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Abstract

Consider applications of damage mechanics to material failure. The damage variable introduced in damage me-
chanics quantifies the deviation of a brittle solid from linear elasticity. An analogy between the metastable behavior of a
stressed brittle solid and the metastable behavior of a superheated liquid is established. The nucleation of microcracks is
analogous to the nucleation of bubbles in the superheated liquid. In this paper we have applied damage mechanics to
four problems. The first is the instantaneous application of a constant stress to a brittle solid. The results are verified by
applying them to studies of the rupture of chipboard and fiberglass panels. We then obtain a solution for the evolution
of damage after the instantaneous application of a constant strain. It is shown that the subsequent stress relaxation can
reproduce the modified Omori’s law for the temporal decay of aftershocks following an earthquake. Obtained also are
the solutions for application of constant rates of stress and strain. A fundamental question is the cause of the time delay
associated with damage and microcracks. It is argued that the microcracks themselves cause random fluctuations
similar to the thermal fluctuations associated with phase changes.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Damage mechanics; Fracture; Critical point; Power-law scaling

1. Introduction

The inelastic behavior of solid materials is
characterized by a wide range of processes; ex-
amples include decohesion between inclusions,
accumulation of dislocations leading to the nu-
cleation of microcracks, debonding of fibers and
matrix in composite materials, etc. This irrevers-
ible behavior is often referred to as damage [1-3].
A damage variable o can be introduced that is the
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E-mail addresses: 13120@cornell.edu (R. Shcherbakov),
turcotte@geology.ucdavis.edu (D.L. Turcotte).

measure of deviations from linear elasticity. The
evolution of damage is specified by a rate equa-
tion. Thermally activated creep processes (diffu-
sion and dislocation creep), the plastic deformation
of ductile materials beyond a threshold and the
rupture of brittle materials are examples of dam-
age. In this paper we will concentrate our attention
on the irreversible deformation of solids associated
with their brittle failure.

The brittle failure of a solid is certainly a com-
plex phenomenon that has received a great deal of
attention from engineers, geophysicists, and phys-
icists. A limiting example of brittle failure is the
propagation of a single fracture through a ho-
mogeneous solid. However, this is an idealized
case that requires a preexisting crack or notch to
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doi:10.1016/S0167-8442(03)00005-3



246 R. Shcherbakov, D.L. Turcotte | Theoretical and Applied Fracture Mechanics 39 (2003) 245-258

concentrate the applied stress. Even the propaga-
tion of a single fracture is poorly understood be-
cause of the singularities at the crack tip [4]. In
most cases, the fracture of a homogeneous brittle
solid involves the generation of microcracks. Ini-
tially these microcracks are randomly distributed,
as their density increases they coalesce and localize
until a through-going rupture results. This process
depends upon the heterogeneity of the solid.
Many experiments on the fracture of brittle
solids have been carried out. In terms of rock
failure, the early experiments [5] were pioneering.
Acoustic emissions (AE) associated with micro-
cracks were monitored and power-law frequency-
magnitude statistics were observed for the AE.
When a load was applied very rapidly, the time-to-
failure was found to depend on the load. Many
other studies of this type have been carried out.
Obtained in [6] is the statistical distribution of the
life times with constant stress loading for carbon
fiber—epoxy microcomposites. The work in [7]
studied the rupture of spherical tanks of kevlar
wrapped around thin metallic liners and found a
power-law increase of AE prior to rupture. The
failure of chipboard and fiberglass panels were
considered in {8,9]. They obtained power-law in-
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creases in AE prior to rupture and a systematic
dependence of failure times on stress level.

Statistical physicists have related brittle rupture
to liquid—vapor phase changes in a variety of ways.
A first-order phase transition was related [10] to
brittle fracture. Similar arguments have been given
by Zapperi et al. [11] and Kun and Herrmann [12].
On the other hand it was argued [13,14] that brittle
rupture is analogous to a critical point phenom-
ena, not to a first-order phase change. They asso-
ciated observed power-law scaling in brittle failure
experiments with a critical point (a second-order
phase change). A number of authors have con-
sidered brittle rupture in analogy to spinodal nu-
cleation [15-19]. This analogy is studied in more
detail in the next section.

2. Damage mechanics

In order to provide a basis for discussing ma-
terial failure as a phase change process, we first
discuss the phase diagram for the coexistence of
the liquid and vapor phases of a pure substance. A
schematic pressure-volume projection of a phase
diagram is illustrated in Fig. 1(a) [20]. The ratio of
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Fig. 1. (a) Schematic pressure-volume projection of the phase diagram of a pure substance [20]. The shaded region is metastable.
(b) Idealized stress-strain diagram for a brittle solid. The shaded region is in a damaged state.
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the pressure p to the pressure at the critical point
C, p., is given as a function of the ratio of the
specific volume v to the specific volume at the crit-
ical point v.. We consider a liquid initially at point
A in the figure. The pressure is decreased isother-
mally until the phase change boundary is reached
at point B. In thermodynamic equilibrium the
liquid will boil at constant pressure and tempera-
ture until it is entirely a vapor at point G. Further
reduction of pressure will result in the isothermal
expansion of the vapor along the path GF. How-
ever, it is possible to create a metastable, super-
heated liquid at point B. If bubbles of vapor do
not form, ecither by homogeneous or heteroge-
neous nucleation, the liquid can be superheated
along the path BD. The point D is the intersection
of the liquid P-V curve with the spinodal curve S.
It is not possible to superheat the liquid beyond
this point. If the liquid is superheated to the vi-
cinity of point D, explosive nucleation and boiling
will take place. If the pressure and temperature are
maintained constant during this highly nonequi-
librium explosion, the substance will follow the
path DE to the vapor equilibrium curve GF. If the
explosion occurs at constant volume and temper-
ature, the pressure will increase as the substance
follows the path DH to the equilibrium boiling line
BG. With a combination of bubble nucleation
and superheating other paths through the shaded
metastable region are possible. A typical path BJ is
llustrated.

Next apply the concept of phase change to the
brittle fracture of a solid. For simplicity we will
discuss the failure of a sample of area a under
compression by a force F. The state of the sample
is specified by the stress ¢ = F/a and its strain
€= (Lo — L)/Ly (L length, L; initial length). The
dependence of the stress on strain is illustrated
schematically in Fig. 1(b). At low stresses we as-
sume that Hooke’s law is applicable so that

o = Fge, (1)

where E, is Young’s modulus, a constant.

We hypothesize that a pristine brittle solid will
obey linear elasticity for stresses in the range
0 < o < gy, where gy is a yield stress. From Eq. (1)
the corresponding yield strain e, is given by

¢
€ szz. (2)

If stress is applied infinitely slowly (to maintain a
thermodynamic equilibrium), we further hypothe-
size that the solid will fail at the yield stress oy. The
failure path ABG in Fig. 1(b) corresponds to the
equilibrium failure path ABG in Fig. 1(a). This is
equivalent to perfectly plastic behavior.

If an elastic solid is loaded very rapidly with a
constant stress ¢y > g, applied instantaneously,
the solid will satisfy Eq. (1) and will follow the
path ABD as shown in Fig. 1(b), subsequently,
damage will occur at a constant stress along the
path DE until the solid fails. This behavior is
analogous to the constant pressure boiling that
occurs along the path DE in Fig. 1(a).

Alternatively the elastic solid could be strained
very rapidly with a constant strain ¢, > ¢, applied
instantaneously, again the solid will satisfy Eq. (1)
and will follow the path ABD as shown in Fig.
1(b). In this case damage will occur along the
constant strain path DH until the stress is reduced
to the yield stress oy. This behavior is analogous to
the constant volume boiling that occurs along the
path DH in Fig. 1(a).

When the stress on a brittle solid is increased at
a constant finite value we hypothesize that linear
elasticity (1) is applicable in the range 0 < o < gy.
At stresses greater than the yield stress, ¢ > gy,
damage occurs in the form of microcracks. This
damage results in accelerated strain and a devia-
tion from linear elasticity. A typical failure path
ABJ is illustrated in Fig. 1(b). In order to quantify
the deviation from linear elasticity, the damage
variable « is introduced in the strain—stress relation

o = Eg{l — a)e. (3)

When o« = 0, Eq. (3) reduces to Eq. (1) and linear
elasticity is applicable; as « — 1 (¢ — oo) failure
occurs. Positions in the stress—strain plot, Fig.
1(b), corresponding to « = 0.0, 0.25, and 0.5 are
shown by dashed lines.

It must be emphasized that the analogy between
boiling and fracture illustrated in Fig. 1 is not
complete. Boiling is a reversible process, fracture is
not. However, we believe the analogy is illustra-
tive.
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Based upon thermodynamic considerations {1,
3,21), the time evolution of the damage variable is
related to the time dependent stress ¢(¢) and strain

e(t) by

da(z)
= ato()|

i’—)]z. @)

€y

It should be noted that there are alternative for-
mulations of both Egs. (3) and (4) and that 4(o)
can take many forms [3]. This analysis assumes
that Eqs. (3) and (4) are applicable and will further
require that

A(o()) =0 if0<o<oy (5)
Ao () :% [%? - l] if ¢ > oy, (6)

where t4 is a characteristic time scale for damage
and p is a power to be determined from experi-
ments. This formulation will be confirmed by a
direct comparison with experiments.

The monotonic increase in the damage variable
o given by Egs. (4)-(6) represents the weakening
of the brittle solid due to the nucleation and
coalescence of microcracks. This nucleation and
coalescence of microcracks is analogous to the
nucleation and coalescence of bubbles in a super-
heated liquid as discussed above. A brittle solid in
the shaded region in the stress—strain diagram gi-
ven in Fig. 1(b) is metastable in the same sense that
the nonequilibrium boiling in the shaded region in
Fig. 1(a) is metastable.

Solutions to one-dimensional damage problems
require the simultaneous solution of Eqgs. (3)~(6).
In general it is required that either the stress or the
strain on the sample be specified. Consider four
examples:

(i) Assume that a constant stress gy is applied in-
stantaneously at ¢ = 0. If 65 < oy, no damage
occurs and the strain is given by Eq. (1). If
o9 > oy the material is strained elastically into
the metastable region along the path ABD in
Fig. 1(b). The stress is then maintained at oq
until the sample fails. OQur solution will give
the time to failure # as a function of the ap-

plied stress ¢, and the time dependence of
the damage variable «(¢) and the strain e(z).
The sample fails along the path DE in Fig.
1(b). This solution with experiments.

(it) Assume that a constant strain ¢, is applied
instantaneously at ¢ = 0. If ¢; < ¢, no damage
occurs and the stress is given by Eq. (1). If
€y > €, the material is strained elastically into
the metastable region along the path ABD in
Fig. 1(b). The strain is maintained at ¢ as
damage occurs. Because of the damage, the
stress on the sample relaxes from the initial
value oy to the yield stress o,. This stress re-
laxation takes place along path DH illustrated
in Fig. 1(b). The solution will give the time de-
pendence of the damage variable «(f) and
stress o(¢) during the relaxation. The applica-
tion of this solution to earthquake aftershocks
will be discussed.

(i) Assume that the applied stress o is increased
linearly with time ¢. Initially with o < oy the
strain is given by Eq. (1) and the path AB is
followed in Fig. 1(b). But when the stress
o > oy, damage occurs until the sample fails.
A typical failure path is given by BJ in Fig.
1(b). It will be shown that the path through
the metastable region depends on the rate at
which the stress is increased.

(iv) Assume that the applied strain e is increased
linearly with time ¢. Initially with e<e, the
stress is given by Eq. (1) and the path AB is
followed in Fig. 1(b). But when the strain
€ > ¢, damage occurs. Stress relaxation oc-
curs as in example (ii) discussed above.

3. Constant applied stress

As a first example, consider a rod to which a
constant axial tensional stress has been applied. A
stress oo > oy is applied instantaneously at t =0
and held constant until the sample fails. The ap-
plicable equation for the rate of increase of dam-
age with time is obtained from Eqgs. (2), (4), and (6)
with the result

O S
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From Eq. (3) the strain ¢ is related to the damage
variable « and the constant applied stress gy by

70

e(t) = Eol —a(d] (8)

Substitution of Eqgs. (8) into (7) gives the damage
rate

Integrating with the initial condition «(0) =0,
there results

5 ,11/3

a(f) =1 - {1-§(@) <5’—°—1> } . (10)
tg \ Oy Oy

which describes the damage evolution in the ma-

terial with constant applied stress. Using Eq. (10),

Eq. (8) can be rewritten as

e(t) = %0 . (11)

/3
3t(ao\* (o s
Ell-={2) ([Z2-1
ta \ Oy Oy
Failure occurs at the time # when o — 1 (¢ — 00);
thus we obtain the time of failure ¢ in terms of the

characteristic damage time fg4, yield stress o, and
applied stress o

ts (o, \° [ 0 —°
_hfo) () 12
=3(2) () (12

The time to failure approaches infinity as a power
law as gy — oy. Substituting Eq. (12) into Eq. (10),
the expression for the damage evolution is found:

a(t) =1 — (1 —i>m (13)

tr

and for the corresponding time dependence of the
strain

e(t) =

]

/3"
t
E =
0<1 ff)

The approach to failure is in the form of a power
law.

(14)

Now compare the results derived above with
experiments. Guarino et al. studied in [9] the fail-
ure of circular panels (222 mm diameter, 3-5 mm
thickness) of chipboard and fiberglass. A differ-
ential pressure was applied rapidly across a panel
and was held constant until the panel failed.
Acoustic emission (AE) events associated with
microcracks were carefully monitored, located and
quantified. For these relatively thin panels, bend-
ing stresses were negligible and the panels failed
under tension (a mode I fracture). Initially, the
microcracks appeared to be randomly distributed
across the panel; as the number of microcracks
increased they tended to localize and coalesce in
the region where the final rupture occurred. These
authors measured the cumulative energy in the AE
events ear as a function of time t. The total AE
energy at the time of rupture is e,,;. The observed
dependence of eag/ewt on (1 —t/t) for these ex-
periments is given in Fig. 2(a). After an initial
transient period (0 < ¢/t < 0.4), good power-law
scaling was observed. In this scaling region it was
found that esp o< (1 — #/2)""%". This is equivalent
to having deag/ds oc (1 —¢/8) ",

Next, relate the rate of increase of the damage
variable de/d¢ to the rate of AE. The approach is
illustrated in Fig. 3(a). The elastic energy density
e, in the rod after the instantaneous stress oy has
been applied is

2
9y
€ab = -
ab 2 EO
The work done on the rod at constant stress oy
along the path bc is given by

e = 00(6c - €b) (16)

and the strain e, is given by

(15)

a0

€ — m . (17)
Substitution of Egs. (1) and (17) into (16) gives
2
o
ebC_E—o(l——OC). (18)

It is hypothesized that if the applied stress is in-
stantaneously removed at point ¢ then the rod will
follow the path ca. The elastic energy recovered
along this path is
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2
Ty

- 2E0(1 - OC) '

eca

(19)

In addition the difference between the energy ad-
ded e,y + ey and the energy recovered e, has been

lost in AE. This energy e, corresponds to the area
of the triangle abc in Fig. 3(a) and is given by

bttt (20)

€AE = €3b T €be — €ca
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Substitution of the damage variable from Eq. (13)
gives

2E
0 (1 t)
te

Thus the predicted rate of AE is

2 —4/3
dere_ ot (1) )
dr 6Et; tr

Damage mechanics predicts the same power-law
behavior observed in the experiments with the
power —4/3 versus the power 1.27 for the experi-
ments.

The time to failure # of the wood panel was
determined [9] as a function of the constant ap-
plied differential pressure P. In their paper they
correlated their results with the empirical relation
f o exp[(Py/P)™"], where Py is a characteristic
pressure. Instead we reinterpret their results and
consider the correlation of the time to failure #
and the pressure excess above a yield pressure
(stress), (P—P,). Taking P, =0.38 (atm) this
correlation is given in Fig. 4. A good fit is obtained
taking # o< (P — P,)™>%. With (P/P, — 1) < 1, this
result is in agreement with Eq. (10) if p = 2.25. It is
concluded that the threshold pressure P, corre-
sponds to a yield stress o, for the samples. Failure

o
3
~ 0%k E
. o
[
—
=2
O
BT 5
@
S ti= (PP
'_.
P, =0.38 (atm)
10%F E
4 i P | P
10? 10" 10°

Pressure above yield P - P, (atm)

Fig. 4. Time to failure of a chipboard panel as a function of the
excess pressure above a yield pressure, P — P,; the pressure is
applied instantaneously at ¢t = 0 [9].

only occurs when the applied stress exceeds the
yield stress for the sample considered. We also
would like to mention that the value of P, = 0.38
(atm) was chosen from the assumption that the
time to failure # depends on the excess pressure
(P — P,) as a power law which is not obvious for
real samples. Precise measurements of the yield
stress for wood panels studied in [9] are required to
confirm the aforementioned hypothesis.

4. Constant applied strain

As a second example, consider a rod to which a
constant axial compressive strain has been applied.
A strain € > ¢, is applied instantaneously at =0
and is held constant. The applicable equation for
the rate of increase of damage is obtained from
Eqgs. (4) and (6) with the result

1 [o(t g 2
%:_[ﬂ_l] <3) . (23)
de | oy €
From (3) the stress ¢ is related to the damage
variable o and the constant applied strain ¢, by

a(t) = Epeo[l — af2)]. (24)
Substitution of Egs. (24) into (23) using (2) gives

do 1 €0 2 €p ,

—=—|= —[l—a(®]—1¢ . 25
T (2) {20-a) 25)
Integrating with the initial condition «(0) =0, it is
found that

+(p—-1) <z—j)3 (é)} e . (26)

The damage increases monotonically with time

and as t — oo the maximum damage is given by

a(oo) =12 @7)
€o

Using Eqs. (26) and (24) with (2) the stress relax-

ation in the material as a function of time ¢ is

obtained:
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o (1) € ~(p-1) The stress relaxes to the yield stress g, below which

= 1+ <€— - 1) no further damage can occur, again as expected.
y y

—1/(p-1)

The nondimensional stress o(¢)/oy from (28) is

o\ /¢t given as a function of nondimensional time /¢ in

+(p - 1)(6—) <t_> (28) Fig. 5(a) taking p = 2 and several values of the

Y ¢ applied nondimensional strain ¢/e,. High initial

At ¢ = 0, the relation stresses relax quickly followed by a slow power-
a(0) = Eqeo, (29) law relaxation. The nondimensional stress o(¢)/ay

is recovered; it is the stress corresponding to the
strain ¢ from the linear elastic relation as ex-
pected. In the limit # — oo, there results

from Eq. (28) is given as a function of nondi-
mensional time ¢/# in Fig. 5(c) taking e/e, = 2
and several values of the power-law exponent p.
Increasing values of p greatly slow the stress re-

a(c0) = ay. (30) Jlaxation.
pY p— . ey 10° - . '
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Fig. 5. (a) Stress relaxation after the instantancous application of a constant strain ¢, that exceeds the yield strain ¢, from (28). (b) The
nondimensional rate of energy release (2tael/Eoe;)de/dt after the instantaneous application of a constant strain e from (34). (¢)
Dependence of the nondimensional stress ¢/0, on the nondimensional time ¢/ from (34). (d) The nondimensional rate of energy
release (2tae2/Eoeg)de/dr.
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This stress relaxation process is applicable to
the understanding of the aftershock sequence that
follows an earthquake. During an earthquake
some regions in the vicinity of the earthquake ex-
perience a rapid increase of stress (strain). This is
in direct analogy to the rapid increase in strain
considered. However, the stress ¢ is greater than
the yield stress o, and microcracks (aftershocks)
relax the stress to oy just as described above. The
time delay of the aftershocks relative to the main
shock is in direct analogy to the time delay of the
damage. This delay is because it takes time to
nucleate microcracks (aftershocks).

In order to quantify the rate of aftershock oc-
currence, the rate of energy release is determined
for the relaxation process considered above. The
present approach is illustrated in Fig. 3(b). The
elastic energy density (per unit mass) e,y in the rod
after the instantaneous strain has been applied
along the path ab is

2
€p = % (31)

Stress relaxation along path bc occurs at constant
strain so that no work is done on the sample.
Again it is hypothesized that if the applied strain
(stress) is instantaneously removed at point ¢ then
the sample will follow the path ca. The elastic
energy recovered on this path is

_Eyg

€ca > (1 —a). (32)

Assume that the difference between the energy
added and the energy recovered e, is lost in AE
(aftershocks) and find that this energy esg which
corresponds to the area of the triangle abe in Fig.
3(b) is given by

_ _1p 2
EAE = €ab — €ca = 5E0€x0. (33)

The rate of energy release is obtained by substi-
tuting Bq. (26) into (32) and taking the time de-
rivative with the result

oo @] e

deAE _ Eoeg
dt  244€

The nondimensional rate of energy release 2tde§ /
Eyey from Eq. (34) is given as a function of non-
dimensional time #/75 in Fig. 5(b) taking p = 2 and
several values of the applied nondimensional strain
€o/ey. The transition to the power-law stress re-
laxation is clearly illustrated. The dependence of
the nondimensional rate of energy release on
nondimensional time is given in Fig. 5(d) taking
€0/ €y = 2 and several values of p. Again the power-
law decay is clearly illustrated.

A universal scaling law is applicable to the
temporal decay of aftershock activity following an
earthquake. This is known as the modified Omori’s
law and as most widely used has the form [22]
dl’las C1

dt  [Co+ (t—twms)F (33)
where n, is the number of aftershocks with mag-
nitudes greater than a specified value, f— ty is
time measured forward from the occurrence of the
mainshock at ¢, C; and C, are constants, and the
power p has a value somewhat greater than unity.
Reasenberg and Jones [23] have carried out a de-
tailed study of aftershocks for major earthquakes
in California and find that p = 1.07 4 0.03.

Eq. (34) gives the rate of energy release whereas
the modified Omori’s law in Eq. (35) gives the rate
of occurrence of aftershocks. However, it is re-
cognized [23] that the frequency magnitude sta-
tistics are unmiversal so that the rate of energy
release is proportional to the rate of occurrence of
earthquakes

deAE di’las

ar CTar
These two quantities have the same time depen-
dence in Eqs. (34) and (35) if p = p/(p — 1). Tak-
ing p=1.07 we find p =153, This is a much
higher value than that found for chipboard in Fig.
4, but the nucleation of rupture on preexisting
faults would be expected to be a very different
process than the nucleation in chipboard or fiber-
glass panels.

(36)

5. Stress increasing linearly with time

Next, consider the failure of a rod when the
applied stress ¢ is increased linearly with time ¢.
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This is a commonly applied condition when ma-
terials are stressed to failure in the laboratory.
Assume that the stress on the sample is given by

o(t) = oy L. (37)
ty

The rate of increase of applied stress do/dt = o, /¢,
is specified by giving the time ¢, required to reach
the yield stress o,. In the range of stresses 0<
o < gy there is no damage and « = 0; we assume
elastic, reversible behavior of the material. Dam-
age to the sample begins at ¢ = oy, that is when
t =t,. The equation for the rate of increase of
damage in the range of stresses g, < ¢ < or is ob-
tained from Egs. (4), (6) and (37) with the result

G-

From Egs. (3) and (37) the strain €(¢) is related to
the damage variable o and the applied stress ¢ by

-o(t) ey

Substitution of Eq. (39) into (38) gives the damage
rate equation

(38)

(39)
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which can be integrated assuming an initial con-
dition

«=0 whent=t,. (41)

The solution of the first order differential equation
(40) with the specified initial condition in Eq. (41)
is given by
p+3
)

MO:I—{1—3&

14

1 <t
p+3\Y
2 t p+2
+__<__1)
p+2\4

1 ( t
+—{—-1

p+1\g
The time evolution of the damage variable o(z)
from Eq. (42) is shown in Fig. 6(a) for several
values of the nondimensional loading rate ¢/t
and p = 2, Failure occurs at z = ¢ when o = 1. It is
seen that a rapid loading rate, small #,/44, leads to

longer nondimensional failure times, large f/¢,.
The dependence of the nondimensional failure

(42)

2 14
da = 1 (1) (i — 1) 1 . (40) time #/t, on the loading rate t,/#4 is obtained by
dr ta\g ty [1—afr)] setting « = 1 in Eq. (42) with the result
1.0 prrerreees e e P S S P 1
i X p=2 )
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Fig. 6. (a) Dependence of the damage variable o on the nondimensional time f/¢4 for several values of the nondimensional loading rate
ty/tq. (b) Mustration of the power-law scaling of the damage variable o during the approach to failure when the applied stress is
increased linearly with time.
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Fig. 7. (a) Dependence of the nondimensional failure time #/z, on the nondimensional loading rate ¢,/¢; when the applied stress is
increased linearly with time. (b) Dependence of the nondimensional stress ¢(¢)/oy on the nondimensional strain e(r) /e, during failure

for several values of the nondimensional loading rate f,/14.
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This dependence is illustrated in Fig. 7(a). The
nondimensional failure time 7 /¢, has a relatively
weak dependence on the nondimensional loading
rate t,/tq especially for higher values of p.

In order to study the approach to failure we
plot log(1 — a) versus log(l —¢/4) in Fig. 6(b).
The straight line behavior indicates power-law
scaling which is very close to the power 1/3 given
for the application of a constant stress in Eq. (37).
Thus, the power-law approach to failure is the
same for constant stress and for a stress that in-
creases linearly with time.

Section 3 showed that the experimental results
in [9] on the failure of chipboard panels under
rapid loading were in good agreement with the
power-law scaling given in Eq. (13). The same
experimental apparatus in [8] was used to study the
failure of chipboard panels when the applied
pressure difference P was increased linearly with
time in accordance with Eq. (37). Their results are

shown in Fig. 2(b). Again, after an initial transient,
these authors found that the cumulative energy eag

td__
ty

associated with AFE events prior to rupture scaled
as eap o (1 —t/t)™%. These authors found the
same power-law time dependence for a linearly
increasing pressure and for a suddenly applied con-
stant pressure in agreement with our results using
damage mechanics.

Next, consider the dependence of stress on
strain during failure with an applied stress that is
increasing linearly with time. The applicable stress—
strain relation can be obtained from Egs. (37), (39)
and (42) with the result

p+3
.J;<£_Q
p-+3\oy
p+2
)

izi{LJQ
€y Oy t3
p+1 -1/3

N 2 ( o
p+2\ oy
1 < c
+ —_— R
p+1\oy
This dependence is shown in Fig. 7(b) for several
values of the nondimensional loading rate f,/z,.
For very rapid loading, small #,/#4, the stress—
strain curve approaches linear elasticity Eq. (1).
For very slow loading, large #,/t4, the stress—strain
curve approaches “equilibrium” failure with ¢ =
oy. The results given in Fig. 7(b) show vari-
ous failure paths through the metastable region

(44)
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defined in Fig. 1(b). The failure path BJ in Fig.
1(b) corresponds to the failure path with #,/z3 = 1
in Fig. 7(b).

6. Strain increasing linearly with time

For the final example we will consider the be-
havior of a sample when the applied strain ¢ is
increased linearly with time. This is another com-
monly applied condition in laboratory studies. In
this case failure does not occur in our model and
the stress on the sample first increases and then
decreases as the strain and damage increases. As-
sume that the strain on the sample is given by

e(t) = e (45)

y

The rate of increase of applied strain de/dt = ¢, /¢,
is specified by giving the time #, required to reach
the yield strain ¢,. In the range of strains 0 < e ¢,
there is no damage and « = 0. Damage to the
sample begins at ¢ = ¢, that is when ¢t =¢,. The
equation for the rate of increase of damage for
strain e > ¢, is obtained from Eqs. (4), (6), and (45)
with the result

Fealm TG

L JE— S MMM -

Damage variable o

(@) Normalized time t/ty

From Egs. (3) and (45) the stress o(¢) is related to
the damage variable «(¢) and the applied strain e(¢)
by

€()

t
o) =l — a0 L=yl —ad) = @7)
y y
Using Eq. (47), it is possible to rewrite the damage

rate equation (46) in the following form

-3t} ()

The solution to Eq. (48) can be obtained only
numerically. The damage starts to develop at time
t = t, when the stress ¢ equals the yield stress oy.
Therefore we use the initial condition «(z,) = 0.
The time evolution of the damage variable o(¢)
from the numerical solutions of Eq. (48) is shown
in Fig. 8(a) for several values of the nondimen-
sional loading rate #,/t4 and p = 2. In the damage
model, failure does not occur since « — 1 only as
t — oo. Our numerical solutions also give the de-
pendence of stress on strain when the applied
stress is increasing linearly with time. This depen-
dence is shown in Fig. 8(b) for several values of the
nondimensional loading rate #,/t4. It is seen that
the stress first increases to a maximum value and
then decreases with increasing strain (time). This
stress relaxation is similar to that obtained in
Section 4 with the instantaneous application of a

(48)
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Fig. 8. (a) Dependence of the damage variable « on the nondimensional time ¢/¢, when the applied strain is increased linearly with
time. (b) Dependence of the nondimensional stress ¢{f)/oy, on the nondimensional strain e(f)/e,.
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constant strain. The maximum stress increases
with increasing loading rate, small ¢, /t,.

7. Discussion

A widely used approach to the failure of a
brittle material is damage mechanics. In this paper
we have applied the generally accepted form of
damage evolution to four relatively simple prob-
lems. The first is the instantaneous application of
stress to a solid. If the applied stress exceeds the
yield stress, damage increases until the solid fails
at a well defined failure time. The results are ap-
plicable to the failure of chipboard panels. The
problem of the damage of a solid subjected to an
instantaneous strain was solved. If the applied
strain exceeds the yield strain damage results in the
relaxation of the stress to the yield stress. It is
argued that this stress relaxation process is directly
analogous to the temporal decay of the aftershock
sequence following an earthquake. The rupture
during an earthquake increases the strain and
stress in some adjacent region. The aftershock se-
quence relaxes this added stress. In the last two
examples we have also considered constant rates of
addition of stress and strain.

Each type of solid requires its own formulation
of constitutive equations which define the evolu-
tion of damage. A relevant measure as to the ap-
plicability of damage mechanics would be the
amount of “disorder” in the solid. A pure crys-
talline material would have minimum disorder.
Dislocations and microcracks would increase the
disorder. Brittle composite materials have consid-
erable built in disorder. It has been shown that
there is a close association between damage me-
chanics and the failure of fiber-bundles [3,24].
Fiber-bundles are an accepted model for the fail-
ure of composite materials.

Damage mechanics is a quasi-empirical ap-
proach to the deformation of a brittle solid.
However, the dependence of rate of damage gen-
eration on strain and stress in Eq. (4) has a ther-
modynamic basis [1,3,21]. The analogy we have
made between phase changes and fracture also has
a thermodynamic basis. Thermal fluctuations are
crucial in phase changes of solids and liquids. A

fundamental question is whether temperature
plays a significant role in the damage of brittle
materials.

Some forms of “damage” are clearly thermally
activated. The deformation of solids by diffusion
and dislocation creep is an example. The ability
of vacancies and dislocations to move through a
crystal is governed by an exponential dependence
on absolute temperature with a well defined acti-
vation energy. The role of temperature in brittle
fracture is unclear. The temperature in the exper-
iments [8] for the fracture of chipboard and had no
effect. A systematic temperature dependence of
rate and state friction was documented by Naka-
tani [25]. This has also been shown to be true for
the lifetime statistics of kevlar fibers [26].

Time delays associated with bubble nucleation
in a superheated liquid are explained in terms of
thermal fluctuations. The fluctuations must become
large enough to overcome the stability associated
with surface tension in a bubble. The fundamental
question in damage mechanics is the cause of the
delay in the occurrence of damage. This problem
has been considered in some detail in [27]. These
authors attributed damage to the “thermal” acti-
vation of microcracks. An effective “temperature”
can be defined in terms of the spatial disorder
(heterogeneity) of the solid. The spatial variability
of stress in the solid is caused by the microcracking
itself, not by thermal fluctuations. This micro-
cracking occurs on a wide range of scales.
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