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Abstract. The aim of this paper is to lead a practical, ra-
tional and rigorous approach concerning what can be done,
based on the knowledge of magnetic series, in the field of
prediction of the extreme geomagnetic events. We compare
the magnetic vector differential at different locations com-
puted with different resolutions, from an entire day to min-
utes. We study the classical correlations and the simplest
possible prediction scheme to conclude a high level of pre-
dictability of the magnetic vector variation. The results ob-
tained are far from a random guessing: the error diagrams are
either comparable with earthquake prediction studies or out-
perform them when the minute sampling is used in account-
ing for hourly magnetic vector variation. We demonstrate
how the magnetic extreme events can be predicted from the
hourly value of the magnetic variation with a lead time of
several hours. We compute the 2-D empirical distribution
of consecutive values of the magnetic vector variation for
the estimation of conditional probabilities of different types.
The achieved results encourage further development of the
approach to prediction of the extreme geomagnetic events.

Key words. Ionosphere (modeling and forecasting) - Mag-
netospheric physics (storms and substorms)

1 Introduction

Many have tried for a long time to predict the so-called mag-
netic situation or magnetic activity, as characterized, for ex-
ample, by magnetic indices. The objective of better under-
standing of the time evolution of the geomagnetic field is
also of practical interest: the simplest example of application
is the planning of an aeromagnetic survey, which requires a
quiet magnetic situation to be accurate.

The interest for such type of prediction has, of course,
been renewed and amplified since it has been realized that
damages caused by big magnetic storms in power lines and

Correspondence to: E. Bellanger
(ebellan@ipgp.jussieu. fr)

other installations (e.g. Kappenman, 1996), have to be miti-
gated. Space navigation, especially manned nights, and the
revolution of communications via satellites also require fore-
casting of space weather (e.g. Hastings, 1995).

The full subject encompasses short-term, middle-term,
long-term predictions, periodic or quasi-periodic cycles. Fur-
thermore space weather forecasting uses additional space in-
formation independent of the magnetic field. The objective
of the present paper may then appear limited. We will eval-
uate the predictability of some long and homogeneous mag-
netic time series by using simple tools whose efficiency can
be easily tested. Our results, however limited, are established
in a rigorous way and, for each prediction, we will clearly
and explicitly say what it means, avoiding any vague state-
ment.

2 The magnetic time series

A magnetic observatory provides recordings of three com-
ponents of the geomagnetic field: X, horizontal northward,
Y, horizontal eastward, and Z, vertical downward. The sam-
pling rate and the accuracy, in absolute value, depend on the
epoch and the observatory. We won't describe here in any
detail the full set of these magnetic data, but rather refer to
Bellanger et al. (2002b) and Bellanger et al. (2002a). We will
just give the necessary information on the series analyzed in
the present study. The quality of the series used has been
carefully checked: series containing gaps or obvious steps
due to base lines problems were rejected. This selection led
to the retention of series that do not have the same length and
do not cover the same timespan. The long-term control of
absolute values (the so-called problem of base lines), which
remains the most difficult task to achieve in an observatory,
is, contrary to the steps mentioned above, of small influence
here, due to the short-term differences considered (daily, at
most).
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Table 1. Location of observatories: geographic (geocentric) coordinates and corrected geomagnetic (CGM) coordinates in degrees

Name

Chambon-La-Foret
Eskdalemuir
Port-aux-Francais

Code

CLF
ESK
PAF

Longitude

2
357
70

Latitude

48
55

-49

CGM Long.

80
78
122

CGM Lat.

45
53

-58

Fig. 2. R for tomorrow vs. R for today at Eskdalemuir (computed
from daily means): 2-D histogram. The color indicates the number
of pairs in a cell, see color bar.

elongation of the cloud of points is indicative of a correlation
in the time series. The histogram, when normalized to the
total number of pairs (N — 1 =31045), delivers their em-
pirical distribution, which can be used to determine various
conditional probabilities.

Figure 3 displays, as an example, the graphs of two of the
conditional probabilities: V(R(k + 1) > 50nT/day [ R(k)),
i.e. probability of having R greater than 50 nT/day the day af-
ter the value R is observed, and V{R(k +1) > R{k) \ R{k)),
i.e. the probability that, given the value of R{k) today, its
value will be larger tomorrow. The first graph shows that (z)
there is practically no chance for R to reach 50 the day af-
ter its current level is less than 15, {if) if its current level is
120 or more, there are more chances for R to stay above 50
the day after than to fall below this level (note, however, that
the number of high value extreme events is small, so that the
statistic is less robust in this range and that the probability
of the extreme values eventually collapses to 0). The second
graph also illustrates some kind of dynamical law of the sys-
tem: if R < 8 today, chances are higher than 50% for R to
be larger the day after; if R > 80, chances for R to be larger
are limited to 20%-30%. As already mentioned, other condi-

1000
R, nT/day

Fig. 3. Conditional probabilities for Eskdalemuir: (a) V(R(k +
1) > 50nT/day | R(k)); (b) V(R(k + 1) > R(k) | R{k)), and the
empirical distribution of/? (blue line), i.e. unconditional probability
P(R(k + 1) < /?).

tional probabilities can be derived from the (R(k),R(k + 1))
2-D histogram.

The autocorrelation function of R,

CRR(t)= {R(k)R(k + (3)

where { ) is average and t is the lag time. The Correlation is
0.54 after one day (t = 1), but falls down to 0.22 after two
days.



1104 E. Bellangeret al.: Predictability of geomagnetic series

100%

80%

n

60%

40%

20%

0%

\

ft

[

\

N

row.!

N

&

i
\

g

*

!

/

h

I

0% 20% 40% 60% 80% 100%

Fig. 4. The error diagram for Eskdalemuir. Daily values differ-
ences.

3.1.3 A simple prediction scheme

Suppose we are interested in predicting today "extreme"
events, defined by values of R > Ro, for tomorrow. The
simplest prediction scheme suggests issuing an alert for to-
morrow if R > ro today; ro and Ro are parameters. We call
the occurrence of a value of R larger than i?o an extreme
event. We count a success if it happens on the alert day, and
a failure-to-predict otherwise.

Figure 4 shows the error diagram, or so-called (n, x) dia-
gram (Molchan, 1997), achieved by the described prediction
scheme on Eskdalemuir data, for a large set of values of pa-
rameters ro and RQ. n is the percentage of unpredicted (ex-
treme) events, x is the ratio of the time covered by alerts, i.e.
of the ratio of the number of alert days to the total time inter-
val considered (N days). The effectiveness of the prediction
is characterized by the distance of the lower envelope F of the
set of points (n, x), from the random guess strategy curve, i.e.
the segment of diagonal n + x = 1. This diagonal segment
connects the point corresponding to the optimistic strategy
(no alert, and failure to predict any event) to the point corre-
sponding to the pessimistic strategy (full time alert, and no
failure to predict). In general, one tries to minimize some
loss function y(n, x) depending on preparedness problems
and measures envisioned in response to the prediction. The
point where an isoline of y (red line in Fig. 4) touches F
determines both the minimal achievable loss and the optimal
set of adjustable parameters (here ro and Ro) of the predic-
tion algorithm.

Here, for illustration, we adopt the linear cost function
y = n + x (note that y = 100% at any point of the ran-
dom guess diagonal).

To facilitate further comparison we define here the ex-
treme events with RQ between 98 and 99 percentiles of R,
i.e. the top 1-2% in a data set, and ro between 0 and 98 per-
centile. In case of the Eskdalemuir daily data, 41 < RQ < 55
nT/dayandO < r0 < 41 nT/day. Each of the 800 (= 20x40,
arbitrary sampling of Ro, ro variations) pairs (Ro, ro) that
are uniformly distributed in the above defined intervals is
mapped on the error diagram according to the score achieved
by the prediction scheme with these parameters, as seen in
Fig. 4. The lower envelope F of the mapping of the domain
spanned by (Ro, ro) pairs is used to determine the optimal
parameters for prediction. We draw level lines of the cost
function y (segments of a straight line of slope —1 in the
case of y = n + r); the value attached to the one which is
tangent to F is the minimum of the cost function y. In the
case of y = n + x (e.g. Fig. 4), this value can be read directly
on either axis.

For Eskdalemuir (Fig. 4), the minimal value of y = 43%
is achieved (in such definition of the R extremes), when
ro = 11.3 and RQ = 51.5. Twenty-two percent of alert
days, i.e. 18.6 out of 85 years, is required to predict 287
out of 362 extremes. The score is far from a random predic-
tion and compares with the case of reproducible earthquake
prediction, which came from the 10 years of real-time global
testing of M8-MSc algorithm with y = 34% (Keilis-Borok
et al., 2001). Of course, one may want to use a more restric-
tive definition of the extremes and issue a smaller number of
alerts. For example, for /?o = 120, and ro = 60, 25 out of
40 extreme events are predicted by issuing 254 days of alert,
i.e. about 0.8% of the total number of days (y = 38%).

3.2 Hourly first differences

We now consider hourly mean values of X, Y, Z at
Chambon-la-Foret observatory (Table 1) in the 1974-85
timespan, covering a full solar cycle (note that we retained
12 years for the study of CLF hourly means, which cover the
solar cycle number 21, and 11 years for the study of PAF
hourly variations from minute values (Sect. 3.3), which span
the cycle number 22). We define, exactly as above, X(k),
Y(k), Z(k), k now being the number of the sequential hour
and the dot meaning the difference E(k + 1) - E(k) (Eq. 1).
R(k) is given again by Eq. (2). However, now E and R are
measured in nT per hour.

Figure 5 represents the 2-D histogram of the current hour
next hour values (R(k),R(k + 1)) determined by all (more
than 315 000) sample pairs in 1960-1995. The presence of
local extrema for small values of R is due to the essential
discreteness of the measurements and narrower bin sizes at
small values of R.

Two conditional probabilities have been computed
(Fig. 6), using all the hourly means at CLF from 1960 to
1995. The first one shows, for example, that if R < 40
nT/hour, its chances of being larger than 50 in the next hour
are rather small; but if i? > 100 nT/hour, it will not drop
below 50 nT/hour during the next hour in most of the cases.
The second one (Fig. 6) gives the probability for R(k + 1) to
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Fig. 5. R for next hour vs R for current hour at CLF (computed from
hourly means): 2-D histogram. The color indicates the number of
pairs in a cell, see color bar.

be larger than R(k), R(k) given. It appears that this proba-
bility stabilizes after 60 nT/hour, but eventually collapses for
the most extreme values (> 300 nT/hour).

We have also computed the error diagram (Fig. 7) for the
simplest prediction scheme aimed at the extreme events de-
fined as above (Sect. 3.1.3) in the range from 2 to 1% of
the top values of R. The minimal y = n + x — 42% is
reached when /?o = 49.4 and ro = 17.1 nT/hour. If we take
Ro = 112 and ro = 24 nT/hour, then y — 24%, which cor-
responds to 8.1% of alert and prediction of 249 out of 295
extreme events (i.e. 84.1%). Again, the choice of parameters
ro, Ro depends on what we want to do with the prediction.

3.3 Hourly indices from minute values

The last two series considered are derived from minute val-
ues recorded at the Chambon-la-Foret (France) and Port-aux-
Francais (Kerguelen Islands; see Table 1) observatories. The
PAF data cover a full Solar cycle, i.e. 1985-1995 and the
CLF one the period 1992-1995.

We compute the first difference (Eq. 1), E(k), for each
minute with the sequential number k (5.77 • 106 values at
Port-aux-Francais, 2.10 • 106 values at Chambon-la-Foret).
Accordingly, the unit measure is nT/min. From the minute
differences relative to the hour interval with sequential num-
ber m, we compute the average:

1/2
(4)

where I{m) = {i : 60 • (m - 1) < i < 60 • m}. R*(m) can
be denoted as the vectorial total variation of the geomagnetic
field (sampled with one-minute resolution) over the hour

100%

90%

80%

70%

£.60%

S 50%
IB

•§ 40%

20%

10%

0%

100%

90%

80%

70%

-o-yooc O0OOC

$
w

<
1

U

\ \ \i1
1

10 100 1000

R, nT/hour

.60%

50%

40%

30%

20%

10%

100 1000

R, nT/hour

Fig. 6. Conditional probabilities for Chambon-la-ForSt: (a)
V(R(k + 1) > 50nT/hour | R(k)); (b) V(R(k + 1) > R(k) | R(k)),
and the empirical distribution of R (blue line), i.e. unconditional
probability V(R(k + 1) < if).

m. In this definition R* can be viewed as an extension of
the mathematical total variation of a real-value function that
characterizes the volatility of the process (in the sense used in
financial markets). R*(m) can also be viewed as an invariant
hourly magnetic activity index computed from minute data.
We will process R* the same way as we did for the hourly
first difference R{m) in the previous section.

Figures 8 and 9 present the 2-D histograms
(R*(m),R*(m + 1)) determined from 95000 PAF and
35 000 CLF data points. They are clearly more elongated
and narrower than the previous ones (Figs. 2 and 5), indicat-
ing better correlation, which implies better predictability.

The conditional probabilities shown in Figs. 10 and 11
were computed from the 2-D histograms (Figs. 8 and 9). One
may conclude from the graphs that (i) there is practically no
chance for R* observed at PAF to reach 50 nT/min in the next
hour if its current level is less than 10 nT/min (Fig. 10, top);
(ii) if such a level (R*(m) = 10 nT/min) is reached at CLF,
it will not drop below 2 nT/min in the next hour (Fig. 11,
top); (iii) at both observatories there are more chances (i.e.
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Fig. 7. The error diagram for CLF (hourly means). Fig. 9. R* for next hour vs R* for current hour computed from
minute values at CLF: 2-D histogram.
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Fig. 8. R* for next hour vs R* for current hour computed from
minute values at PAF: 2-D histogram.

V > 50%) to record an increase in R* during the next hour,
if its present level is 1 nT/min (Figs. 10 and 11, bottom). The
level of 1 nT/min or less is observed at PAF 55% of time,
while at CLF it happens 80% of time (see the empirical distri-
butions of R*, V{R*(m) < R*), plotted in the same figures).
The probability graph V(R*(m + 1) > R*(m)) for CLF
(Fig. 11 bottom) is much steeper and collapses to nearly no
chance at 10 nT/min; for PAF, it extends above 100 nT/min.
As already said, the two graphs V{R*(m +1) > R*(m)) and
P(R*(m) < R*) determine the dynamics of the system and
can be used for a proper statistical simulation of magnetic

indices at a given location.

Figures 12 and 13 illustrate the predictability of the ex-
treme events denned by R* and how it differs at the two
sites: the minimal value of n + x is much smaller than in
the previous two cases. Table 2 summarizes the results of
predicting magnetic field extremes. Specifically, n + r for
the magnetic rate prediction at CLF is reduced by a factor
of 2 when R* is used instead of R. This score is outper-
formed for another factor of 2 by the prediction of the R*
extremes at PAF. The predictability of geomagnetic series
by the simple scheme was comparable in the first two cases,
whereas it is by far better in the latter two cases than the re-
producible intermediate-term prediction of the largest earth-
quakes (Keilis-Borok et al., 2001).

Finally, we show how the magnetic extreme events can be
predicted from the hourly values of the magnetic variation,
/?*, several hours in advance. We consider the 11-year series
from PAF, define extreme events values as /?o = 20 nT/min,
and compute the error diagrams for the simple prediction
scheme applied with a lead-time t = 1,2,3, and 4 h (Fig. 14).
Results are summarized in Table 3. Naturally, the optimal
value of the cost function y = n + x is growing with lead
time, although at a decreasing rate: from a factor of 1.6 from
1 h to 2 h and 1.1 from 3 h to 4 h. Similarly, the optimal alert
threshold decreases from 5.0 nT/min for a lead time of 1 h
to 3.0 for 4 h. We also give in Table 3 a decomposition of
y = n + x presenting the percentages of failures-to-predict
n in the whole set of 823 extreme events and of the relative
alarm time over the 11 years (= 95 474 h) considered.
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Table 2. Summary of the simplest prediction of/?

Station data

ESK, daily R (nT/day)
CLF, hourly R (nT/hour)
PAF, hourly R* (nT/min)
CLF, hourly R* (nT/min)

Extreme event size
Upper 2%

41
38

10.8
2.7

Upper 1%

55
50

18.1
3.2

11.3
17.1
4.3
1.4

Optimal
*0

51.5
49.4
17.8
3.2

43%
42%
11%
22%

Table 3. Optimal threshold for issuing an alarm ro, cost value y = n + r, failure ratio n and number of failures to predict (Nf), alarm ratio
r and total hours of alarm (Na) for an extreme event threshold RQ fixed to 20 nT/min and for a prediction with a lead time t

Lead time, t IJ + r TQ (nT/min) rj(Nf)

1 hour
2 hours
3 hours
4 hours

10.4%
16.4%
20.9%
23.9%

5.0
3.9
3.3
3.0

4.4%(36)
7.8%(64)
9.9%(81)

11.0% (90)

6.0% (5726)
8.7 (8268)

11.0% (10495)
12.9% (12321)

4 Discussion and conclusion

We have investigated the predictability contained in geomag-
netic data using unusually long series, which allow for a firm
statistical analysis. Two samplings have been used: daily and
hourly, with two different variables in the last case. The sim-
ple tools we use allowed us to quantify in different manners
the predictability of the series. The simplest of them focus on
what can be said about the next value of the variable knowing
its current value, e.g. what can be said for tomorrow know-
ing the situation for today. We have chosen two examples of
conditional probabilities; many other ones can be computed
in the same way, making use of the statistically firm empiri-
cal distributions, hi every case, the answer is clear and rigor-
ously established. The error diagram of our simple prediction
scheme delivers comprehensible, data supported answers, in
terms of chances of failures-to-predict and percentage of alert
time, to questions concerning costs and benefits, which can
be formulated in various ways. The simple tools used are
limited in their forecasting capacity. Nevertheless, the same
techniques can be easily generalized at will: for example,
without changing the structure of the algorithm, tomorrow
can be replaced by the day after tomorrow and so on. The
functional form for the y cost function has to be determined
for each practical situation. In this paper, for illustration, we
assumed that the cost (e.g. financial cost) of a failure to pre-
dict was the same as the cost of a false alarm. It is likely that
a failure to predict would have a larger cost since a failure
to predict may lead to damages, whereas a false alarm may
only induce a loss of profit. In such a case, a greater weight
should be attributed to the percentage of unpredicted extreme
events (n) in the cost function.

The classical autocorrelation functions of R and R* drop
quickly, at least by a factor of 2 in the first two days for daily
series and by a factor of 2 in the first 4-12 h for hourly se-

ries. The correlations and predictability may depend on ge-
omagnetic location: the first are higher at CLF than at PAF,
whereas the simple prediction scheme is much more efficient
at PAF than at CLF. The magnetic vector rate is more pre-
dictable when measured by the R* index. However, Bel-
langer et al. (2002b) and Bellanger et al. (2002a) showed that
R* is almost identical, within a constant factor, in all low-
and mid-latitude observatories; R* at CLF, as considered in
this paper, is thus expected to describe the predictability of
magnetic series at most of the surface of the Earth. PAF, an
observatory in the auroral zone, has been studied to allow
comparison. Bellanger et al. (2002b,a) also showed that R*
characterizes the variation of the external field and can thus
be considered as an activity index. In the present paper, R*
has been preferred to any other index because it is an invari-
ant characteristic of the magnetic field activity whose time
sampling can be easily changed by adjusting the width of the
averaging window (one hour in this paper); but considering,
for example, aa or am (3-hour range indices, see Mayaud,
1980) would have given similar results.

We did not search for geomagnetic precursors stricto
sensu. The data suggests that it is dubious that a peculiar
magnetic variation observed in quiet time might warn of an
approaching sudden burst of activity, like a disastrous mag-
netic storm. On the other hand, recurrences of enhanced
probability of magnetic activity induced by the Sun's rota-
tion of about 27 days and the solar cycle of about 11 years
are well known.

Hopes in predicting sudden bursts of activity rather rely
upon the real-time observations of solar wind and coronal
mass ejections (CMEs) (Joselyn, 1995). However, due to the
complexity of the involved physical processes (e.g. Boaghe
et al., 2001), no complete quantitative theory of the magne-
tospheric dynamics is available at the present time, and thus
no fully reliable prediction of magnetic activity is possible.
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Moreover, the efficiency of forecasts of geomagnetic activity
from solar and interplanetary conditions is not systematically
estimated a posteriori (Thomson, 2000), although prospec-
tive and retrospective validation is applied in other fields of
geophysics (Mulargia, 1997; Kossobokov et al., 1999).

Our aim was to lead a practical, rational and rigorous ap-
proach concerning what could be done, based on the knowl-
edge of magnetic series, in the field of extreme geomagnetic
activity events prediction. Space weather extreme conditions
have an important financial impact on a wide domain of ac-
tivities (see, e.g. Allen & Wilkinson, 1993; Maynard, 1995,
for a summary). The prediction scheme studied here, via the
adjustment of the y function to each specific customer, de-
pending on the cost of an alarm vs. the cost of a failure to
predict an extreme event, provides a quantitative tool in a
decision theory perspective (Matthews, 1997; Keilis-Borok
et al., 2001; Thomson, 2000). Despite that this method is
far from covering all the needs of the large variety of cus-
tomers interested in space weather forecasting (Feynman and
Gabriel, 2000), it gives at least a simple, statistically robust
and quantitative way for short-term prediction of geomag-

netic extreme events.
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