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Paks NPP

Paks NPP is located in Hungary on the Danube
about 100 kms south of Budapest. There are
four WWER 440/213 units in operation. The
original design did not include seismic loads.

A ‘preliminary’ seismic hazard study was
performed in 1992 by an international
consulting company that recommended a ZPA
value of 0.35g associated with a site specific
RS. This study was commissioned by the plant.
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Paks NPP (Cont’d)

The Hungarian regulatory body commissioned a
review of this study by a national committee
headed by a professor of geology from the
Hungarian Academy of Sciences. This
committee confirmed that the hazard values
proposed by the international consultant
company were appropriate for the Paks NPP
site.

The Hungarian regulatory body asked the IAEA to
review the seismic hazard in 1993.
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Paks NPP (Cont’d)

The same Iinternational company was
recruited to perform the study in detail
and with much more new local data. The
new data included:

®* MEQ monitoring

® Geophysical profiles including across the
Danube

® Site vicinity geological mapping
® Large number of boreholes
® Trenches
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Paks NPP (Cont’d)

The aim of these investigations was to clarify the
uncertainties related to the potential of faulting
in the near region and the site vicinity.

After these investigations a PHSA was performed
in which a number of alternative
seismotectonic models were considered with
different weights.

The IAEA monitored all the investigations and
reviewed the final PSHA and agreed with the
final results (the 10-4/yr value of the ZPA was
0.259).
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Paks NPP (Cont’d)

More recently an extended PHSA was
performed for the external events
Probabilistic safety Assessment of the
Plant using the same seismotectonic
models. The following slides are from
this study. The study was commissioned
by the Paks NPP and conducted by Mr. L.
Toth (Seismological Institute in
Budapest).
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Seismic Source Zones

Systematic process

zones based on geological,
five steps are involved in the assessment of seismic hazard

tectonic and seismological data
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Regional investigations
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Regional investigations
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Near regional investigations




Site vicinity investigations

Residual gravity anomaly map
of the Paks site vicinity
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Seismological Database: Historical data

information

Bicske (Hungary)
After Magyari et al.




Seismological Database: Historical data




Seismological Database: Historical data







il
| &' _n.-*ﬁ?:
OMITATUS
4§j;J

.'E .L’n‘_wr%ﬂ,_
| At Aidy

orcaresd

e

S A adid
G

™
1
I"' N

‘i:%
e
e 1‘:

TR

ire

¥

ALBAREGA

.
Tl

PR 1‘.‘3‘1“':‘“&-‘-— =




Seismological Database: Historical data
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Seismological Database: Historical data




Seismological Database: Site specific instrumental data

Micro-seismic monitoring

» The most direct evidence to establish whether a tectonic feature should be considered active is
seismicity. To be useful, accurately located earthquakes are required. While good information about
larger historical earthquakes exists in Hungary, for about the past 200 years, these are not well
enough located to resolve which tectonic features are active. Moreover, such larger events occur
infrequently and do not provide the needed timeframe. To close this knowledge gap, a network of
high quality digital seismographs should be installed capable of locating earthquakes as small as
magnitude 2.0 within about 100 km of the Paks NPP site. The purpose of this network should be to
develop a database of well located earthquakes that can be used to resolve the tectonic framework
in the vicinity of the Paks site as opposed to the more restrictive objective of determining whether
seismicity can be associated with faulting in the near site vicinity. ... Recorded earthquakes should
be routinely located, analyzed and interpreted to evolve a confident tectonic model in the Paks plant
region.”

(Final Report: SEISMIC SAFETY REVIEW MISSION FOR THE REVIEW OF TECTONIC STABILITY OF
SEISMIC INPUT FOR THE PAKS NPP, Organized by the IAEA, November 1993)

The system encompasses a network of ten seismic stations within about 50 km of Paks (in the
middle of Hungary) and a data centre in Budapest to collect and analyse the data. The field stations
consist of a three component short period seismometer in a pit, a digital recorder and time signal
receiver housed in a heat insulated steel container building.

(GeoRisk, 1995)
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Seismological Database: Site specific instrumental data




Seismological Database: Site specific instrumental data
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Seismological Database: Site specific instrumental data

More than 500 small events detected since 1995
yellow circles — historical seismicity (456-1994)







Seismological Database

Seismicity in the Pannonian Region (456-2000)
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Identification of seismic sources



e <20% have depth
information
(uncertain)

e Three depth provinces

e Shallow depth (6-
15 km)

e Intermediate
depth (70-110
and 125-160 km)
in the Vrancea
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Identification of seismic sources
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Identification of seismic sources

Evaluation of seismic sources

Zsiros T. nyoman




Identification of seismic sources
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»During the re-evaluation of the site, one of the most discussed question was, whether the
tectonic structures in the site vicinity had been active during the recent tectonic regime.

»The conclusion was, that the probability of recent activity and existence of a capable fault is very
low.

(During the last years no seismic activity has been recorded around the site. These results confirm
the adequacy of the source-models used in the probabilistic earthquake hazard analysis, and
demonstrate the conservatism of the parameters of the source zones. )



Step 2

Assessment of earthquake recurrence and M.,

IAEA SAFETY STANDARD SERIES No. NS-G-3.3 — CONSTRUCTION OF A
REGIONAL SEISMOTECTONIC MODEL

Characterization (4.16-4.26 and 4.30-4.32)

v’ For fault sources:
v'M___is calculated from empirically based magnitude—area

max

relationships

Recurrence relationships are developed from the slip rates and
segmentation point failure probabilities

v For source zones:

v historical and instrumental seismicity form the primary data for
characterization of maximum magnitudes and recurrence
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Characterization of seismic sources
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Characterization of seismic sources

Evaluation of seismic sources e Paraisrs

earthguake recurrence
maximum magnitude, M, ,
hypocentral depth

>

Mmax

Number of events

>
Magnitude




Step 3
Ground motion attenuation

IAEA SAFETY STANDARD SERIES No. NS-G-3.3 —
(5.13)
A ground motion attenuation function is a probability
density function whose parameters depend on the
earthquakes and site characteristics.

The standard version is a function of the earthquake
magnitude and source distance from the site of
interest.

The probability of exceeding a certain value of the
ground motion caused by an earthquake of magnitude
M and located at a distance R from the site is
calculated by means of the ground motion attenuation
functions.
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PGA attenuation

(published by different authors)
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Step 4

Calculation of seismic hazard

IAEA SAFETY STANDARD SERIES No. NS-G-3.3 — EVALUATION OF
GROUND MOTION HAZARD

Identification (5.15-5.19)

As developed by Cornell (1968), the probabilistic hazard
methodology aims to calculate the annual probabilities that
various levels of ground motion will be exceeded at a site.

The probabilistic hazard curve represents the integration,
overall earthquake sources and magnitudes, of the probability
of occurrence of all possible future earthquakes; and for each
earthquake, the probability that a particular value of ground
motion is exceeded at the site.

The current practice is to represent the temporal occurrence of
earthquakes as a Poisson process. The probability of
earthquake occurrence as a function of magnitude is generally
represented by an exponential distribution (Gutenberg—Richter).

The result is a hazard curve expressing the annual probability
that various levels of the ground motion parameter will be
exceeded.
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Treating of uncertainties

How to handle uncertaintY? ,An epicenter is a mark made on a map by a

man
random 1aleatogy) who calls himself a seismologist” — P. Byerly

lack of knowledge (epistemic)

Take the best available!

istemic un inty:
v'Seismotectonic model
v'Source characteristics

vRecurrence, M.
/I an

/III

Accommodate alternative models!

alternative regional tectonic models,
alternative attenuation relationships
alternative values of different parameters . .
e.g. fault dip, slip rates, max magnitudes Loglc Tree Formu'a.tu.m
of parameter uncertainties Focal

ic?
More democratlcl:> Depth 1

No! Probabilistic! Source

—" blode |

Attenuation
law 1
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Attenuation
law 2
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Step 5
Presentation of the results

IAEA SAFETY STANDARD SERIES No. NS-G-3.3 — Ground motion
characteristics

(5.20-...)

The basic calculation results in a seismic hazard estimate for a
single characterization of a set of seismic sources, including
recurrence and maximum magnitude values, and a single ground
motion attenuation relation. Thus, the result of this calculation is a
single hazard curve that represents the randomness, or aleatory
uncertainty, inherent in the location and magnitude of future
earthquakes, and in the generation and seismic wave propagation.

There is also uncertainty in the characterizations of seismic
sources and ground motion attenuation. This epistemic
uncertainty, arises from incomplete knowledge of earthquake
processes, limited data, and alternative interpretations of the
available data. The methodology explicitly incorporates these
uncertainties into the analyses to quantify the uncertainty in the
final hazard results.
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Hazard curves: annual
frequencies of peak ground
accelerations (PGA) at Paks

NPP site
Red line weighted mean,
yellow 15%, green 50%, blue

85% confidence levels

Thin black line: best estimate
of ARUP (1995)
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Results
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Site response analysis

] Site response analysis has been carried out to propagate the
bedrock spectra to the surface taking account the effect of the 27m
thick young Quaternary fluvial materials overlying the hard
Pannonian deposits. Three input earthquake motions were selected
such that their response spectra approximate the bedrock UHRS
curves. The site response characteristics have been assessed
using effective stress method (by computer code DESRA-2C)
taking into account the degradation of the soils due to progressive
pore water pressure buildup during an earthquake.

] Time histories of the surface accelerations calculated by effective
stress method, shear strain, stress, volume strain and excess pore
pressure were computed. These soil characteristics have been
computed for the best estimate soil profile, ground water levels
drawn for 104, 105, 10-° probability and all three of applied input
bedrock time histories.
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Input parameters - soil properties
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Site response analysis

Input parameters - ground motion
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Logic tree

Site response analysis
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Results

Site response analysis

Time histories and pore pressure distributions
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Site response analysis

Results
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