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Structure of the model
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Replace elementary interactions of elements
in the system by their integral effect: time delays
between consecutive switching of element’s state.

A delay between application of
L load and switching to the loaded state




Model.

(1) The model runs in discrete time n = 0,1, . ... At each
epoch a given element may be either intact or failed, and
either loaded or unloaded. The state of an element e at a
moment n is defined by two Boolean functions:

0, if element is intact,
se(n) =

1, if element is failed.

0, if element is unloaded,
le(n) =

1, if element is loaded.

Thus, an element may be in one of the four states (s, I.)

Se | L. Element’s state

0 |0 | intact and unloaded
0 |1 entact and loaded
1 |0 | failed and unloaded
1 |1| failed and loaded




(ii) An element of the system may switch from one state to
another under an impact from its nearest neighbors. The
dynamics of the system is controlled by the time delays
between the given impact and switching to another state.
The time delays are the following:

e A; - between an element being impacted by the load
and switching to the loaded state;

e Ay - between the increase in weakness and switching to
the failed state;

e Ap - between failure and switching to the unloaded
state;

o Ay - between the moment when healing conditions are
established and switching to the intact (healed) state.

(iii) At the start, n = 0, all elements are in the state (0, 0),

intact and unloaded.



BDE model of colliding cascades:

three seismic regimes

H: High periodic seismicity

I: Intermittent seismicity

ILs Low seismicity

Time

Ve Z%JQ},&/ /4 {f@///‘S*j%«é/ 3 M /;é/ /ff)j} ,f'c ‘i **fo /y/



Synthetic sequence: zoom.
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Regime diagram:
instability near the triple point
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Regime diagram: switching between regimes
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The rate of energy released, E

Definition of a measure of clustering,
G =max{E - T}
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Possible outcomes of prediction
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Table 1. Premonitory seismicity patterns (PSPs) considered in this study.

Definition in

Notation Description Type the téxt References
N Number of events Intensity Sect. 3.1.1 [40, 63, 61]
Weighted number of events; _
Sn coarsely estimates the area of . Intensity Eq. (3a) [39, 63, 61}
faultbreaks
Weighted number of .
B immediate aftershocks Clustering Eq. (7) [45]
Near-simultaneous occurrence Correlation
R of distant events range Sect. 3.3 [26]
Simultaneous activation of Correlation
Am distinct branches of a system range Sect. 3.3 [27]
Total activity of most active Correlation .
7n branches of a system range Sect. 3.3 This study
W Ratio of N,, for different m | LLansformation [63]

of GR relation

Eq. (8)
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Precursor Accord in S. California:
Analysis of M7.5+ earthquakes.
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Acceleration of Benioff strain release
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Premonitory change of GR relation.

GR relation Function U(t)
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Boolean del?r equation model of colliding cascades.
Error diagram™for precursor N (Number of earthquakes)
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Minimax prediction strategy

Individual PSPs are tuned to eliminate false alarms
at the cost of having more failures to predict.
Collectively, errors of both kinds are drastically reduced.
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* Alarm is declared when N out of 6 individual PSPs produce
an alarm; N=1,...,6 from bottom to top.
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Concluding remarks

1.

BDEs have rich behavior:

periodic, quasi-periodic, aperiodic, increasing
complexity. |

. They are relatively easy fo study.

Are natural in a digital world.

Two types of applications
— strictly discrete (genes, computers)

— saturated, threshold behavior (nonlinear
~ oscillations, climate dynamics, population
biology; earthquake dynamics).

Can provide inSight on a very qualitative level
(~symbolic dynamics).

Generalizations possible (space dependence
— partial BDESs; stochastic delays).
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Conclusions
1.  Hmmm, this is interesting!
2. Butwhat does it all mean?

3. Needs more work!!

http//www.atmos.ucla.edu/tcd/

Ghil/BDEs-KB's80*B'day
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