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Structure of the model

Interaction between elements
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Replace elementary interactions of elements
in the system by their integral effect: time delays
between consecutive switching of element's state.

A delay between application of
T load and switching to the loaded state

... *



Model.

(i) The model runs in discrete time n = 0,1, At each
epoch a given element may be either intact or failed, and
either loaded or unloaded. The state of an element e at a
moment n is defined by two Boolean functions:

se(n) =

le(n) =

0, if element is intact,

1, if element is failed.

0, if element is unloaded,

1, if element is loaded.

Thus, an element may be in one of the four states (se, le)
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(ii) An element of the system may switch from one state to
another under an impact from its nearest neighbors. The
dynamics of the system is controlled by the time delays
between the given impact and switching to another state.
The time delays are the following:

• AL - between an element being impacted by the load
and switching to the loaded state;

• Ap - between the increase in weakness and switching to
the failed state;

• AD - between failure and switching to the unloaded
state;

• AH - between the moment when healing conditions are
established and switching to the intact (healed) state.

(iii) At the start, n = 0, all elements are in the state (0,0),

intact and unloaded.
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BDE model of colliding cascades:
three seismic regimes
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Synthetic sequence: zoom.
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Regime diagram:
instability near the triple point
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Regime diagram: switching between regimes
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Definition of a measure of clustering,
G = max{E - T}
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Possible outcomes of prediction

Successful prediction Failure to predict

Correct alarm ! Predicted event
False alarm f Failure to predict
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Table 1. Premonitory seismicity patterns (PSPs) considered in this study.

Notation

Nm

sm

Bm

Am

TTm

w

Description

Number of events

Weighted number of events;
coarsely estimates the area of

faultbreaks
Weighted number of

immediate aftershocks

Near-simultaneous occurrence
of distant events

Simultaneous activation of
distinct branches of a system

Total activity of most active
branches of a system

Ratio of Nm for different m

Type

Intensity

Intensity

Clustering

Correlation
range

Correlation
range

Correlation
range

Transformation
of GR relation

Definition in
the text

Seel;. 3.1.1

Eq.(3a)

Eq.(7)

Sect. 3.3

Sect. 3.3

Sect. 3.3

Eq. (8)

References

[40, 63, 61]

[39,63,61]

[45]

[26]

[27]

This study

[63]
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Acceleration of Benioff strain release
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Premonitory change of GR relation.

GR relation
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Boolean delay equation model of colliding cascades.
Error diagram Tor precursor N (Number of earthquakes)

o
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Minimax prediction strategy
Individual PSPs are tuned to eliminate false alarms

at the cost of having more failures to predict.
Collectively, errors of both kinds are drastically reduced.

0 0.02 0.04 0.06
Relative duration of alarms, T

0.1 0.2 0.3 0.4
Rate of false alarms,/

0.5

JL- Alarm is declared when N out of 6 individual PSPs produce
an alarm; N=l,...,6 from bottom to top.
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Concluding remarks

1. BDEs have rich behavior:
periodic, quasi-periodic, aperiodic, increasing

complexity.

2. They are relatively easy to study.

3. Are natural in a digital world.

4. Two types of applications

- strictly discrete (genes, computers)

- saturated, threshold behavior (nonlinear
oscillations, climate dynamics, population
biology; earthquake dynamics).

5. Can provide insight on a very qualitative level

(-symbolic dynamics).

6. Generalizations possible (space dependence
- partial BDEs; stochastic delays).
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Conclusions

1. Hmmm, this is interesting!

2. But what does it all mean ?

3. Needs more work!!

http://www.atmos.ucla.edu/tcd/
Ghil/BDEs-KB's80*B'day
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