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Motivation

1. Complexity of the phenomena and feedback networks in
solid-earth geophysics and fluid-envelope problems.

2. Difficulty in fonnulating "classical" models (ODEs, PDEs,
SDEs), ascertaining parameter values, and analyzing even
qualitative behavior for such models.

3. Availability of new modeling tool - Boolean Delay
Equations (BDEs): simpler, more flexible, easier to
formulate and analyze.

Work with '• '>., (NASA Goddard), V\ Keilis-Borok(IGPP, UCLA &MITP,
Moscow), - . , "*? . (Wall Street), P, P?siiau.\ (TotalFina, France), A,

n (UCLA), i> (IGPP, UCLA & MTTP, Moscow).

http://www.atmos.ucla.edu/tcd/
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The climate system
on long time scales

1) "Ambitious"diagram

SOLAR and ORBITAL
VARIABILITY

FIG. 19. Flow diagram showing feedback loops contained in the proposed dynamical
system for ice-mass (H) and ocean temperature (6) variations.

m T

Constants for ODEs/PDEs poorly known.
Mechanisms & effective delays easier to ascertain

B.Saltzman, Climatic systems analysis, Adv. Geophys., 25,1983.



2) "Modest" model

(Ghil & associates, 1979-1981)

(t) T=-m: ice-albedo feedback

m = T: precipitation-temperature feedback

mszp : ice-load feedback

p = -m: snow-accumulation feedback

Kalleii. Crafoord & Ghil (1979), JAS

Ghil & Le Treut (1981), JGR



Outline

1. What for BDEs?
- life is sometimes too complex for ODEs & PDEs

2. What are BDEs?
- formal models of complex feedback webs
- classification & major results

3. Applications to climate modeling
- paleoclimate — Quaternary glaciations
- interdecadal climate variability in the Arctic
- ENSO — interannual variability in the Tropics

4. Applications to earthquake modeling
- coliding-cascades model of seismic activity
- advances in prediction

5. Concluding remarks

http://www. atmos. ucla. edu/tcd/

Ghil/BDEs-KB'sSOthB'day
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Application to solid-earth problems: Zaliapin, Keilis-Borok & Ghil
(2002a, b, J. Stat Phys.)



1. Introduction

Binary systems

Examples: Yes/No, True/False (ancient Greeks)

• Classical logic (Tertium non datur)
Boolean algebra (19th cent.) \
Propositional calculus (20th cent.)

(syllogisms as trivial examples)

• Genes: on/off

Descriptive - Jacob & Monod (1961)
Mathematical genetics - L Glass, S. Kauffman,

M.Sugita (1960s)
• Symbolic dynamics of differentiable dynamical systems

(DOS): S. Smate (1967)

• Switches: on/off, 1/0
Modern computation (EE & CS)

- cellular automata (CAs)
J. von Neumann (1940s, 1966), S. Ulam, Conway(the
game of life), S. Wolfram (1970s, '80s)

- spatial increase in complexity - infinite number
of channels

- conservative logic
Fredkin&Toffoli(1982)



- kinetic logic: importance of distinct delays
R. Thomas (1973, 1979, ...) to achieve
temporal increase in complexity0

M. G.'s immediate motivation:

Climate dynamics - complex interactions
(reduce to binary)
C. Nicoiis(1982)

Joint work on developing and applying
BDEs to climate dynamics
with D. Dee, A. Wyllhaupt & P. Pestiaux (1980s)
& with A. Saunders (late 1990s)

Work of L. Mysak and associates (early 1990s)

Recent applications to solid-earth geophysics
(earthquake modeling & prediction) with V. Keilis-
Borok & I. Zaliapin

nSynchronization, operating systems & parallel computation



What are BDEs?

Short Answer :

Maximum simplification of nonlinear dynamics

(nondifferentiable time-continuous dynamical system)

Longer Answer :

x e B= {0,1} x

1) x(t) = x(t-l)

(simplest EBM: x=T) 0

x

2) x(t) = x(t-l)

0

0

3) xlfx2 G B , 0 < 9 < 1

x1(t) = x2(t-Q)

X2(t) = Xj(t-l)

Eventually periodic
with a period = 2(1+0)

(simplest OCM: x2 = T, x2 - m)

1V2

6=1/2

4/2

2V2



x{t) = x(M) V x(f-e); 6 irrational
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Fig. 1

Increase in complexity!
Evolution: biological, cosmogonic, historical.

But how much?

Dee & Ghil, SIAMJ.Appl. Math. (1984), 44,111-126.
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830 CROWLEY: PALEOCLIMATOLOGY REVIEW

ERA PERIOD AGE EPOCH MAJOR GEOLOGICAL
(M.y.) AND PALEONTOLOGICAL
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Fig. 2. The geological time scale.

grained constituents of limestone are of biologic origin. For
example, on the present south Florida carbonate shelf a
single genus of calcified green algae produces the vast
majority of the carbonate mud in the surrounding environ-
ments [Stockman et al., 1967]. Precambrian carbonate for-
mation may also have been controlled by organisms, for the
carbonates commonly occur in the form of stromatolites
(finely laminated rock). The origin of this rock type seems
dependent on the presence of bacteria or blue-green algae
[Schopf, 1980].

Early Precambrian CO> partial pressure estimates of 0.01-
0.10 atm exceed present values by 30-300 times [Garrets and
Perry, 1974; Pollack and Yung, 1980]. The high JVfg concen-
trations in Precambrian carbonates [e.g., Tucker, 1982] are
consistent with such an increased partial pressure of COi
[Holland, 1976]. Owen et al. [1979] calculate that an en-
hanced CO2-H2O greenhouse effect could have produced a

mean temperature of 310°K at 4.2 b.y. (the present mean is
287°K). Some empirical support for high temperatures is
provided by preliminary isotopic analyses of cherts, which
indicate groundwater temperatures of 340°K as late as 2.8
b.y. [Knauth and Epstein, 1976].

In summary, climatic cooling induced by a faint sun may
have been offset by an atmospheric greenhouse effect caused
by hich GO2-H2O concentrations. The first evidence for
glaciation is at about 2.3 b.y. This date coincides with a rapid
expansion of stromatolites [e.g., Frakes, 1979], an event that
may have signaled an increased withdrawal of CO2 from the
atmosphere by photosynthetic organisms.

3. LATE PRECAMBRIAN (2.5-0.57 B. Y.)

The late Precambrian (Proterozoic) contains evidence for
two phases of continental gTaciation.'at 2.3 and 0.9-0.6 b.y.
[Frakes, 1979]. Before discussing these events it is useful to



The Historic Time Scale

Beginnings of Homo expectorans - 5 Myr ago (Ma),

First modern humans in Ambrica - 1 Ma

First tools, Palo Tinto civilization - 200 ka

Palo Tinto replaced by Long Ears - 20 ka

First Short Ear state in New Colorado - 5 ka ago

Period of rival Ear and Nose states - 2000-1500 B. C.

Amhurstex, legendary founder of

Lower Kingdom - 500 B.C.

Historic Plectorectic Dynasty - 200 B.C.-lOO A.D.

Ambrican revolution -1792

1st war of independence - 1815

35 governments since WWII (1945)

Ghil2/Documents & CVs/Transparencies/CSEOL



Aperiodic solutions
with increasing complexity

x(t) = x(M} V x(f-G), 9 = (75 - l) /2 = "golden ratio"
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Theorem. Conservative BDEs with irrational delays have
aperiodic solutions with a power-law Increase in complexity.

N.B. Log-periodic behavior!



1

Figure 1. The delay lattice for Eq. (3.5). • - jump occurs, o - jump

does not occur. See text for details.

The two dashed lines In the figure are drawn through the pairs of

lattice points (2k,0), (0,2k9) for k ° 1 and k - 3, respectively. The

number of jumps occurring before t • 1 + 38 can be estimated from above

by the number of jumps in the lattice triangle with the dashed line for

k « 3 as its base; it can be estimated from below by the jumps in the

triangle corresponding to k = 1• These two numbers can be computed

explicitly in the case at hand.

The computation proceeds by noticing the self-similarity in the

pattern of jumps. The lowest-level pattern is given by the small



Classification of BDEs

Theorem. BDEs with rational delays only have
periodic solutions only.

Proof. Main idea: solution space is reducible to a
finite number of points (cf. cellular automata,
kinetic logic).

Details: Let q be l.c.d. of delays Pij/qij, & subdivide [0,1] into

q subintervals. The phase space X = Bn(l) is finitely
generated & "words" of length q have to repeat. If they
repeat once, they do forever.

Q: What about increased complexity in Fig. 1?

A: Approximation theorem for delays.

Definition. A BDE is conservative if its solutions are
immediately periodic, i.e. no transients; otherwise
it is dissipative.

Remark. Rational vs. irrational delays.

Ex: 1) conservative x(t) = x(t-l)

2) dissipative x(t) = x(t -1) A x(t - 6)

Analogy with ODEs

Conservative-Hamiltonian; dissipative-limit cycle,

(no transients) / y * ^ ^ (attractors)

M. Ghil & A. Mullhaupt, J. Stat. Phys., 1985



Examples. Convenient shorthand for scalar 2nd-order BDEs

X = y oz <*> x(t) = x(t-l)ox(t-Q)

1. Conservative

x = yvz = y®z = y + z (mod 2)

x =

Remarks: i) Conservative s linear (mod 2)

ii) 3 few conservative connections (~ODEs)

2, Dissipative

x - y A ^ 0

Theorem 4.2. Conservatives reversible
sinvertible

A. P Mullhaupt Ph.D. thesis, May 1984, CIMS/NYU.
M, Ghi! & A. P, Mullhaupt, J. StatPhys., 1985, 41, 125-173,
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Flows
( x continuous, t continuous
\ (vector fields, ODEs, PDEs,

FDEs/DDEs, SDEs)

Maps
x continuous, t discrete

(diffeomorphisms,
OAEs, PAEs)

BDEs
x discrete, t continuous

(conservative logic,
kinetic logic)

Automata
x discrete, t discrete

(Turing machines,
real computers, CAs)



Paleoclimate application:
Thermohaline circulation and glaciations

NH Ice Sheet (Tacc) * Ice Flow (%)

SP

Logical variables

T- global surface temperature;
VN - NH ice volume, VN = V;
Vs - SH ice volume, F5 = 1;
C - deep-water circulation index

Ghil, Mullhaupt & Pestiaux, Climate Dyn., 2 (1987), 1-10.



Physical mechanisms at work

i) precipitation-temperature effect

VN(t) = T(t-xacc) (1)

ii) ice-albedo effect + ocean cooling effect

T{t) = VN(t-xifl)AC{t-xdw) (2)

Hi) deep-water formation effects

- melt water does not sink

- freezing increases salinity & sinking

C(t) = {VN(t)vVN(t-Tdw)} A VN(t)

Delay values

Tacc a lOkyr - time for growth of ice sheet

Xjfl & 3kyr - characteristic ice flow time, with basal sliding

xdw s Ikyr - recirculation time of deep water
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6. Structural stability & bifurcations

Theorem. BDEs with periodic solutions only are
structurally stable, & conversely.

Remark. They arejdissipative.

Meta-theorems. by example.

The asymptotic behavior of

X ( * ) - * ( * - 8 ) A 3 F ( * - T ) (3)

is given by

x(t)-x(t-Q).

Hence, if x< 8•!.,

then solutions are asymptotically periodic;

if 8<x = l , however,

then solutions tend asymptotically to 0.

Therefore, as 8 passes through x, one has "Hopf
bifurcation."


