan Horse” programn called 1s,
and you do an 1s, as would be natural on entering a new directory. Since the current directory, “.”,
came first in your PATH, the shell would have found this version of 1s and executed it. Whatever
mischief they might have put into that program, you have just gone ahead and executed (and that
could be quite a lot of mischief indeed). The person did not need root privileges to do this; they
only needed write permission on the directory where the “false” 1s was located. It might even have
been their home directory, if they knew that you would be poking around in there at some point.

Ou your own system, it’s highly unlikely that people are leaving traps for each other. All the
users are probably friends or colleagues of yours. However, on a large mlti-user systesn (like many
university computers), there could be plenty of unfriendly programumers whom you've never met.
Whether or not you want to take your chances by having “." in your path depends on your situation;
I'm not going to be dogmatic about it either way, I just want you to be aware of the risks involved?.
Multi-user systems really are communities, where people can do things to one another in all sorts of
unforseen ways.

The actual way that I set my PATH involves most of what you've learned so far about enviromment
variables. Here is what is actually in my .bashre:

export PATH=${PATH}:.:${HOME}/bin:/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/usx/TeX/bin

2Remember that you can always execule programs in the current directory by being explicit about it, i.e.: “./foe™ .

9.1. BASH CUSTOMIZATION 95

Here, 1 am taking advantage of the fact that the HOME variable is set before Bash reads my
.bashrc, by using its value in setting my PATH. The curly braces (“{...}") are a further level of
quoting; they delimit the extent of whiat the “$” is to evaluate, so that the shell doesn't get confused

by the text immediately following it (“/bin" in this case). Here is another example of the effect
they have: .

/howe/larrys$ echo S(HDHE}f;v
/howme/larryfoo
/home/larrys

Without the curly braces, I would get nothing, since there is no environment variables named
HOMEf oo.

/home/larrys echo $HOMEfoo
/home/larrys

Let me clear one other thing up in that path: the meaning of “$PATH”. What that does is includes
the value of any PATH variable previously set in my new PATH. Where would the old variable be set?
The file /etc/protile serves as a kind of giobal .bash_profile that is common to all users. Having
one centralized file like that makes it easier for the system administrator to add a new directory to
everyone's PATH or something, without them all having to do it individually. If you include the old
path in your new path, you won't lose any directories that the system already setup for you.

You can also control what your prompt looks like. This is done by setting the value of the
environment variable PS1. Personally, I want a prompt that shows me the path to the current
working directory—here's how I do it in my .bashre:

export PSi=’'$PUDE *

Ay you can see, there are actually two variables being used here. The one being set is PS1, and
it is heing set to the value of PYD, which can he thought of as either “Prist Working Divectory”
or “I'ath o Working Directory”. But the evaluation of PWD takes place inside single quotes. The
single guotes serve to evaluate the expression inside themn, which itself evaluates the variable PWD,
1f you just did export PS1s$PWD, your prompt would constantly display the path to the current
directory at the time that PS1 wes set, instead of constantly updating it as you change directories.
Well, that's sort of confusing, and not really all that important. Just keep in mind that you need
the quotes if you want the current directory displayed in your prompt.

You might prefer export PSi='$PWD>’,or even the name of your system: export PSi=‘hostname‘'>’.

Let e dissect that last example a little further.

That last example used a new type of quoting, the back quotes. These don't protect something -
in fact, you'll notice that “hostname” doesn’t appear anywhere in the prompt when you run that.
What actually happens is that the command inside the backquotes gets evaluated, and the output
is put in place of the backquotes and the command name.

Try echo *1s‘ or ve ‘1s8‘. As you get more experienced using the shell, this technique gets
more and more powerful.

34

96 CHAPTER 9. 1 GOTTA BE ME!

There’s a lot mare to configuring your .bashre, and not enough room to explain it here. You can
read the bash man page for more, or ask questions of experienced Bash users. Here is a complete
.bashrc for you to study; it's fairly standard, although the search path is a little long.

some random stuff:

ulimit -c unlimited

export history_control=ignoredups
export PSi=’$PWD>’

umask 022

application-specific paths:

export KANPATHx=/usr/local/man:/usr/man
export INFOPATH=/usr/local/info

export PGPPATH=${HOME}/.pgp

8 make the main PATH:

homepath=${HOME}: " /bin
stdpath=/bin:/usr/bin:/usr/local/bin:/usr/ucbh/:/etc:/usr/etc:/usr/games
pubpath=/usr/public/bin:/usr/gnusoft/bin:/usr/local/contribs/bin
softpath=/usr/bin/X11:/usr/local/bin/X11:/usr/TeX/bin

export PATH=.:${homepath}:${stdpath}:${pubpath}:${scftpath}

Technically, the curly braces were not necessary, because the colons
were valid delimiters; nevertheless, the curly braces are a good

¢ habit to get into, and they can't hurt.

% aliases

alias 1s="1s -CF"

alias fgi="fg %"

alias fg2e"tg %2

alias tba="talk sussmanCtern.mcs.anl.gov"
alias tko»"talk koldOce.oberlin.edy"
alies tji="talk jimbOtotoro.bio.indiana.edu"
alias mroe="more"

alias moor="more"

alias email="emacs ~f vm"

alias pu=pushd

alias po=popd

alfas b=""/.b"

alias dsedirs

alias ro="rm *°; rm .¢°"

slias rd="rmdir”

alias 11="1s -1"

alias la="ls -a"

alias rr="rs -r"

alias md="mkdir"

alias ed2="emacs -d floss:0 -fg \"grey9s\" -bg \"greySO\""

function gco

9.2. THE X WINDOW SYSTEM INIT FILES 97
{
gee ~o $1 $1.¢ -g
}

9.2 The X Window System Init Files

Most people prefer to do their work iuside a graphical environment, and for Unix machines, that
usually means using X. If you're accustomed to the Macintosh or to Microsoft Windows, the X
Window System may take a little getting used to, especially in how it is customized.

With the Macintosh or Micraxoft Windows, you custosmize the envivonment from within the
enviromment: if you want to chauge your background, for exauple, you do by clicking on the new
color in some special graphical setup progrant. Tu X, system defaults ave controlled by text files,
which you edit directly in other words, you'd type the actual color name into a file in order to set
your background to that color.

There is no denying that this method just isn't as slick a3 some counercial windowing systems.
I think this tendency to vemain text-based, even in a graphical enviroument, has to do with the fact
that X was created by a bunch of programmers who simply weren't teying to write software that
their grandparents could use. This tendency may change in future versions of X (at least I hope it
will}, but for now, you just have to learn to deal with more text files. It does at least give you very
flexible and precise control over your conliguration.

Here are the most important files for configuring X:

.xinitrc A script run by X when it starts up.
.tvmre Read by an X window manager, tvm.
.tvwmrc Read by an X window manager, fvvm.

All of these files should be located in your home directory, if they exist at all.

The .xinitrc is a simple shell script that gets run when X is invoked. It can do anything any
other shell script can do, but of course it makes the most sense to use it for starting up various X
programs and setting window system parameters. The last command in the .xinitrc is usually the
name of a window manager to run, for exaple /usr/bin/X11/twm.

What sort of thing might you want to put in a .xinitrc file? Perhaps some calls to the xsetroot
program, to make your root (background) window and mouse cursor look the way you want them
to look. Calls to xmodmap, which tells the server® how to interpret the signals from your keyboard.
Any other programs you want started every time you run X (for exarple, xclock).

Here i3 some of my .xinitrc; yours will alinost certainly look different, so this is meant only as

an example:

#!/bin/sh
The first line tells the operating system which shell to use in

The “server” just means the main X process on your machine, the one with which all other X programs must
communicate in otder to use the display. ‘These other programs are known as “clients™, and the whole deal is called
a “client.server” system.

5%

98

CHAPTER 9. I GOTTA BE ME!

interpreting this script. The script itself ought to be marked as
ezecutable; you can make it so with “"chmod +x °/.xinitre”.

rmodmap is a program for telling the X werver hov to interpret your
keyboard’s signals. It is edefinitelye vorth learning about. You

8 can do “"man dmap”, “xmodmap ~help"”, "imodmap -grasmmar”, and wore.
]

s

L

I don't guarantee that the expressions belov vill mean anything on
your system (I don’t even guarantee that they mean anything on
mine):

imodmap -e 'clear Lock’

xmodmap -e ‘keycode 176 = Control R’

modmap -e ‘add control = Control R’

xmodmap e 'clear Mod2’

xmodmap -e ‘add Modl = Alt_L Alt_R'

8 xoet 1s a program for setting some other parameters of the X server:
xset m 3 22 $ mouse parameters

xset s 600 6 & # screen saver prefs

xset s noblank & £ ditto

xsot {p+ /home/larry/x/tonts # for citern

$ To find out more, do “xset ~help".

Tell the X server to superimpose fish.cursor over fish.mask, and use
the resulting pattern as my mouse cursor:
xsetroot -cursor /home/lab/larry/x/fish.cursor /home/labd/larxy/x/fish.mask &

a pleasing background pattern and color:
xsetroot -bitmap /home/lab/larry/z/pyramid.zbm ~bg tan

todo: xrdb here? What about .Xdefaults file?

8 You should do "man xsetroot”, or "xsetroot -help” for more
information on the program used above.

A client program, the imposing circular color-clock by Jim Blandy:
Jusr/local/bin/circles &

Maybe you'd like to have a clock on your screen at all times?
/uer/bin/X11/xclock -digital &

Allow client X programs running at occs.cs.oberlin.edu to display
themselves here, do the same thing for juju.mcs.anl.gov:

zhoat occs.ca,oberlin.edu

zhost jaju.mcs.anl.gov

% You could simply tell the X server to allow clients running on any
other host {(a bhost being a remote machine) to display here, but this
8 is a security hole -- those clients might be rua by someone else,

9.2, THE X WINDOW SYSTEM INIT FILES 99

and watch your keystrokes as you type your passvord or something!
Hovever, if you vanted to do it anyway, you could use a "+" to stand
for all possible hostnames, instead of a specific hostname, like
this:

zhoat +

And finally, run the vindow manager:

/usr/bin/X11/tvn

8 Some people prefer other window managers. 1 use twm, but fvum is
8 often distributed with Linux too:

8 /usr/bin/X11/tvvm

Notice that some commands are run in the background (i.e.: they are followed with a “&”), while
others aren't. The distinction is that some programs will start when you start X and keep going
until you exit—these get put in the background. Othiers execute once and then exit immediately.
xsetroot is one such; it just sets the root window or cursor or whatever, and then exits.

Once the window manager has started, it will read its own init file, which controls things like
how your menus are set up, which positions windows are brought up at, icon control, and other
earth-shakingly important issues. If you use twm, then this file is .twmrc in your home directory.
If you use fvwm, then it’s .fvwmrc, etc. I'll deal with only those two, since they're the window
managers you'll be most likely to encounter with Linux.

9.2.1 Twm Configuration

The .tvmrc is not a shell script—it’s actually written in a language specially made for tum, believe
it or not!* The main thing people like to play with in their .twmrc is window style (colors and such),
and making cool menus, so here's an example . twarc that does that:

Set colors for the various parts of vindovs. This has a grest
8 jmpact on the "feel” of your environment.
Color
{
BorderColor "OrangeRed”
BorderTileForeground "Black"
BorderTileBackground “Black"
TitleForeground "black"
TitleBackground "gold"
MenuForeground “black”
MenuBackground “LightGrey”
MenuTitleForeground "LightGrey”
MenuTitleBackground “LightSlateGrey”
HenuShadovColor “black”

4This is vne of the harvh facty about init files: they generally each have their own idiosyncratic command language.
This meany that usery get very good at learning d Yanguages quickly. | suppose that it would have been nice if
carly Unix programmers had agreed on some standard init file format, so that we wouldn’t have to learn new syntaxes
all the time, but to be fair it's hard to predict what kinds of information programs will need.

29

100

CHAPTER 9. 1 GOTTA BE ME!

IconForeground "DimGray"
IconBackground "Gold"
IconBorderColor "OrangeRed"
IconManagerForeground "black"
IconNManagerBackground “honeydeu"

I hope you don’t have a monochrome system, but if you do...
Monochrome
{

BorderColor “black”

BorderTileForeground “black"

BorderTileBackground "vhite”

TitleForeground “black"

TitleBackground “"white"

% I created beifang.bwp with the program “bitmap”. Here I tell twm to
use it as the default highlight pattern on windows' title bars:
Pixmaps
{

TitleHighlight “/howme/larry/x/beifang.bmp”

Don't worry about this stuff, it's only for pover users :-)

BorderWidth 2

TitleFont "-adobe-nev century schoolbook-bold-r-normal--14-140-75-75-p~87-1808859-1"
HenuFont "6x13"

IconFont “lucidasans-italic-14"

ResizeFont “fixed"

Zoom SO

RandomP'l acemont

These programs vill not get a vindow titlebar by default:

NoTitle

{
“stamp"
"xload”
"xclock”
"xlogo"
“xbitf"
"xeyes"
"oclock”
"xo0id"

"AutoRaise" means that a vindow is brought to the front vhenever the

mouse pointer enters it. I find this annoying, so 1 have it turned

9.2. THE X WINDOW SYSTEM INIT FILES

% off. As you can see, I inherited my .twmrc from people vho also did
% not like autoraise.
AutoRaise
{
"nothing" # I don’t like auto-raise &% Me either # nor I

}

Hore is vhere the mouse button functjons are defined. Notice the
pattern: a mouse button pressed on the root vindow, with no modifier
Xey being pressed, aluvays brings up a menu. Other locations usually
result in vindov manipulation of some kind, and modifier keys are
used in conjunction vith the mouse buttons to get at the more
sophisticated vindov manipulationa.

You don't have to follow this pattern in your own .twmrc -~ it's

entirely up to you how you arrange your environment.

8 Button = KEYS : CONTEXT : FUNCTION

]

Buttonl = : Yoot : {.menu “main”
Buttonl = : title : f.raise
Buttonl = t frame : f.raise
Buttonl = : dcen : f.iconify
Buttont » m : window : f.iconify
Button2 = : root : f.menn “stuff"
Button2 = : icon : f.move
Button2 = m : windov : f.move
Button2 = : title : f.move
Button2 = : frame : f.move
Button2 = s ¢ frame : f.zoom
Button2 = s : vindow : f.zoom
Button3 = : root : f.menu "x"
Batton3 = : title : f.lover
Battonr3 = : frame : f.lower
Button3 = : dicon : f.raiselower

% You can vrite your own functions; this one gets used in the menu
8 "windowops" near the end of this file:
Function “"raise-n-focus"
{
f.raise
f.focus

Okay, below are the actual menus referred to in the mouse button
section). Note that many of these menu entries themselves call

Lo

CHAPTER 9. 1 GOTTA BE ME!

sub-menus. You can have as many levels of menus as you vant, but be
avare that recursive menus don't work. I’'ve tried it.

menu “main®

{

"Vanilla" f.title

“Emacs” f.menn "emacs”
*Logine" {.menu "logina™
"Xlock" {.menu “xlock”
"Nisc” 1.menu “misc"

}

8 This allows me to invoke emacs on several different machines. See
the section on .rhosts files for more information about hov this

& vorks:

menu "emacs"

{

“Emacs” f.title

“here" t"/usr/bin/emacs &

. f.nop

*phylo” !"rsh phylo \"emacs -d floss:0\" 2"

“geta” t"rsh geta \"emace -d floss:O\" &"

“darwin® t*rsh darvin \"emacs -d floss:0\" &"

“ninja” !"rsh ninja \"emacs -d floss:0\" &

“indy" t"rah indy \"emacs -d floes:0\" &"

“oberlin” t"rsh cs.oberlin.edu \"emacs -d flosa.life.uiuc.edu:0\" &"
"gau* t"rsh gate-i.gnu.ai.mit.edu \"emacs -d floss.life.uiuc.edu:O\" &"
}

% This allovs me to invoke xterms on several different machines. See
% the section on .rhosts files for more information about how this

% vorks:

menu “logins"

{

“Logins" f.title

"here" {"/usr/bin/X11/xterm ~1s -T ‘hostname’ -n ‘hostname’ &"
“phylo” !"rsh phylo \"xterm -1s -display floss:0 -T phylo\" &"
"geta" !"rsh geta \"xterm -1s -display flos -T geta\" &*
“darvin" t"rsh darwin \"xterm -ls -display floss:0 -T darvin\" 2"
"ninja" t*rsh ninja \"xterm -1s ~display floss:0 -T ninja\” &"
“indy" t*rsh indy \"xterm -ls -display floss:0 -T iundy\" &"

}

% The zlock screensaver, called vwith various options (each of which
gives a different pretty picture):

menu “xlock”

{

"Hop" !”zlock -mode hop &"

9.2.

THE X WINDOW SYSTEM INIT FILES

103

“Qix" 1"xlock -mode qix &"

“Flame” !"xlock -mode flame &"

"Worm" !"xlock -mode worm &*

"Svarm” !"xlock -mode svarm &"

“Hop NL" !"xlock -mode hop -nolock &"
"Qix NL" !"xlock -~mode qix -nolock &"
“Flame NL" !“xlock -mode flame -nolock &"
“Worm NL" !“xlock -mode worm -nolock &"
"Svarm NL" !"xlock -mode suarm ~nolock &*

}

8 Miscellaneous programs I rum occasionally:
menu “misc*

{

“Xload"” t*/usr/bin/X11/xload &"
"Xy t"/usr/bin/X11/zv &"
"Bitmap"” t"/usr/bin/X11/bitmap &"
“Tetris"” 1*/usr/bin/X11/xtetris &"
“Hextris" 1*/usx/bin/X11/xhextris &"
“XRoach" 1"/usr/bin/X11/xroach &"

"Analog Clock" !"/usr/bin/X11/xclock -analog &"
“Digital Clock” !"/usr/bin/Xt1/1clock -digital &”
}

This is the one I bound to the middle wouse button:
menu “stuff"

{

“Chores” f.title

"Sync® 1*/bin/eync"

"Who" t"vho | xmesesge -file - -columns 80 -lines 24 &"
“Xhost +* 1"/usr/bin/X11/3host + &"

"Rootclear" 1“/home/larry/bin/rootclear &*

}

8 X functions that are sometimes convenient:

menu “x*

{

"X Stuff® 1.title
"Xhost ¢" 1"xhost + k"
“Refresh” {.refresh
“Source .tumrc* f.twmre
"(De)Iconify” f.iconity
*Move Windovw" f.zove
“Resize Window" f.resize
"Destroy Windov" {.destroy

“Windov Ops”

*Kill twm"

{.menu "wvindowops"
f.nop
{.quit

4

104

CHAPTER 9. 1 GOTTA BE ME!

This is a submenu from above:

menu “vindowops"
{

“¥indow Ops”
"Show Icon Hgr"
"Hide Icon Mgr”
"Refresh"
"Refresh Window"
“tvm version"
“Focus on Root”
"Source .twmrc"
"Cut File”
"(De)Xconify"
“"Delconify”
"Move Windou"
"ForceMove Windou"
"Resize Windouw"
"Raise Windou"
“Lover Window"
"Raige or Lower"
“Focus on Window"
“Raise-n-Focus"
“Destroy Windov"
“Kill twm"

}

f.title
f.shoviconmgr
1.hideiconmgr
f.refresh
f.vinrefresh
f.version
f.unfocus
f.tumrc
f.cutfile
f.iconify
f.deiconify
f.move
f.forcemove
f.xesize
1.raise
f.lover
f.raiselover
f.focus
f.function "raise-n-focus"
{.destroy
f.quit

Whew! Delieve me, that’s not even the most involved .twmre F've ever seen. It's quite prob-
able that some decent example .tumrc files came with your X. Take a look in the directory

Jusr/Yib/ X1/ tum/ o fusc/X11/1ib/X11/ tum and see what's thee,

One bug to watch out for with . temrc files is forgetting to put the & after a command on a

menu. If you notice that X just freezes when you run certain commands, chances are that this is

the cause. Break out of X with | Control H Al Backspace |, edit your .tumre, and try again.

9.2.2 Fvwm Configuration

If you are using fvwm, the directory /usr/1ib/X11/fvum/ (or /usr/X11/1ib/X11/fvvm/) has some

good example confiy tiles in it, as well.

[Folks: T don’t know anything about fvwi, although I might be able to grok something from

the example config files. Then again, so could the reader). Also, given the decent but small
system.twiare in the above-mnentioned directory, I wonder if it's worth it for me to provide that

lengthy example with my own twmre. It's in for now, but T don’t know whether we want to leave

it there or not. -Karl]

9.3. OTHER INIT FILES 105

9.3 Other Init Files

Some other initialization files of note are:

.emacs Read by the Emacs text editor when it starts up.
.netrc Gives default login names and passwords for fip.
.rhosts Makes your account remotely accessible.
.torvard For automatic mail forwarding.

9.3.1 The Emacs Init File

1 you use emaca as your primary editor, then the .emacs file i quite important. It is dealt with at
length in Chapter 8.

9.3.2 FTP Defaults

Your .netrc file allows you to have certain ftp defaults set before you run ftp. Here is a small
sanple .netrc:

machine floss.life.uiuc.edu login larry password fishSticks
machine darwin.life.uiuc.edu login larry password fishSticks
machine geta.life.uiuc.edu login larry passvord fishSticks
machine phylo.life.uiuc.edu login larry password fishSticks
machine ninja.life.ujuc.edu login larry passuord fishSticks
machine indy.life.uiuc.edu login larry password fishSticks

machine clone.mcs.anl.gov login fogel passwvord doorm0
machine osprey.mcs.anl.gov login fogel password doorm@
machine tern.mcs.anl.gov login fogel passvord doorw®
machine altair.mcs.anl.gov login fogel password doorm®
machine dalek.mcs.anl.gov login fogel password doorm¢
machine juju.mcs.anl.gov login fogel password doorme

machine sunsite.unc.edu login anonymous password larry@cs.oberlin.edu

Each line of your .netrc specifies a machine naume, a login name to use by default for that
machine, and a password. This is a great convenience if you do a lot of ftp-ing and are tired of
constantly typing in your username and password at various sites. The ftp program will try to
log you in automatically using the information found in your .netrc file, if you ftp to one of the
machines listed in the file.

You can tell £tp to ignore your .netrc and not attempt auto-login by invoking it with the -n
option: “ftp -n".

You must make sure that your .netrc file is readable only by you. Use the chmod prograin o set
the file's read permissions. If other people can read it, that means they can find out your password

42

106 CHAPTER 9. 1 GOTTA BE ME!

at various other sites. This is about as big a security hole as one can have; to encourage you to be
careful, £tp and other programs that look for the .netrc file will actually refuse to work if the read
perinissions on the file are bad.

There's more to the .netrc file than what I've said; when you get a chance, do “man .netrc”
or “man ftp".

9.3.3 Allowing Easy Remote Access to Your Account

If you hiave an .rhosts file in your home directory, it will allow you to run programs on this machine
remotely. That is, you might be logged in on the machine cs.oberlin.edu, but with a correctly
configured .rhosts file on floss.life.uniuc.edu, you could run a program on floss.life.uiuc.edu
and have the output go to ¢s.oberlin.edu, without ever having to log in or type a password.

A .rhostas file looks like this:

{robnozz.cs.knovledge.edu jsmith
aphrodite.classics.hahvaahd.edu wphilps
frobbo.hoola.com trixie

The forinat is fairly straightforward: a machine name, followed by username. Suppose that that
example is in fact my .rhosts file on floss.1jife.uiuc.edu. That would mean that I could run
programs on floss, with output going to any of the machines listed, as long as I were also logged in
as the correspondiug user given for that machine when I tried 1o do it.

The exact mechanisin by which one runs a remote programn is usually the rsh program. It stands
for “remote shell”, and what it does is start up a shell on a remote achine and execute a specified
cotnmand. For example:

frobbo$ whoami

trixie
frobbo$ rsh floss.life.uiuc.edu “la ~"
foo.t1t mbox url.ps snax.tit

frobbo$ rah floss.life.uiuc.edn “more ~/snax.txt"
(snax.txt comes paging by here)

User trixie at floss life.uiuc.edu, who had the example . rhosts shown previously, explicitly allows
trixie at frobbo.hoola.com to run programs as trixie from floss.

You don’t have to have the same usernasne on all machines to make a .rhosts work right. Use
the “~1" option to rsh, to tell the remote machine what usernaine you'd like to use for logging in.
If that username exists on the remote machine, and has a .rhosts file with your current (i.e.: local)
machine and username in it, then your rsh will succeed.

frobbo$ vhoami

trixie

frobbo$ rsh -1 larry floss.life.uiuc.eda "ls ~*
(Insert a listing of my directory on floss here)

9.4. SEEING SOME EXAMPLES 107

This will work if user larry on floss.life.uiuc.edu has a .rhosts file which allows trixie
from frobbo.hoopla.comto run programs in his account. Whether or not they are the same person
is irrelevant: the only important things are the usernames, the machine names, and the entry in
larry’s .rhosts file on floss. Note that trixie's .rhosts file on frobbo doesu’t enter into it, only the
one on the remote machine matters.

There are other combinations that can go in a .rhosts file—for example, you can leave off the
username following a remote machine name, to allow any user from that machine to run programs as
you on the local machine! This is, of course, a security risk: someone could remotely run a program
that removes your files, just by virtue of having an account on a certain machine. If you're going to
do things like leave off the username, then you ought to make sure that your .rhosts file is readable
by you and no one else.

9.3.4 Mail Forwarding

You can also have a .forvard file, which is not strictly speaking an “init file”. If it contains an
email address, then all mail to you will be forwarded to that address instead. This is useful when
you have accounts on many different systems, but only want to read mail at one location.

There is a host of other possible initialization files. The exact number will vary from system to
system, and is dependent on the software installed on that system. One way to learn more is to look
at files in your home directory whose names begin with “.”. These files are not all guaranteed to
be init files, but it's a good bet tl at most of them are.

9.4 Sceing Some Examples

The ultimate example I can give you is a running Linux system. So, if you have Internet access,
feel free to telnet o floss.life.uiuc.edu. Log in as “guest”, password “explorer”, and poke
aroumel. Maost of the example files given here can be found in /home/kfogel, but there are other
user directories as well. You are [ree to copy anything that you can read. Please be careful: Hoss is
not a terribly secure hox, and you can almost certainly gain root access if you try hard enough. |
prefer to rely on trust, rather than constant vigilance, to maintain security.

43

108

CHAPTER 9. 1 GOTTA BE ME!

Chapter 11

Funny Comimands

Well, most people who had to do with the UNIX commands exposed in this chapter will not agree
with this title. “What the heck! You have just shown me that the Linux interface is very standard,
and now we have a bunch of commaunds, cach one working in a completely ditfesent way. [will never
remember all those options, and you are saying that they are funny?” Yes, you have just scen an
examnple of hackers' hunor. Besides, look at it from the bright side: there is no MS-DOS equivalent
of these commands. 1f you need them, you have to purchase them, and you never kuow how their
interface will be. Here they are a useful - and inexpensive - add-on, s¢ enjoy!

The set of commands dwelled on in this chapter covers find, which lets the user search in the
directory tree for specified groups of files; tar, useful to create some archive to be shipped or just
saved; dd, the low-level copier; and sort, which ... yes, sorts files. A last proviso: these commands
are by no means standardized, and while a core of common options could be found on all +IX
systems, the (GNU) version which is explained below, and which you can find in your Linux system,
has usually many ore capabilities. So if you plan to use other UNIX-like operating systems, please
don’t forget to check their man page in the target system to learu the maybe not-so-little differences.

11.1 find, the file scarcher

11.1.1 Generalities

Among the various commands seen so far, there were some which let the user recursively go down
the directory tree in order to perform some action: the canonical exammples are 1s -R and rm ~R.
Good. tind is the recursive command. Whenever you are thinking “Well, I have to do so-and-so on
all those kind of files in my own partition”, you have better think about using find. In a certain
sense the fact that find finds files is just a side effect: its real occupation is to evaluate.

The basic structure of the command is as follows:

find path {...] expression |...]

4

116 CHAPTER 11. FUNNY COMMANDS

This at least on the GNU version; other version do not allow to specify more than one path, and
besides it is very unconunon the need to do such a thing. The rough explanation of the command
syntax is rather simple: you say from where you want to start the search (the path past; with GNU
find you can omit this and it will be taken as default the current directory .), and which kind of
search you want to perform (the ezpression part).

The standard hehavior of the command is a little tricky, so it’s worth 1o note it. Let's suppose
that in your home directory there is a directory called garbage, containing a file foohar. You happily
type find . -name foobar (which as you can guess searchies for files named foobar), and you ohtain
...nothing else than the prompt again. The trouble lies in the fact that £ind is by default a silent
cotmuand; it just retusns O if the scarch was completed (with or without finding anything) or a
non-zero value if there had been some problem. This does not happen with the version you can find
on Linux, but it is useful to temember it anyway.

11.1.2 Expressions

The expression part can be divided itself in four different groups of keywords: options, tests, actions,
and operators. Each of them can return a true/false value, together with a side eflect. The differeuce
among the groups is shown below.

options alfect the overall operation of find, rather than the processing of a single file. An example
is -follow, which instructs find to follow symbolic links instead of just stating the inode. They
always return true.

tests are real tests (for example, -empty checks whether the file is empty), and can return true or
false.

actions have also a side effect the name of the considered file. They can return true or false too.

operators do not really return a value {they can conventionally be considered as true), and are
used to build compress expression. An example is -or, which takes the logical OR of the two
subexpressions on its side. Notice that when juxtaposing expression, a -and is implied.

Note that find relies upon the shell to have the command line parsed; it means that all keyword
must be embedded in white space and especially that a lot of nice characters have to be escaped,
otherwise they would be mangled by the shell itself. Each escaping way (backslash, single and double
quotes) is OK; in the examples the single character keywords will be usually quoted with backslash,
because it is the simplest way (at least in my opinion. But it’s me who is writing these notes!)

11.1.3 Options

Here there is the list of all options known by GNU version of find. Remember that they always
return true.

11.1. FIND, THE FILE SEARCHER 117

o -daystart measures elapsed time not from 24 hours ago but from last midnight. A true hacker
probably won't understand the utility of such an option, but a worker who programs from
eight to five does appreciate it.

o -depth processes each directory’s contents before the directory itself. To say the truth, I don't
know many uses of this, apart for an emulation of rm -F command (of course you cannot delete
a directory before all files in it are deleted too ...

o -follow deferences (that is, follows) symbolic links. It implies option -noleaf; see below.

o -noleaf turns off an optimization which says “A directory contains two fewer subdirectories
than their hard link count”. If the world were perfect, all directories would be referenced by
each of their subdirectories (because of the .. option), as . inside itself, and by it's “real”
name from its parent directory.

That means that every directory must be referenced at least twice (once by itself, once by
its parent) and any additional references are by subdirectories. In practice however, symbolic
links and distributed filesystems’ can disrupt this. This option makes find run slightly slower,
but may give expected results.

. depth levels, -mind

pth levels, where levels is a non-negative integer, res;pectively say
that at most or at least levels levels of directories should be searched. A couple of exam-
ples is mandatory: -maxdepth 0 indicates that it the command should be performed just on
the arg ts in the ¢ 1 line, i.e., without recursively going down the directory tree;
-mindepth 1 inhibits the processing of the command for the arg ts in the cc 1 line,
while all other files down are considered.

-version just prints the current version of the program.

-xdev, which is a misleading name, instructs find not to cross device, i.e. changing filesystem.
1t is very useful when you have to search for something in the root filesystem; in many machines
it is a rather small partition, but a find / would otherwise scarch the whole structure!

11.1.4 Tests

The first two tests are very simple to understand: -false always return false, while -true always
return true. Other tests which do not need the specification of a value are -empty, which returns
true whether the file is empty, and the couple -nouser / -nogroup, which return true in the case
that no entry in /etc/passvd or /etc/group match the user/group id of the file owner. This is a
common thing which happens in a multiuser system; a user is deleted, but files owned by her remain
in the strangest part of the filesystemns, and due to Murphy’s laws take a lot of space.

Of course, it is possible to search for a specific user or group. The tests are -vid an and -gid
nn. Unfortunately it is not possibile to give directly the user name, but it is necessary to use the
numeric id, nn.

1Distributed filesysteins allow files to appear like their local to a machine when they are actually lucated somewhere
clse.

Ls

118 CHAPTER 11. FUNNY COMMANDS

allowed to use the forms +nn, which means “a value strictly greater than nn", and —nn, which
means “a value strictly less than nn™. This is rather silly in the case of UIDs, but it will turn handy
with other tests.

Another useful option is -type ¢, which returns true if the file is of type ¢. The mnemonics for the
possible choices are the same found in 1s; so we have b when the file is a block special; ¢ when the
file is character special; d for directories; p for named pipes; 1 for symbolic links, and s for sockets.
Regular files are indicated with f. A related test is -xtype, which is similar to -type except in the
case of symbolic links. If -follow has not been given, the file pointed at is checked, instead of the
link itself. Completely unrelated is the test -fstype fype. In this case, the filesystem type is checked.
I think that the information is got from file /etc/mtab, the one stating the mounting filesystems; I
am certain that types nfs, tinp, msdos and ext2 are recognized.

Tests -inum nn and -links nn check whether the file has inode number nn, or nn links, while
-size nn is true if the file has nn 512-bytes blocks allocated. (well, not precisely: for sparse files
unallocated blocks are counted too). As nowadays the result of 1s -s is not always measured in
512-bytes chunks (Linux for example uses 1k as the unit}, it is possible to append to nn the character
b, which means to count in butes, or k, to count in kilobytes.

Permission bits are checked through the test -perm mode. If mode has no leading sign, then the
permission bits of the file must exactly match them. A leading — means that all permission bits
must be set, but makes no assumption for the other; a leading + is satisfied just if any of the bits
are set. Qops! I forgot saying that the mode is written in octal or symbolically, like you use them
in chmod.

Next group of tests is related to the time in which a file has been last used. This comes handy
when a user has filled his space, as usually there are many files he did not use since ages, and whose
meaning he has forgot. The trouble is to Jocate them, and find is the only hope in sight. -atime
nn is true if the file was last accessed nn days ago, -ctime an if the file statuy wag last chauged nn
days ago for example, with a chmod and -mtime an if the file was last moditied nn days ago.
Sometimes you need n more precise timestamp: the test -newer file ix satislied if the file considered
has been modified later than file. So, you just have to use touch with the desidered date, and you're
done. GNU find add the tests -anewer and -cnewer which behave similarly; and the tests -amin, -cmin
and -mmin which count time in minutes instead than 2-4-hours periods.

Last but not the least, the test [use more often. -name pattern is true if the file name exactly
matches pattern, which is more or less the one you would use in a standard 1a. Why ‘more or less’?
Because of course you have to remember that all the parameters are processed by the shell, and
those lovely metacharacters are expanded. So, a test like -name foo# won't return what you want,
and you should either write -name foo or -name "foo+". This is probably one of the most common
mistakes made by carcless users, so write it in BIG letters on your screen. Another problem is that,
like with 1s, leading dots are not recognized. To cope with this, you can use test -path pattern which
does not worry about dot and slashey when comparing the path of the considered file with pattem.

11.1. FIND, THE FILE SEARCHER 119

11.1.5 Actions

1 have said that actions are those which actually do something. Well, -prune rather does not do
something, i.e. descending the directory tree (unless ~depth is given). It is usally find together with
-fstype, to choose among the various filesystems which should be checked.

The other activns can be divided into two hroad categories;

o Actions which print something. The most obvious of these awd indeed, the default action
of tind - is -print which just print the name of the file(s) matching the other conditions in
the command line, and returns true. A simple viwiants of -print is -fprint file, which uses file
instead of standard output, -Is lists the corrent file in the same format as 1s -dils; -printf
format behaves mure or less like C function printf(), so that you can specify how the output
should be formatted, and -fprintf file format does the same, but writing on file. These action
too return trie,

Actions which czecute something. Their syntax is a little odd and they are used widely, so
please look at them.

-exec command \; the command is executed, and the action returns true if its final status is
0, that ia regular execution of it. The reason for the \; is rather logical: find does not know
where the command ends, and the trick to put the exec action at the end of the command is not
applicable. Well, the best way to signal the end of the command is to use the character used to
do this by the shell itself, that is *;’, but of course a semicolon all alone on the command line
would be eaten by the shell and never sent to find, so it has to be escaped. The second thing
to remember is how to specify the name of the current file within command, as probably you
did all the trouble to build thie expression to do something, and not just to print date. This is
done by means of the string {}. Some old versions of find require that it must be embedded
in white space - not very handy if you needed for example the whole path and not just the
file name - but with GNU find could be anywhere in the string composing command. And
shouldn't it be escaped or quoted, you surely are asking? Amazingly, I never had to do this
neither under tesh nor under bash (sh does not consider { and } as special characters, so it is
not much of a problem). My idea is that the shells “know” that {} is not an option making
sense, so they do not try to expand them, luckily for £ind which can obtain it untouched.

-ok command \; behaves like -exec, with the difference that for each selected file the user is
asked to confirin the command; if the answer starts with y or Y, it is executed, otherwise not,
and the action returns false.

11.1.6 Operators

There are a number of operators; here there is a list, in order of decreasing precedence.

\(expr \)
forces the precedence order. The parentheses must of course be quoted, as they are meaningful
for the shell too.

h6

120 CHAPTER 11. FUNNY COMMANDS

| expr
~not expr
change the truth value of expression, that is if expr is true, it becomes false. The exclamation
mark ncedn't be escaped, because it is followed by a white space.

expr} expr2
exprl -3 expr2
exprl -and expr2
all correspond to the logical AND operation, which in the first and most common case is implied.
expr? is not evaluated, if expr! is false.

exprl -0 expr2
exprl -or expr2
correspond to the logical OR operation. ezpr2 is not evaluated, if ezpr! is true.

exprl |, expr2
is the list statement; both exprl and ezpr2 are evaluated (together with all side effects, of course!),
and the final value of the expression is that of expr2.

11.1.7 Examples

Yes, tind has just too many options, I know. But there are a lot of cooked instances which are
worth to remember, because they are usen very often. Let’s see some of them.

% find . -name foo\s -print

finds all file nanes starting with foo. If the string is embedded in the name, probably it is more
sensitive to write something like "sfooe", rather than foo.

% find /usr/include ~xtype f -exec grep foobar \
/dev/null {} \;

i3 a grep executed recursively starting from directory fusr/include. In this case, we are interested
both in regular file and in symbolic links which point to regular files, hence the -xtype test. Many
times it is simpler to avoid specyfing it, especially if we are rather sure no binary file contains the
wanted string. And why the /dev/uull in the command? It's a trick to force grep to write the
file name where a match has been found. The command grep is applied to each file in a different
invocation, and so it doesn’t think it is necessary to output the file name. But now there are two
files, i.e. the current one and /dev/null! Another possibility should bLe to pipe the command to
xargs and let it perform the grep. 1 just tried it, and completely smashed my filesystem (together
with these notes which I am tring to recover by hand :-().

% find / -atime +1 -fstype ext2 -name core \
-exec m {} \;

11.1. FIND, THE FILE SEARCHER 121

is a classical job for crontab. It deletes all file named core in filesystems of type ext2 which have not
been accessed in the last 24 hours. It is possible that someone wants to use the core file to perform
a post mortem dump, but nobody could remember what he was doing after 24 hours...

% find /home -xdev -size +500k -1s > piggies

is useful to see who has those files who clog the filesystem. Note the use of -xdev; as we are interested
in just one filesystem, it is not necessary to descend other filesystems mounted under /home.

11.1.8 A last word

Keep in mind that find is a very time consuming command, as it has to access each and every
inode of the system in order to perform its operation. It is therefore wise to combine how many
operations you need in a unique invocation of find, especially in the ‘housekeeping’ jobs usually ran
via a crontab job. A enlightening example is the following: let’s suppose that we want to delete files
ending in .BAK and change the protection of all directories to 771 and that of all files ending in .sh
to 755. And maybe we are mouuting NFS filesystems on a dial-up link, and we'd like not to check
for files there. Why writing three ditferent commands? The inost effective way to accomplish the
task is this:

% tind . \(~fstype nfs =-prune \) o \
\(-type d -a -exec chmod 771 {} \; \) -0 \
\(-name “«.BAK" -a -exec /bin/rm {} \; \) -0\
\(-name "s.sh" -a -exec chmod 755 {} \; \)

Tt seems ugly (and with much abuse of backslashes!), but looking closely at it reveals that the
underlying logic is rather straightforward. Remember that what is really performed is a true/false
evaluation; the embedded ¢ 1 is just a side effect. But this means that it is performed only if
find must evaluate the exec part of the expression, that is only if the left side of the subexpression
evaluates to true. So, if for example the file considered at the moment is a directory then the first
exec is evaluated and the permission of the inode is changed to 771; otherwise it forgets all and
steps to the next subexpression. Probably it's easier to see it in practice than to writing it down;
but after a while, it will becotne a natural thing.

122 CHAPTER 11. FUNNY COMMANDS

11.2 tar, the tape archiver

11.2.1 Introduction
11.2.2 Main options
11.2.3 Modifiers

11.2.4 Examples

11.3 dd, the data duplicator

Legend says that back in the mists of time, when the first UNIX was created, its developers needed
a low level command to copy data between devices. As they were in a hurry, they decided to borrow
the syntax used by IBM-360 machines, and to develop later an interface consistent with that of the
other commands. Time passed, and all were so used with the odd way of using dd that it stuck. T
don't know whether it is true, but it is a nice story to tell.

11.3.1 Options

To say the truth, dd it's not completely unlike the other Unix command: it is indeed a filter, that
i8 it reads by default from the standard input amd writes to the standard output. So if you just
type dd at the terminal it remaing quiet, waiting for input, and a ctel-C is the only sensitive thing
to type.

The syntax of the command is as follows:

dd [if=file] [of=file] [ibs=hytes] [obs=hytes] [bs=hytes) [chs=bytes] [skip=blocks]
[seck=blocks] frount=blocks] {conv={ascii, ebedic, ibm, block, unblock,
lcase, ucase, swab, nocrror, notrunc, sync}]

All options are of the form option=value. No space is allowed either before or after the equal
sign; this used to be annoying, because the shell did not expand a filename in this situation, but
the version of bash present in Linux is rather sinart, so you don’t have to worry about that. It is
important also to remember that all numbered values (bytes and blocks ahove) can be followed by
a multiplier. The possible choices are b for block, which multiplies by 512, k for kilobytes (1024),
w for word {2), and xm multiplies by m.

The meaning of options if explained below.

o if=filein and of=fileout instruct dd to respectively read from filein and write to fileout. In the
latter case, the output file is truncated to the value given to seek, or if the keyword is not

11.3. DD, THE DATA DUPLICATOR 123

present, to 0 (that is deleted), before performing the operation. But ook below at option
notrunc.

ibs=nan and obs=nn specify how much bytes should be read or write at a time. I think that
the default is 1 block, i.e. 512 bytes, but I am not very sure about it: certainly it works that
way with plain liles. These parameters are very ituportant when nsing specind devices as input
aor output; Tor exmuple, reading from the net should set {bs at 1ok, while a high density 3.57
floppy hias a9 its natural block size 18k, Failing to set these values could tesult uot ouly in
fonger time to perform the conmand, but even in timeout errors, so be careful.

bs=nn both reads and writea nu bytes at a tie. It overrides ibs and obs keywords.

chs=nn sets the conversion bulfers to nn bytes, This bulfer is used when translating from
ASCII to EBCDIC, or from an unblocked device to a blocked one. For example, files created
wnder VMS have often a block size of 512, so you have to set cbs to 1b when reading a forcign
VMS tape. Hope that you don't have ta wesy with these things!

skip=nbl and seek=nbl tell the program to skip nbl blocks respectively at the beginning of
input and at the beginning of output. Of course the latter case makes sense if conversion
notrunc is given, see below. Each block’s size is the value of ibs (obs). Deware: if you did
not set ibs and write skip=1b you are actually skipping 512x512 bytes, that is 256KB. It
was not precisely what you wanted, wasn't it?

.

count=nbl means to copy only nbl blocks from input, each of the size given by ibs. This
option, together with the previous, turns useful if for example you have a corrupted file and
you want to recover how much it is possible from it. You just skip the unreadable part and
get what remains.

conv=conversion,[conveision. ..} convert the file as specified by its argument. Possible conver-
sions are ascii, which converts from EBCDIC to ASCII; ebedic and ibm, which both perform
an inverse conversion (yes, there is not a unique conversion from EBCDIC to ASCII! The
first is the standard one, but the second works better when printing files on a IBM printer);
block, which pads newline-terminated records to the size of cbs, replacing newline with trailing
spaces; unblock, which performs the opposite (eliminates trailing spaces, and replaces themn
with newline); Icase and ucase, to convert test to lowercase and uppercase; swab, which swaps
every pair of input bytes (for example, to use a file containing short integers written on a 680x0
machine in an Intel-based machine you need such a conversion); noerror, to continue processing
after read errors; sync, which pads input block to the size of ibs with trailing NULs.

11.3.2 Examples

The canonical example is the one you have probably bumped at when you tried to create the first
Linux diskette: hiow to write to a Hoppy without a MS-DOS filesystems. The solution is simple:

% dd if=disk.img of=/dev/fd0 obs=18k count=80

124 CHAPTER 11. FUNNY COMMANDS

1 decided not to use ibs because 1 don't know which is the better block size for a hard disk, but
in this case no harm would have been if instead of obs I use bs ~ it could even be a trifle quicker.
Notice the explicitation of the number of sectors to write (18KB is the occupation of a sector, 50
count i3 set to 80) and the use of the low-level name of the floppy device.

Another useful application of dd is related to the network backup. Let's suppose that we are on
machise alpha aud that on machine beta there is the tape unit /dev/rst0 with a tar file we nre
interested in getting. We have the same rights on both tachines, but there is no space on beta to
dump the tar file. In this case, we could write

% rsh beta 'dd ife/dev/rstO0 ibs=bk obs=20k’ | tar xvBf ~

to do in a single pass the whole operation. In this case, we have used the facilities of rah to perforn
the reading from the tape. Input and output sizes are set to the default for these operations, that is
8K B for reading from a tape and 20KB for writing to etheruct; from the point of view of the other

side of the tar, there is the same flow of bytes which could be got frotn the tape, except the fact
that it arrives in a rather erratic way, and the option B is necessary.

I forgot: I don't think at all that dd is an acronym for “data duplicator”, but at least this is a
nice way to remember its meaning ...

11.4 sort, the data sorter
11.4.1 Introduction
11.4.2 Options

11.4.3 Examples

