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Dynamics of crimes reflects important aspects of sustainability of our society and the
risk of its destabilisation - a prelude to a disaster. Here, we consider a prominent feature
of crime dynamics - surge of the homicides in a megacity. Our study integrates the
professional expertise of the police officers and of the scientists working on pattern
recognition of infrequent events. The latter is a type of artificial intelligence
methodology that has been successful in predicting infrequently occurring phenomena
that result from highly complex processes.

In this paper we analyse statistics of several types of crimes in Los Angeles over
the period 1975-2002. Our analysis focuses on how these statistics change before a
sharp and lasting rise ("a surge") of the homicide rate. The goal is to find an algorithm
for predicting such a surge by monitoring the rates of different crimes.

Our hope for feasibility of that goal comes from two sources. First is the set of
available crime statistics, showing that a surge of major crimes is preceded by the rise
of less severe crimes. Second is recent research in the prediction of critical phenomena
(i.e. abrupt overall changes) in various complex non-linear systems, such as those in
theoretical physics, earth sciences, social sciences, etc.

Data. Out of a multitude of relevant data we analyse statistics of robberies, assaults,
burglaries, and the homicides themselves.
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Results. Our findings may be summarised as follows: Episodes of a rise of
burglaries and assaults simultaneously occur 4 to 11 months before a homicide surge,
while robberies decline. Later on, closer to the rise in homicides, robberies start to rise.
These changes are given unambiguous and quantitative definitions, which are used to
formulate a hypothetical algorithm for the prediction of homicide surges.

In retrospective analysis we have found that this algorithm is applicable through all
the years considered despite substantial changes both in socio-economic conditions and
in the counting of crimes. Moreover, it gives satisfactory results for the prediction of
homicide surges in New York City as well. Sensitivity tests show that predictions are
stable to variations of the adjustable elements of the algorithm.

What did we learn? The existing qualitative portrayals of crime escalation are
complemented here by a quantitatively defined set of precursors to homicide surges.
The same set emerges before each surge through the time period under consideration.
That implies the existence of a "universal" scenario of crime escalation, independent of
a concrete reasons triggering each surge. These findings provide heuristic constraints
for the modeling of crime dynamics and indicate promising lines of further research.

Perspective. Decisive validation of our findings requires experimentation in
advance prediction, for which this study sets up a base. Particularly encouraging for this
further research is the wealth of yet untapped possibilities: we have used so far only a
small part of the data and mathematical models that are currently available and that are
relevant to crime dynamics.

On the practical side, our results enhance our capability to identify a situation that
is "ripe" for homicide surges and, accordingly, to escalate the crime prevention
measures. In a broader scheme of things, a surge of crime is one of potential ripple
effects of natural disasters. Accordingly the risk of a natural disaster is higher in such a
situation.

1. Introduction

Understanding and prediction of crime dynamics is one of the problems important for
coping with the risks threatening the humanity. These risks are to a large extent
concentrated in megacities, whose role in the global village is rapidly growing along
with their vulnerability to natural and socio-economic disasters. Present study is focused
on the crime dynamics in Los Angeles; its experience, we believe, might be useful for
studying similar problem in other megacities.

1.1. PREDICTION TARGET

We consider prediction of a specific phenomenon in crime dynamics: a large and lasting
increase in the homicide rate. Qualitatively, this phenomenon is illustrated in Figure 1;
we call it by the acronym SHS, for "Start of the Homicide Surge". Our goal is to find a
method to predict an SHS by monitoring the relevant indicators. Among a multitude of
such indicators, we consider here statistics on assaults, burglaries, robberies and the
homicides themselves.
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SHS

Figure 1. Target of prediction - the Start of the Homicide Surge ("SHR");
schematic definition. Gray bar marks the period of homicide surge

SHS SHS

Time

-SHSs - Alarms

Figure 2. Possible outcomes of prediction

1.2. THE PROBLEM

Our goal is to develop a method for predicting the surge of homicides by monitoring the
relevant observed indicators. We hope to recognise the "premonitory" patterns formed
by such indicators when an SHS approaches. In terms of pattern recognition we look for
an algorithm (a "recognition rule") that solves the following problem:

given the time series of certain crime rates (or of other relevant indicators) prior to
a moment of time t,

to predict whether an episode of SHS will or will not occur during the subsequent
time period (t, t+ f); in other words, whether the lasting surge of homicides will or will
not start during that period.

If the prediction is "yes", this period will be the "period of alarm." The possible
outcomes of such a prediction are illustrated in Figure 2.
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The probabilistic component of this prediction is represented by the estimated
probabilities of errors - both false alarms on one side and failures to predict on the
other. That probabilistic component is inevitable since we consider a highly complex
non-stationary process using imprecise crime statistics. Moreover, the predictability of a
chaotic system is, in principle, limited.

Such "yes or no" prediction of specific extraordinary phenomena is different from
predictions in a more traditional sense - extrapolation of a process in time, which is
better supported by classical theory.

1.3. METHODOLOGY

We use pattern recognition of infrequent events - a methodology developed by the
artificial intelligence school of the mathematician I.M. Gelfand [1] for the analysis of
infrequent phenomena of highly complex origin. Using this methodology, we here
conduct a so-called "technical" analysis that involves a heuristic search for phenomena
preceding episodes of SHS. A distinctive feature of this methodology is the robustness
of the analysis, which helps to overcome both the complexity of the process considered
and the chronic imperfection of the data; in that aspect it is akin to exploratory data
analysis, as developed by the statistics school of J. Tukey [2]. Robust analysis - "a clear
look at the whole" - is imperative in a study of any complex system [3]. The surest way
not to predict such a system is to consider it in too fine detail [4].

Pattern recognition of infrequent events has been successfully used in geophysics,
geological prospecting, medicine, and many other areas. Close to the present study are
recent studies of the prediction of economic recessions and surges of unemployment [5,
6]. We use the same pattern recognition algorithm, called "Hamming distance," that has
been applied in these studies, as well as in predictions of American elections [7] and in
seismology, e.g. [8, 9]. The essence of the algorithm will be clear from the way we
analyse crime statistics here.

1.4. CONTENT

Following is a schematic outline of our analysis:
Data comprise the monthly rates of homicides, robberies, assaults, and burglaries

for Los Angeles, 1975 - 2002 (Section 2).
Five targets of prediction (SHS) are defined during the time period under

consideration (Sections 3, 7). Those are the moments when a years-long trend of the
homicide rate turns from decline to a long steep rise.

We have found premonitory changes of crime statistics as illustrated in Figure 3.
First comes the escalation of burglaries and assaults, but not of robberies (Section 4).
Later on, closer to a homicide surge, robberies also escalate (Section 8).

On the basis of these changes we suggest a hypothetical prediction algorithm. In
retrospect, it provides a robust satisfactory prediction. However it has to be further
validated by application to independent data. As always in prediction research, the final
validation of our algorithm requires prediction in advance, for which this Study sets up
a base.
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Robberies

Homicides
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Figure 3. Scheme of premonitory changes in crime statistics

1.5. COMMON NOTATION

Our analysis focuses on trends in the crime rates. We estimate these trends by linear
regression, using the following notations:

C(m),m= 1,2...,

Is the time series of a monthly indicator, where m is the sequence number of a month.

, p) = K?(q, p)m + Bc(q, p),q<m<p, (1)

is the local linear least-squares regression of the function C(m) within the sliding time
window over the time period (q, p).

2. The Data

We use the following data sources:
(i) The National Archive of Criminal Justice Data (NACJD), placed on the web site

(http://www.icpsr.umich.edu/NACJD/index.html). Carlson [10] gives its description.
This site contains data for the years 1975-1993.

(ii) Data bank of the Los Angeles Police Department (LAPD Information
Technology Division); it contains similar data for the years 1990 - May 2001.
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TABLE 1. Types of crimes considered
(after [10]; abbreviations are indicated in brackets)

Homicide Robberies Assaults Burglaries
All (H) • All (Rob)

• With firearms (FRob)
• With knife or cutting
instrument (KCIR)
• With other dangerous
weapon (ODWR)
• Strong-arm robberies
(SAR)*

• All (A)*
• With firearms (FA)
• With knife or cutting
instrument (KCIA)
• With other dangerous
weapon (ODWA)*
• Aggravated injury
assaults (ALA)*

• Unlawful not
forcible entry (UNFE)
• Attempted
forcible entry (AFE)*

* Analysed in sensitivity tests only (Section 6)

Out of numerous crime statistics given in these sources, we analyse the monthly
rates of the four types of crimes listed in Table 1, homicides, robberies, assaults, and
burglaries.

3. Prediction Targets

Here and in the next two sections we analyse the data for 1975 - 1993 as taken from the
National Archive of Criminal Justice Data [10].

Definition. Let H(m), m = 1,2..., be the time series of the monthly number of all
homicides. Figure 4 shows the plot of H(m) in Los Angeles, per 3,000,000 inhabitants
of the city. To identify the episodes of SHS (Fig. 1) we smooth out the seasonal
variations, which are clearly seen in Figure 4, by replacing H(m) by its linear least
square regression (1): H*(m) - "WH(mlm-(>, m+6). Since H*(m) is defined on the time
interval (m - 6, m + 6), it depends on the future. Thus, it is admissible to define
prediction targets (but not precursors).

The function H*(m) is shown in Figure 4 by the thick curve. Three time
periods of a lasting homicide rise are clearly seen: 1977 - 1980, 1988 - 1992 and a
relatively shorter period 1985 - 1986. We choose as prediction targets the starting
months of these periods: 04:1977, 03:1985, and 08:1988. They are marked in Figure 4
by vertical lines.

4. Premonitory Trends of Single Types of Crimes

Here we analyse the monthly data on seven types of crimes out of the 13 types listed in
Table 1. We look for "premonitory" trends of each crime that tend to appear more
frequently as an SHS approaches. Prediction itself is based on the collective behaviour
of these trends, as analysed in the next Section. Orientation on a set of precursors has
been found to be rather successful in prediction research: an ensemble of "imprecise"
precursors usually gives better predictions than a single "precise" precursor [11, 12].

4.1. OBSERVATION

According to police experience, the crimes considered here often rise before an SHS.
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To smooth out seasonal variations, we replace the plot C(m) of each type of crime
by its regression (1): C*(m) = W^im/m-H, m). Regression is done over the prior 12
months and does not depend on the future, so that it can be used for prediction. These
plots exhibit two consecutive patterns:

(0 First, we see a simultaneous escalation of burglaries and assaults within several
(4 to 11) months before an SHS; at the same time robberies are declining.

(ii) Later on, closer to an SHS, we see, albeit not so clearly, a simultaneous
escalation of different kinds of robberies.

The first pattern is formally defined and explored in this study. The second pattern,
briefly discussed in Section 8, will be explored elsewhere.
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Figure 4. Total monthly number of homicides in Los Angeles city, 1975-1993. Data are
taken from the National Archive of Criminal Justice Data [10]. Thin curve - original time
series, H(m), per 3,000,000 inhabitants. Thick curve - smoothed series H*(m), with seasonal
variations eliminated as described in Section 1. Vertical lines show the targets of prediction
- episodes of SHS (Section 3). Gray bars are the periods of homicide surge. Checkered bars
are the alarms declared by the hypothetical prediction algorithm (Section 5)

4.2. DISCRETIZATION OF CRIME TRENDS

To quantify the above observation we approximate the trends of the crimes by the
regression coefficients ^{m-s, m) where C identifies the type of crime. The value of K°
is attributed to the month m so that it does not depend on information on future months;
therefore it can be used for prediction.

Next, following the pattern recognition approach, we discretize the trends (the
values of K?) on the lowest level of resolution: a binary one distinguishes only the
trends above and below a threshold TC(QC). It is defined as a percentile of a level Qc,
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that is, by the condition that f^im-sw) exceeds ^(Q0) during Qc percent of the months
considered.

According to the above observations, we expect that "premonitory" trends lay
above the respective thresholds for assaults and burglaries, while they lay below these
thresholds for robberies. One can see this in Figure 5, showing the functions
K?(m-\2, m) for 7 crime types. For convenience, we will give the same code, " 1 " , to the
"premonitory" trend of each crime, regardless of whether it is above or below the
threshold of discretization. The seven monthly crime statistics considered here are thus
reduced to a binary vector with 7 components.

We discretize the crime statistics using the values of Qc indicated in Table 2. The
crime history, thus transformed, is given in the Appendix, Table Al.

TABLE 2. Premonitory trends for selected crime types

#
1
2
3
4
5
6
7

Crime type
Rob
FRob
KCIR
ODWR
FA
KCIA
UNFE

Premonitory trend S^im-s
Below threshold

"

Above threshold

,m) s
12
12
12
12
12
12
12

ec, %
66.7
66.7
50.0
87.5
50.0
50.0
50.0

-3.69
-1.29
1.73

-3.87
1.89
1.94
-1.32

See notations in the text.

5. Collective Behaviour of Premonitory Trends:
Hypothetical Prediction Algorithm

Here, we consider how the approach of a homicide surge is reflected in the collective
behaviour of the trends. The simplest description of this behaviour is A(m) - the
number of non-premonitory trends at a given month m. If our identification of
premonitory trends is correct then A(m) should be low in the proximity of an SHS. By
definition A(m) is the number of zeros in the binary code of the monthly situation. This
is the so-called "Hamming distance" between that code and the code of the "pure"
premonitory situation, {1,1,1,1,1,1,1} when all seven trends listed in Table 2 are
premonitory [5, 13, 14].

The values of A(m) are given in Appendix, Table 1. Figure 6 shows the change of
A(m) with time. The value of A(m) may vary from 0 to 7 but the minimal observed
value is 1; the corresponding lines in Table Al are marked by "+". That value appears
within 4 to 11 months before an SHS and at no other time. An examination of the
temporal change of A(m) in Table Al suggests the following hypothetical prediction
algorithm:

An alarm is declared for 9 months each time when A(/n) < D for two consecutive
months (regardless of whether these two months belong or not to an already declared
alarm).

Possible outcomes of such a prediction are illustrated in Figure 2. The condition
A(m) < D means, by definition, that D or less trends are not premonitory at the month
m. A count of A(m) in Table Al suggests that we take D = 1. A waiting period of 9
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months is introduced because the premonitory trends do not appear right before an SHS.
The requirement that this condition holds two months in a row makes prediction more
reliable and reduces the total duration of alarms.

The alarms obtained by this algorithm are shown in Figure 4 by the grey bars. The
total duration of these alarms is 30 months, representing 14 percent of all months
considered. In real prediction that score would be quite satisfactory.
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Figure 5. The regression coefficients Y?(m-YL, m) for seven crime types. See the definition
in Section 4 and notations in Table. 1. Original data are taken from the National Archive of

Criminal Justice Data [10]. Horizontal lines and arrows show respectively discretization
thresholds and premonitory trends in accordance with Table 2. Vertical lines show episodes

of SHS. Gray bars indicate months when A(m) < 1
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Figure 6. Homicide surges and alarms determined by the prediction algorithm.
Start of a homicide surge is shown by the vertical line. Function A(m) is the number of

crime statistics not showing premonitory trends at a month m. Alarms (shown by checkered
bars) are declared for 9 months, when A(m) < 1 during two consecutive month. Adjustable

parameters correspond to version 10 of the algorithm

6. Stability of Prediction (Sensitivity Analysis)

Inevitably in lieu of a set of fundamental equations for crime dynamics we have a
certain freedom in the retrospective ad hoc choice of adjustable elements: the types of
crimes considered, numerical parameters, such as percentiles Qc, etc. An algorithm thus
developed makes sense only if it is not too sensitive to variation of these choices; as
Enrico Fermi put it, "with four exponents I can fit an elephant'.

To explore that sensitivity we repeat the prediction with different sets of the kinds
of crimes considered and with different values for the numerical parameters. These sets
are described in Table 3. The outcomes of prediction are compared on the error
diagrams (Fig. 7). Molchan [15] has introduced such diagrams as a tool for evaluating
prediction methods and optimising disaster preparedness. Their application to research
in prediction of recessions and unemployment are described in [5, 6].

100
Duration of alarms, % Number of false alarms

Figure 7. Error diagram.
Numbers near the dots identify the variant of the algorithm in Table 3. Black dots show the variants suggested

for advance prediction. See further explanations in Section 6
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The "basic" variant (Section 4) is # 10 in Table 3. We now discuss the variations
considered. Variation of the percentiles Qc, defining discretization thresholds (#8, 9, 11,
12). Lowering them, we obviously increase the total duration of alarms, but the results
of prediction do not change much and remain acceptable. Using only two kinds of
crimes (#12) we obtain comparable results. However it would be risky to make advance
prediction with only two indicators. The limits of acceptable variations are reached in
the other variants (#1-7). We tried to find a premonitory rise of robberies, simultaneous
with rise of other crimes and consider other kinds of crimes; in all variants its
performance remains unacceptable.

TABLE 3. Variation of the adjustable elements

| Value of D*
Crime type

Rob

FRob

KCIR

ODWR

SAR

A

FA

KCIA

ODWA

AIA

ITNFE

AFE

Premoni-
tory trend

G°, %
Premoni-
tory trend

if, %
Premoni-
tory trend
fic,%
Premoni-
tory trend

(f,%
Premoni-
tory trend
Qc, %
Premoni-
tory trend
Qc,%
Premoni-
tory trend
Qc,%
Premoni-
tory trend

(f,%
Premoni-
tory trend
QF,%
Premoni-
tory trend
Qc,%
Premoni-
tory trend
Qc,%
Premoni-
tory trend
Qc,%

Variants
1
3

2
t

3 4
8

5 | 6
4

7
3

8 9 10 11 12
0

Trend and percentile

33

upwarc

25 20

33

33

upwarc

25
upwarc

25

20

20

downward

80 67 50
downward

80 67 50
downward

80 67 50
downward

80 67 87 5
downward

80 67
upward

33 25 20 20 33
upward

33 25 20 20 33 50
upward

33 25 20 20 33
upward

33 25 20 20 33
upward

33 25 20 20 33
upward

20
i

20

33
lpward

33

50

33

Jpward

50

67

33

*The values that give relatively best performance for that variant.
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For advance prediction variants 8-11 might be used in parallel. Such parallel predic-
tions might better suit the needs of a decision-maker, determining possible disaster
preparedness measures [12, 16].

7. Applications to Independent Data

Here we test our algorithm by application to "out of sample" data not used in its
development. Such tests are always necessary to validate and/or improve a prediction
algorithm. Such a test is possible since our algorithm is self-adaptive: the thresholds
7^(2°) are not fixed but are adapted to crime statistics, as the percentile of a level Qc.

7.1. LOS ANGELES, 1994-2002

So far we used the data source [10] covering the years 1975 - 1993. To extend the
analysis past 1993, we have the data of the LAPD Information Technology Division,
covering the time period from January 1990 to May 2002. Comparing the data for the
overlapping three years we find that they are reasonably close, particularly after
smoothing.

160 —i

120 —

T
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1998 2000 2002

Figure 8. Performance of prediction algorithm through 1975-2002.
Data from the National Archive of Criminal Justice Data [10] for 1975 - 1993 have been used to develop the
algorithm. It was than applied to the data from the Data Bank of the Los Angeles Police Department (LAPD

Information Technology Division) for subsequent 9 years. Notations are the same as in Figure 4. Dashed
vertical lines indicate SHS episodes that occurred after 1993
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Figure 8 shows the homicide rates through the whole period from 1975 to May
2002. Two SHS episodes are identified in the later period 1994-2001. They are indicated
in Figure 8 by dashed vertical lines. The first episode is captured by an alarm, which
starts in the month of SHS without a lead time. The second episode is missed in that an
alarm has started two months after it. That error has to be put on the record;
nevertheless the prediction remains informative: during these two months homicide rose
by only a few percent, giving no indication that a lasting homicide surge has started.

7.2. NEW YORK CITY

Figure 9 shows the monthly total homicide rates in New York City per 7 million
inhabitants of the city. We identified two SHS episodes (02:1978 and 02:1985). Our
prediction algorithm gives two alarms, as shown in Figure 9 by chequered bars. One of
them predicts the second SHS, while the first one is missed. We consider another alarm
as a false one; this has to be confirmed by processing the data for the period after 1993.
Though the failure to predict and a false alarm are disappointing, the results as a whole
appear to be useful: one of the two SHS is captured by alarms lasting together 21
months, amounting to 10 percent of the time interval considered.

250

200 —

150 —

100 —
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Figure 9. Application of the prediction algorithm to New York City.
Notations are the same as in Figure 4. Data are taken from the National Archive of Criminal Justice Data [10].

Homicide statistics is shown per 7,000,000 of inhabitants
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8. On a More Precise Prediction

Here, we outline a conjecture, one that we believe is worth exploring in the future. We
have observed two consecutive patterns of the crimes considered. The first one precedes
an SHS with a lead time of 4 to 11 months; it is formally defined and explored in
Sections 4, 5. We will discuss now in more detail the second pattern. It emerges with a
shorter lead time, promising a more accurate prediction of the time of an incipient SHS.

A distinctive trait of the second pattern is a steep simultaneous rise of the different
types of robberies. Let us replace this pattern by a less specific one that is more broadly
defined: the absence of a steep decline. By definition, that pattern will be captured by
the zeros in the first four columns of Table Al. Counting them, we find that three or
more emerge within 6 months before each SHS. This result suggests the following
second approximation to the prediction algorithm described above. Consider the period
of alarm declared by the algorithm; let us call it "the first phase alarm". Within that
period a "second phase alarm" is declared for 6 months after the first month when
Ai(m) < 1. Here A^m) is the number of ones in the codes of the robberies (the first four
columns in Table Al). In the absence of the first-phase alarm the second one is not
declared.

Alarms obtained by this rule are shown in Figure 10. The alarms became much
shorter; their total duration drops to 18 months, that is, from 14 percent to 8 percent of
all the months considered. We will possibly get even better results directly capturing a
rise of robberies, but that probably requires weekly if not daily crime rates (since the
lead time of the rise in robberies is relatively short).

Using the trend of homicides themselves might provide a similar possibility. Values
of the function K^Qn-ll, m), which estimates that trend (see Section 4) are given in the
Appendix (column KH). Within each alarm we see the months when ^(m-Yl, rri) > 0.
Starting alarms at these months, we might further reduce the duration of alarms without
having an additional failure to predict.

I ' I • I " I " I • I • I • I ' I " I " I ' i I • I ' T I - I ' I • I ' I ' I
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

Figure 10. Possible reduction of duration of alarms.
Vertical lines -starting points of a homicide surge {SHS). Grey bars - alarms obtained by the suggested

algorithm. Black bars - alarms obtained in a hypothetical second approximation.

9. Discussion

1. Our conclusions might be summed up as follows. We analysed crime statistics in the
city of Los Angeles for the period 1975 - 2001, exploring the possibility of anticipating
a turn of the homicide rate from decline to a surge. We have found that such a turn is
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preceded within 4 to 11 months by a specific pattern of the crime statistics: both
burglaries and assaults escalate, while robberies decline, along with the homicides
themselves. Both changes, escalation and decline, are not monotonic, but occur
sporadically, each lasting 2-6 months.

Based on this pattern we formulated a prediction algorithm, giving it a robust and
unambiguous definition. It is self-adapting to average crime statistics, so that we could
apply it to New York City as well. The major limitation of this study is that, as is
inevitable for an initial study, only a small number of homicide surges was available for
analysis. The algorithm remains hypothetical until it is validated by advance prediction.
It is encouraging, however, that those predictions are stable as to variations in the
adjustable elements of the algorithm.

Closer to the surge of homicides, the robberies also turn from decline to rise. This
indicates the possibility of a second approximation to the prediction, with twice the
accuracy (that is with a twofold reduction in the duration of alarms).

2. Our analysis captures the consecutive escalation of different crimes: first - of
burglaries and assaults only, then of robberies, then of homicides. That sequence, albeit
hypothetical so far, seems natural, being in good accord with previous experience in the
following areas.

(0 The sequence reflects a more general phenomenon, commonly known in law
enforcement practice: a consecutive escalation of more and more severe crimes,
signalling that a surge of major crimes is approaching. We give a quantitative definition
of a specific manifestation of this phenomenon. Similar escalation has been found in
French suburban areas [17].

(if) The sequence is also in accord with a well-known "universal" feature of many
hierarchical complex systems: the rise of permanent background activity ("static") of
the system culminated by a fast major change - a "critical transition". That feature
happens to be common for different physical and socio-economic systems. It is
reproduced by the "universal" models of hierarchical complex systems, such as those
developed in theoretical physics, e.g., [3, 12, 18-26].

That feature was also observed in many very different real world systems. For
example, in earthquakes prone regions the "static" includes background seismicity.
Premonitory escalation of seismic activity is a well-known precursor to major
earthquakes, which is used in many earthquake prediction algorithms [21, 27-29]. In an
economy the "static" includes various macroeconomic indicators. Their premonitory
escalation has been successfully used in the prediction of recessions and surges of
unemployment [5, 6].

Our results are also in accord with a distinctive common trait of precursors
established in many of these studies: premonitory evolution of background activity is
not monotonic, but realised sporadically, in a sequence of relatively short intermittent
changes.

The universality of premonitory phenomena is limited and cannot be taken for
granted in studying any specific system. Nevertheless, it is worth exploring in crime
dynamics other known types of premonitory patterns, e.g. the clustering of background
activity and the rise of the correlation range [19, 28, 30].

3. What is the place of our study in the broad field of prediction of crime dynamics?
Specific features of our approach might be summed up as follows.
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(i) We are trying to predict not the whole dynamics of homicides, but only the
relatively rare phenomena - episodes of SHS.

(ii) Accordingly, we are looking for a quantitative and precisely defined prediction
algorithm of the "yes or no" variety: at any moment of time such an algorithm would
indicate whether or not such an episode should be expected within a fixed time interval.

(iii) Our analysis is intentionally robust, which makes the prediction algorithm
more reliable and applicable in different circumstances. In our case the performance of
the algorithm did not change through the period considered even though Los Angeles
has witnessed many changes relevant to crime over this period. This stability is
achieved at a price, however, in that the time of a homicide surge is predicted with
limited accuracy and the duration of a surge even more so.

4. Our approach - a heuristic "technical" analysis - is not competing with but
complementary to the cause-and-effect "fundamental" analysis. The cause that triggered
a specific homicide surge is usually known, at least in retrospect. This might be, for
example, a rise in drug use, a rise in unemployment, a natural disaster etc. However,
that does not render predictions considered in this study redundant. On the contrary, our
approach might predict an unstable situation when a homicide surge might be triggered,
thus enhancing the reliability of cause-and-effect predictions.

5. It is encouraging for further studies in this direction that we used here only a
small part of the relevant and available data that can be incorporated in our analysis.
Among these are other types of crimes [31], economic and demographic indicators [32]
and the territorial distribution of crimes. It seems worthwhile to try the same approach
with other targets of prediction - e.g. surges of all violent crimes; and to other areas,
e.g. separate Bureaus of the city of Los Angeles, or to other major cities. In a broader
scheme of things, our analysis discriminates stable situations from unstable, where the
risk of different disasters is higher.

6. At the same time it would be important to set up an experiment in advance
prediction of homicide surges in Los Angeles using the algorithm hypothesised here.
Successes and errors will both provide for evaluation of this algorithm and for
developing a better one.
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Appendix

TABLE Al. Binary codes of the trends for 7 types of crimes and values of K"(m, m-12)
See notations in Table 1. Discretization is defined in Table 2

#

1
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3
4
5
6
7
8
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11
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15
16
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23
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32
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1976:01
1976:02
1976:03
1976:04
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1977:01
1977:02
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1977:07
1977:08
1977:09
1977:10
1977:11
1977:12
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1978:02
1978:03
1978:04
1978:05
1978:06
1978:07
1978:08
1978:09

Discretized trends

R
0

b

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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0
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0
0
0
0
0

K
c
I
R
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

o
D
w
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1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
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0
0
0
0
0
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0
0
0
0
1
1

F
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0
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
1
1
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1
1
1
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0
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K
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1
1
1
1
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0
0
0
1
1
1
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1
1
1
1
1
1
1
1
1
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0
0
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1

u
N
F
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0
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1
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1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
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0
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A
4
4
4
3
4
2
2
2
2
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1 +
2
5
5
5
6
5
5
4
5
5
2
3
4
4
4
4
7
7
7
7
6
5

K"

0.44
0.21
-0.07
-0.28
-0.35
-0.33
-1.18
-0.96
-0.87
-0.79
-0.37
0.16
0.68
0.84
0.38
0.85
0.07
0.71
0.58
0.03
0.18
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0.24
0.81
0.38
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0.53
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0.57
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1.08
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1.86
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0
0
1
1
1
1
1
0
0
0
0
0
0
0
0

0
1
1
1
1
0
0
0
0
0
0
0
0
0
1

5
4
4
4
4
5
5
6
6
5
4
4
4
4
2

1.12
2.63
3.04
2.86
2.60
1.84
0.95
-0.58
-0.88
-1.70
-2.75
-1.21
0.10
1.72
2.35

203
204
205
206
207
208
209
210
211
212
213
214
215
216

1992:11
1992:12
1993:01
1993:02
1993:03
1993:04
1993:05
1993:06
1993:07
1993:08
1993:09
1993:10
1993:11
1993:12

0
0
0
1
1
1
1
1
1
0
0
0
0
0

1
0
0
0
0
0
0
1
1
1
0
0
0
0

1
1
0
0
0
0
1
1
1
1
0
0
0
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
1
1
1

1
0
0
0
0
0
0
0
0
0
1
1
1
1

2
5
6
5
5
5
4
3
3
4
5
4
4
3

2.47
1.76
2.04
1.04
0.21
-0.74
-0.46
-1.05
-1.60
-1.00
-0.20
0.14
0.52
-0.12


