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Abstract 
 
Uncertainty is pervading our daily life, our thinking and our decisions based on incomplete 
information. In physics we have excellent theories of measuring errors and their adjustment, 
due to Gauss preceded by Boskovich and Legendre, and we have Heisenberg's uncertainty 
relation. Goedel proved that any sufficiently powerful mathematical axiom system is either 
inconsistent or incomplete, with profound consequences for the foundations of mathematics and 
logic. It trivial that the application of formal logic to real-world objects leads to difficulties; 
therefore we have a discipline called "fuzzy logic". Cross-connections and implications of these 
matters are discussed. 
 
 
 
 
SECTION 1. Basic Facts 
 
1.1 Euclidean Geometry 
 
It may be considered the simplest physical theory. 
 
What is a point in nature? Have you ever seen a point or a triangle? 
Answer: “Of course, drawn with chalk on the blackboard; we can also draw it very 
precisely in another way.” But this is not a mathematical point. 
 
Another example : the distance between 2 points d = 7/3 = 2.3333333333333....meters. 
We observe  d = 2.33 m  or d = 2.333333333 m. Is this the same? 
 
After some idealization.... 
But not exactly. 
 
 
1.2. Logic 
 
The application of logic to  real objects is by no means exact either. 
 
“Helmut Moritz has gray hair” What precisely is meant by “hair” ? Is it the same before 
and after a haircut? And what precisely is the object “Helmut Moritz”?  Is he the same 
today as he was yesterday? If he shaves himself, does he remain the same? 
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After some idealization.... 
But not exactly. 
 
 
1.3. Classical Physics 
 
What are the laws of motion of a planet around the Sun? The laws of Kepler, or more 
precisely Newtonian physics. What are the underlying assumptions? For instance, that 
the Sun and the planet are mass points. Are they really? 
 
After some idealization.... 
But not exactly. 
 
Not only do the observations have unavoidable measuring errors, but even the 
observed objects are not exactly defined, they are “fuzzy objects”. So can we pose the 
question: is any of these basic theories true? 
 
After some idealization.... 
But not exactly. 
 
 
1.4. Plato’s World of Ideas 
  
More than 2000 years ago, Plato tried to save the situation by a famous infamous trick: 
he invented the wold of ideas.  
Ideas are not very popular nowadays: people like 1000 Euros better than the idea of 
1000 Euros. They want to be realists rather than idealists.  
 
 
1..5. The Three Worlds of Popper and Eccles 
 
The terminology has become popular by the famous (though not uncontroversial) work 
(Popper and Eccles 1977). 
 
World 1 is the external world of nature in which we move, live, and die. It is the “real 
world'' described by natural science (physics, chemistry, biology, geology, etc.) World 1 
objects are houses, other people, trees, computer hardware, etc. 
 
World 2 is our internal world of thoughts, perceptions, emotions, headaches, joys, etc. 
 
World 3 is the world of interpersonal human culture. It contains mathematics, 
languages, poetry, music, computer software, etc. It is very similar to Plato's world of 
ideas.  
 
Philosophers disagree on the extent in which these three worlds are “real''. Some do 
not recognize World 3; they say that the World 3 object "mathematics'' is only the 
collection of all books on mathematics ever written and published, that is, a collection 
of physical (World 1) objects. (But what about the mistakes contained in those books?) 
 
Some deny the reality of internal experiences. Those persons are lucky because they 
never seem to have headaches or fear the dentist, and unlucky because they never 
enjoy a good meal. (I don't go so far as to say that they are not even thinking.) 
 
Some philosophers even deny the reality of the external world.  



 3

 
At any rate, the three-world concept furnishes a very convenient 
terminology even for those who disagree with it.  
 
 
1.6. Can We Draw a Circle? 
 
Let us summarize and try a simple application. 
 
Consider mathematical reasoning. Logical and mathematical thinking are proverbially 
rigorous. How can our brain perform exact thinking? 
 
To see the problem, take any mathematical theorem about a circle, e.g., its definition: 
the circle is the geometrical locus of all points whose distance from a given point is 
constant; in other terms, the circle is a curve of constant radius. 
 
Now comes the paradox: nobody, not even the greatest mathematician, has ever seen 
or drawn a mathematical circle. Nobody (I  really mean nobody, has ever seen or 
marked a point, and I dare say that probably nobody will ever by able to do so.  
 
What is the reason? Logical, mathematical, and other axiomatic systems are rigorous, 
that is, absolutely accurate, at least in principle. For instance, 2+1=3 and not 2.993. 
Logical and mathematical objects belong to World 3. The fact that a mathematician, 
whose mind belongs to World 2, is able to perform a rigorous logical deduction or find a 
rigorous mathematical proof which is recognized as such also by his fellow 
mathematicians, is very remarkable indeed. Mathematicians have discovered all 
properties of and theorems about a circle, without ever having been able to 
construct one on paper!  
 
But what about the circles constantly used in illustrations in books on geometry etc.?  
They are not exact circles, as one easily sees by looking at them with a magnifying 
glass or under a microscope. At best, they are "fuzzy'' realizations of exact, or “real'', 
circles! 
 
Some mathematicians write books full of geometric theorems and proofs, which do not 
contain a single figure. All theorems must be derivable from the axioms by logical 
deduction only. It is true that most such books do contain figures, but only as an aid to 
better visualize the geometric situation. 
 
Thus logicians, mathematicians etc. appear to be capable of exact thinking, of dealing 
with World 3 objects directly. Thus there seems to be an intimate relation between 
World 3 and World 2. In a way, exact circles, being objects of World 3, can be 
transferred exactly to World 2.  
 
Now comes the surprise. Circles cannot be transferred exactly to World 1! Realizations 
in World 1 of abstract World 3 objects such as points, straight lines, or circles are  
always approximate only!  
 
Thus we have the following scheme of objects: 
in World 3: exact,  
in World 2: exact (at least in principle), 
in World 1: fuzzy. 
This seems to be a clear indication that World 1 and World 2 are essentially different. 
This appears to be a nontrivial philosophical result. 
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1.7. Application to Physics 
 
How exactly does a law of physics fit nature? If the data are inexact, are at least the 
laws exact? The well-known contemporary mathematician Penrose (1989, p.183) gave 
a fine mathematical argument, based on Poincare's ideas, that classical mechanics 
cannot be applicable to he real world. This proof is based on the internal structure of 
classical mechanics.  
 
By  external considerations it is also easy to see (and well known in physics), that 
classical mechanics is only an approximate limiting case of relativity theory for small 
velocities v (v << c, c being the light velocity) and a limiting case of quantum mechanics 
for h  0; cf  (Moritz and Hofmann--Wellenhof 1993, pp. 233 and 311). 
 
Unfortunately, general relativity and quantum mechanics are incompatible, so at least 
one of them must be inexact, too. But how can a physical theory be exact if even the 
concepts which it uses cannot be defined exactly? Have you ever seen a point mass? 
Not even a geometric point can be defined exactly as we have seen! So the 
approximate character of any physical theory is not really surprising. 
 
 
SECTION 2. Various Uncertainties 
 
2.1. Gauss: Observational Errors 
 
After earlier attempts by R. Boskovich  and A.M. Legendre, C.F.Gauss (1777--1855) 
created a theory of errors in a perfect and comprehensive form which is valid even 
today, in spite of the great progress of statistics since then. The principle is that every 
measurement or empirical determination of a physical quantity is affected by measuring 
errors of random character, which are unknown but subject to statistical laws.  
 
Error theory has always been basic in geodesy and astronomy (Boskovich and Gauss 
discovered error theory for their geodetic work!), but has been less popular in physics. 
Theorists frequently thought that, at least in principle, the experimental arrangements 
should always be made so accurate that measuring errors can be neglected. This is, 
usually implicitly, assumed in any book on theoretical physics. You will hardly find a 
chapter of error theory in a course of theoretical physics. (In experimental physics it is 
different, there they have error bars and use statistics.)  
 
   
2.2. Heisenberg: Uncertainties in Quantum Theory 
 
Unavoidable observational errors came to the general center of attention of physicists 
first around 1925 when W.  Heisenberg established his famous uncertainty relation: 
 
                     π2/hqp ≥∆∆      

 
where  h  is Planck's constant basic in quantum theory. It states that a coordinate  q  
and a momentum  p  (mass times velocity) cannot both be measured with arbitrary 
precision. If  q   is very accurate ( 0→∆q ), then the error p∆  in  p  will be very great, 
that is, an accurate measurement of position   q∆   makes the momentum  p  very 
uncertain. 
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Heisenberg's uncertainty relation is of fundamental conceptual importance and thus 
has become justly famous. In fact, Heisenberg's relation is much more popular with 
natural scientists and natural philosophers than Gauss' error theory, although the latter, 
as the geophysicist Jeffreys (1961, pp. 13--14) remarked, is certainly much more 
important in everyday experimental practice than Heisenberg's uncertainty relation. 
Ordinary observational errors are usually much larger than Heisenberg's quantum 
uncertainties.  
 
 
2.2.1 Heisenberg Effects in Biology and Psychology 
 
Curiously enough, the disturbing of the surrounding world by observation implied by the 
Heisenberg relation, has been a well-known fact in life sciences, long before the arrival 
of quantum theory, but its philosophical implications have hardly been noted. 
 
If a man observes a girl, the very act of observation changes the "object": the girl 
blushes, touches her hair, comes closer or walks away. In medicine, this is the placebo 
effect which is so important that great care is needed to take it into account (or rather 
to eliminate it) in testing a new medicament. The very fact that the patient thinks that a 
new medication being tested on him may relieve his symptoms, makes the medication 
possibly effective even if it is only a placebo (a medically inactive substance).  
 
.If you observes a dog, he may wish to play with you or bite you. He will certainly not 
remain passive under observation. If you don’t know the dog, you may suffer from a 
very unpleasant "Heisenberg uncertainty" concerning the behavior of the dog in the 
next second. Dogs may be almost as dangerous as quantum theory! 
 
 
2.3.Goedel: Uncertainties in Mathematics ? 
 
On the other hand, mathematics has always been regarded as the prototype of an 
exact science. This belief received a deadly blow by K. Goedel's incompleteness 
theorem published in 1931. Goedel showed that mathematics can never be fully 
axiomatized: it is either incomplete or inconsistent. This implies that there may be true 
mathematical theorems which cannot be deduced from a finite set of mathematical 
axioms. Furthermore, mathematics, including set theory, as used in contemporary 
practice, cannot be proved to be consistent by an algorithmic procedure as used, for 
instance, in a computer.  
 
H. Weyl, one of the pioneers of modern mathematics and physics, was so pessimistic 
about the foundations of logic and mathematics that he wrote: “How much more 
convincing and closer to facts are the heuristic arguments and the subsequent 
systematic constructions in Einstein's general relativity theory, or the Heisenberg -
Schroedinger quantum mechanics'' (Weyl 1949, p. 235). 
 
In the working practice of mathematicians, however, Goedel's incompleteness is largely 
ignored (e.g., the Bourbaki school), in the same ways as in the working practice of 
physicists (except quantum physicists), Heisenberg's uncertainty plays a negligible 
role.  
 
Nevertheless, both facts are with us and make us aware of a theoretical “skeleton in 
the cupboard'' which lurks at the back of all our scientific work, of a basic element of 
insecurity.  
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Both kinds of uncertainty, however, are very subtle and usually very small  “second-
order effects''.  Less well advertised, but usually much larger, is the effect of Gaussian 
observational errors (and of computer round-off errors!). So to speak, the latter are  
first-order effects''. 
 
 
2.4. Poincare:  Chaos, Instability and Probability 
 
Let our theoretical basis be “classical'' Euclidean geometry, classical (Newtonian) 
mechanics and Gaussian error theory. The fundamental dogma of this way of thinking 
has been the (frequently unconscious) belief that Gaussian errors can be made as 
small as we wish so that, at least theoretically; they can be completely disregarded. 
The events of nature proceed in a deterministic way, subject to causality according to 
classical mechanics. Euclidean geometry and Newtonian mechanics are not essentially 
affected by measuring uncertainties. Even if the initial conditions are not known with 
absolute precision, this does not essentially affect the result computed according to the 
laws of classical mechanics. The computed final results will not be essentially less 
accurate than the initial data.  
 
This is the point of view of deterministic causality. It has found its classical expression 
in the form of “Laplace's demon”: 
 
“An intelligent being which, for some given moment of time, knew all the forces by 
which nature is driven, and the relative position of the objects by which it is composed 
(provided the being's intelligence were so vast as to be able to analyze accurately all 
the data), would be able to comprise, in a single formula, the movements of the largest 
bodies in the universe and those of the lightest atom: nothing would be uncertain to it, 
and both the future and the past would be present to its eyes. The human mind offers 
in the perfection which it has been able to give to astronomy, a feeble inkling of such 
an intelligence. “(P. Laplace, 1749--1827).  
 
The Newtonian theory has proved particular useful in astronomy, where the planets 
moving around the sun may be regarded as  mass points, and where friction can be 
disregarded. On the basis of our present orbital determinations (the “initial conditions''), 
the movements of planets can be predicted with very high precision hundreds of years 
ahead. This seems to be an ideal case of stability.  
 
This is in stark contrast with meteorological weather prediction which works only a few 
days ahead and is a typical case of instability. A small error in the initial conditions may 
cause an arbitrarily great error in the predicted results. This is E. N.  Lorenz' “butterfly 
effect'': a butterfly flapping its wings in Austria may cause a tornado in the United 
States. 
 
Lorenz' work in 1963 was one of the starting points of modern  chaos theory, or 
deterministic chaos (Schuster 1988). Curiously enough, chaos theory nevertheless 
goes back to astronomy since Henri Poincare (1892)  showed that the usual 
trigonometric series of celestial mechanics may frequently be divergent. This 
introduces uncertainties of chaos type even in astronomical predictions, but only for 
very long-range predictions (on the order of thousands of years, perhaps).  
 
Already H. Bruns pointed out in 1884 that an astronomical series may be convergent or 
divergent, depending on whether a certain empirical parameter is a rational or irrational 
number. Now, to any irrational number, there can be found an arbitrarily close rational 
number, so that the question of whether a certain astronomical series is mathematically 
convergent or divergent, is physically meaningless! 
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Now since we know that not everything in nature is stable, instabilities and chaos are 
seen everywhere in nature.  
 
What is characteristic for chaos may be expressed as: “`small causes  large effects'' 
(for example: butterfly  tornado). Another phenomenon of this kind is the throw of 
dice. If, with one set of initial conditions (position and velocity of the hand throwing the 
die) we get a 5, with another set of initial conditions (even if it is practically identical, 
e.g., using a dice--throwing machine) we may throw a 3.  
 
So the initial conditions become irrelevant, and symmetry takes over: all six faces of 
the die have equal probability. Thus probability arises from deterministic but chaotic 
motion. This also, as well as meteorological instability, was clearly recognized already 
by Poincare.  
 
Chaotic effects in nature thus are frequently responsible for probabilistic laws, and also 
random errors are of this kind. Reading an angle with a theodolite involves various 
movements (the hand turning a micrometer screw, rapid involuntary eye movements, 
etc.) which are (at least according  to classical physics) completely determined, if not in 
practice, then at least in theory. Nevertheless we have random errors because a 
deterministic analysis simply is not practically feasible (even if it were theoretically 
possible which I doubt).  
 
So modern chaos theory does throw a strong light on the relation between determinism 
and randomness, including Gaussian errors. 
 
 
2.5. Conclusions 
 
What comes first, determinism or randomness? 
 
Statistical mechanics leads to (deterministic) thermodynamics: Order out of chaos. 
Poincare’s dice lead to a probabilistic distribution: Chaos out of order. But the 
probabilities are equal (1/6), displaying perfect symmetry or “order”. 
 
The same holds  with chaos theory. Figures are often surprisingly regular, as the well-
known fractals of Lorenz and Mandelbrot show. Quantum theory suggests a 
probabilistic background with random fluctuations.So chaos seems to come first. 
 
But God created order out of chaos.  
 
After some idealization.... 
But not exactly. 
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