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Abstract

We present a numerical approach to model three-dimensional thermal convection in a viscous fluid with infinite
Prandtl number and temperature-dependent density and temperature–pressure-dependent viscosity. To compute the viscous
flow, we apply an Eulerian FEM (with tricubic-spline basis functions) to the Stokes equations presented in terms of a
two-component vector velocity potential. The advection equations for density and viscosity are solved by the method of
characteristics, and the heat equation is solved by a FDM. Numerical algorithms and code are developed to be implemented
on parallel computers with a distributed memory.

Keywords: Thermal convection; Eulerian FEM; Galerkin-spline approach; Two-component vector potential

1. Introduction

Many deformational processes in the earth’s crust and
mantle can be described by a slow viscous flow [1–3].
Three-dimensional numerical models of the processes pro-
vide a basis for realistic simulations, but entail high com-
putational complexity, which can be dealt with only on
high-performance computers. Therefore, solution of three-
dimensional problems must rely on highly efficient com-
putational methods. Moreover, their numerical implementa-
tion frequently requires special procedures consistent with
the architecture of the computer employed.

In geophysical problems, three-dimensional simulations
of thermally driven convection in a rectangular domain
have been performed both for constant viscosity (e.g., [4–
6]) and for variable viscosity (e.g., [7–11]). The numeri-
cal simulations were based on the use of finite-difference,
spectral, and multigrid methods. In this paper we present
a numerical approach for solving 3D thermal convection
problem using FEM, FDM, and the method of charac-
teristics. Numerical code is developed using MPI to be
employed on parallel supercomputers (IBM SP2, MPS-
100/MPS-1000) with a distributed memory.

∗ Corresponding author. Tel.: +7 (3432) 742631;
E-mail: tsepelev@imm.uran.ru

2. Mathematical statement of the problem

In a spatial domain Ω = (0, l1) × (0, l2) × (0, l3) we con-
sider an inhomogeneous viscous incompressible flow at
infinite Prandtl number in the presence of gravity and verti-
cal temperature gradient. In Cartesian coordinates, the slow
flow is described by the Stokes, incompressibility, heat,
state, rheology, and advection equations:

−La ·∇ p +div(µei j )−La ·ρe3, (1)

div u = 0, (2)
∂(ρ∗T )

∂t
+〈u,∇(ρ∗T )〉 = ∆T +Di ·µΦ, (3)

ρ(t , x) = ρ∗(t , x)(1−αT0

(
T (t , x)−1)

)
, (4)

µ(t , x) = µ∗(t , x)exp

(
E0 +ρ∗x3 p0V0

RT T0
− E0 + p0V0

RT0

)
, (5)

∂ρ∗
∂t

+〈∇ρ∗u〉 = 0,
∂µ∗
∂t

+〈∇µ∗,u〉 = 0. (6)

Eqs. (1)–(6) contain the following variables and param-
eters: time t ; a spatial variable x = (x1, x2, x3); velocity
vector u = (u1(t , x),u2(t , x),u3(t , x)); pressure p = p(t , x);
strain rate tensor ei j ; absolute temperature T = T (t , x);
density ρ = ρ(t , x); viscosity µ= µ(t , x); thermally unper-
turbed density ρ∗ = ρ∗(t , x); thermally unperturbed viscos-
ity µ∗ = µ∗(t , x); acceleration due to gravity g; universal
gas constant R; unit vector e3 = (0,0,1); coefficient of
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thermal expansion α; activation energy E0; activation vol-
ume V0; a dissipation function Φ = Φ(t , x) representing
the rate of heat production due to an internal friction;
La = ρ0gl3

0/(µ0κ); Di = µ0κ/(cρ0T0l2
0); specific heat c;

thermal diffusivity κ ; and reference density ρ0, length l0,
viscosity µ0, pressure p0, and temperature T0. To eliminate
the incompressibility condition (Eq. 2) and pressure p from
Eq. (1), we define the vector potential ψ = (ψ1,ψ2, ψ3)
by the relation u = curlψ and apply the curl operator to
Eq. (1).

At the boundary � of 	 we set impenetrability condi-
tions with either perfect slip or no-slip conditions. For the
temperature on the vertical faces on 	 we set zero heat
flux conditions (as in a Neumann problem). On the top
and bottom faces of 	 a specific temperature is prescribed
(as in a Dirichlet problem). At the initial time temperature,
density, and viscosity are given.

Equations (1–6) in terms of vector potential combined
with the boundary and initial conditions determine (not
uniquely) the unknown functions ψ1, ψ2, and ψ3, whereas
the unknown functions T , ρ∗, and µ∗, (and, therefore,
ρ and µ) are uniquely determined within 	 at any t ≥
0. For our purposes, any potential found by solving the
equations above is suitable, because the same velocity field
is obtained.

3. Numerical methodology

To apply a finite element method, we replace Eq. (1) by
the following variational equation∫
Ω

µ
(
2e11ξ11 +2e22ξ22 +2e33ξ33 +e12ξ12 +e13ξ13 +e23ξ23

)
dx

= −La
∫
Ω

ρω3 dx , (7)

for any arbitrary admissible function ω = (ω1,ω2,ω3),
where the expressions for ξi j in terms of ω are identi-
cal to the expressions for ei j in terms of ψ; and function ω

satisfies the conditions set for the vector potential ψ.
Ismail-Zadeh et al. [12] showed that the three-compo-

nent vector potential can be reduced to a two-component
representation for a wide class of problems, so that ψ3 = 0
in the required vector velocity potential ψ . If viscosity of
the fluid is only depth dependent, that is µ = µ(t , x3),
the two-component representation can be replaced by
one-component potential ψ = (∂ϕ/∂x2,−∂ϕ/∂x1,0), where
ϕ = ϕ(t , x) is a scalar function satisfying appropriate
boundary conditions.

Therefore, the problem is reduced to computing the
functions ψ(t , x), T = T (t , x), ρ(t , x), and µ(t , x) that sat-
isfy Eqs. (3–7) in 	 at t ≥ 0 and the boundary and initial
conditions formulated above.

Vector potential ψ, the thermally unperturbed density ρ∗
and viscosity µ∗ are found by applying an Eulerian FEM

with basis functions of a special form. The construction
of the basis functions and the implementation of the finite
element method were described in detail by Ismail-Zadeh
et al. [13]. The vector potential is approximated by a lin-
ear combination of tricubic basis functions expressed as
products of cubic splines. Density and viscosity are ap-
proximated at three times finer grid by linear combinations
of trilinear basis functions expressed as products of linear
functions.

The approximate vector potential is found for prescribed
density and viscosity distributions by solving a set of linear
algebraic equations with a positive definite band matrix.
We solve the system by the conjugate gradient or Seidel
iteration method [14]. Approximations of the thermally
unperturbed density and viscosity for a prescribed velocity
distribution are computed by the method of characteristics
(see [13]). Temperature T = T (t , x) is approximated by
finite-differences and computed by the implicit alternating-
direction method [15]. At each iteration timestep, a large
set of linear algebraic equations is solved, and a number
of independent modules are organized for solving these
equations on parallel supercomputers with a distributed
memory.

The numerical algorithm consists of the following basic
steps: (i) a set of linear algebraic equations is solved for
the coefficients of a decomposition of the vector velocity
potential in terms of basis functions; (ii) the approximate
heat equation and Eq. (6) for advection of the thermally
unperturbed density ρ∗ and viscosity µ∗ are then solved;
and (iii) updated density and viscosity are determined from
Eqs. (4) and (5), respectively.

4. Conclusions

In summary we derive the following conclusions. A nu-
merical method was developed to solve simultaneously the
Stokes equations, heat equation, and advection equations,
where the fluid density and viscosity are temperature- and
temperature–pressure-dependent, respectively.

A computational cost is greatly reduced by an intro-
duction of the two-component (or even one-component in
some cases) representation of the vector velocity potential.

The use of tricubic splines as basis functions in an
approximation of the vector velocity potential allows to
obtain numerical results of high accuracy.

Numerical experiments have showed an efficiency of the
numerical algorithm and parallelized code developed.
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Abstract

We present an approach to three-dimensional numerical solutions of gravity advection (Rayleigh–Taylor) and thermal
convection (Rayleigh–Benard) problems. The inverse problem of gravity advection is solved numerically by replacing
positive timesteps with negative ones. The inverse problem of thermal convection is ill-posed problem, and we suggest
a variational approach to solve the problem. We test the numerical methodology on restoration models of diapirs and a
thermal plume. The numerical approach can be used to reconstruct evolutions of salt and mud diapirs, mantle plumes and
lithospheric slabs.

Keywords: Rayleigh–Taylor instability; Rayleigh–Benard instability; Ill-posed problem; Backward heat equation; Opti-
mization methods

1. Introduction

A restoration of geological structures means a finding
of a spatial distribution of physical variables (e.g., velocity,
density, viscosity, temperature) in the geological past us-
ing some information about their present-day distributions.
Hence to restore the evolution of geo-structures, it is nec-
essary to solve a system of partial differential equations
backwards in time. The principal goal of the study was to
develop stable numerical algorithms to simulate the inverse
problems of gravity advection and thermal convection.

2. Mathematical statement of the problems

2.1. Problem 1. Gravity advection

In 3D model domain �1 = [0,3h] × [0,3h] × [0,h] we
consider a slow flow of viscous heterogeneous incom-
pressible fluid due to gravity. The flow is governed by
the momentum, advection, and continuity equations. The

∗ Corresponding author. Tel.: +49 721-6084621; Fax: +49 721-
71173; E-mail: alik.ismail-zadeh@gpi.uni-karlsruhe.de

dimensionless equations take the following form [1]:

∇ P = div(µei j )+ gρ�e3, (1)

∂ρ/∂t +〈�u,∇ρ〉 = 0, ∂µ/∂t +〈�u,∇µ〉 = 0, t ∈ [0,ϑ],

(2)

div �u = 0, t ∈ [0,ϑ], x ∈ �1. (3)

2.2. Problem 2. Thermal convection

In 3D model domain �2 = [0,2h] × [0,2h] × [0,h] we
consider a slow thermoconvective flow of heterogeneous
incompressible fluid at the infinite Prandtl number with
a temperature-dependent viscosity. The flow is described
by heat, momentum, and continuity equations. In the
Boussinesq approximation these dimensionless equations
take the following form [1]:

∂T/∂t +〈�u,∇T 〉 = ∇2T , t ∈ (0,ϑ], x ∈ �2, (4)

∇ P = div(µei j )+Ra T �e3, ei j = ∂ui/∂xj +∂uj /∂xi ,

�e3 = (0,0,1), (5)

div �u = 0 t ∈ [0,ϑ], x ∈ �2. (6)

Here T , t , �u, P, ρ, and µ are temperature, time, velocity
vector, pressure, density and viscosity, respectively. The

 2003 Elsevier Science Ltd. All rights reserved.
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Rayleigh number is defined as Ra = αgρ0δT h3/µ0κ where
α is the thermal expansivity; g is the acceleration due to
gravity; ρ0 and µ0 are the reference density and viscosity,
respectively; δT is the temperature contrast between the
upper and lower boundary of the model domain; and κ is
the thermal diffusivity. In Eqs. (4)–(6) length, temperature,
and time are normalized by h, δT , and h2/κ , respectively.

At the boundary of the model domain (Problems 1
and 2) we set the impenetrability condition with perfect slip
conditions: 〈�u, �n〉 = 0,

〈∇�utg , �n〉 = 0, where �n is the normal
vector and utg is the tangential component of velocity. In
Problem 2 we assume the heat flux through the vertical
boundaries of the box to be zero: 〈�n,∇T 〉 = 0. The upper
and lower boundaries are isothermal surfaces, and hence
T = 0 and T = 1 at the boundaries respectively. To solve
the direct (forward in time) and inverse (backward in time)
problems of gravity advection (Problem 1), we assume
the density and viscosity to be known at the initial time
t = 0 and at the final (in terms of the direct problem)
time t = ϑ , respectively. To solve the direct and inverse
problems of thermal convection (Problem 2), we assume
the temperature to be known at the initial time t = 0 and at
the final time t = ϑ , respectively.

Thus, the direct (or inverse) problem of gravity ad-
vection is to determine functions �u = �u(t , x), P = P(t , x),
ρ = ρ(t , x), and µ = µ(t , x) satisfying (1)–(3) at t ≥ 0 (or
t ≤ ϑ), prescribed boundary conditions, and the initial con-
dition for the direct problem and the final condition for
the inverse problem. The direct (or inverse) problem of the
thermal convection is to determine functions �u = �u(t , x),
P = P(t , x), and T = T (t , x) satisfying (4)–(6) at t ≥ 0
(or t ≤ ϑ), prescribed boundary conditions, and the initial
condition for the direct problem and the final condition for
the inverse problem.

3. Numerical approach

A numerical solution to Stokes equations (1) and (5) is
based on an introduction of a two-component vector veloc-
ity potential and on the application of the Eulerian FEM
with a tricubic-spline basis for computing the potential [2].
Such a procedure results in a set of linear algebraic equa-
tions with a symmetric positive-defined banded matrix. We
solve the set of the equations by the conjugate gradient
method. The numerical algorithm was designed to be im-
plemented on parallel computers. Temperature entering in
the heat equation (4) is approximated by finite differences
and found by the alternating direction method [3].

Equations (2) have characteristics described by the sys-
tem of ordinary differential equations

dx/dt = �u(t , x(t)). (7)

Along the characteristics the density and viscosity are
constant ρ(t , x(t)) = ρ∗(x(0)), µ(t , x(t)) = µ∗(x(0)), where

ρ∗ and µ∗ are the initial density and viscosity. The char-
acteristics are computed with the Euler or Runge–Kutta
methods. If we replace the positive time by the negative in
(7), we have the same form of characteristics for inverse
velocity field [4]. It should be noted that conjugated prob-
lems to (2) have the same form for inverse velocity field
too.

It is known that an inverse problem of thermal con-
vection is ill-posed, because the inverse operator of the
heat equation is non-bounded. As a result, small errors in
computations (or in estimations of present-day temperature
field) will result in large errors in a solution of the problem.
The method suggested here for solving the inverse problem
of thermal convection is included into a class of variational
methods.

We consider the following objective functional J (ϕ) =
‖T (ϑ , ·;ϕ)−χ(·)‖2, where T (ϑ , ·;ϕ) is the solution of the
thermal boundary problem (4) at the final time ϑ , which
corresponds to some (unknown as yet) initial temperature
distribution ϕ(·); χ(·) = T (ϑ , ·; T0) is the known tempera-
ture distribution at the final time, which corresponds the
initial temperature T0(·), and ‖·‖ is the norm in space
L2(�). The functional has its unique global minimum at
value ϕ ≡ T0 and J (T0) ≡ 0, ∇ J (T0) ≡ 0. The uniqueness
of the functional’s minimum follows from the uniqueness
of the solution of the relevant boundary value problem
for the heat equation [5]. Therefore, we seek the global
minimum of the functional with respect to ϕ. To find a
minimum of the functional we employ the gradient method
[6] (k = 0,1, . . . ,n, . . .)

ϕk+1 = ϕk −βk∇ J (ϕk),

βk = min{1/(k +1), J (ϕk)/‖∇ J (ϕk)‖2}, ϕ0 = 0. (8)

We found ∇ J as a solution to the boundary problem
conjugated to (4) at the initial time:

∂ Z/∂τ −〈�u,∇Z〉 = ∇2 Z , τ = −t ∈ [0,ϑ), (9)

Z(ϑ , x) = 2(T (ϑ , x;ϕ)−χ(x)),

with uniform boundary conditions. The iterative solution
algorithm for the backward heat equation is based on the
following three steps (k = 0,1, . . . ,n, . . .): (i) to solve the
heat equation (4) with appropriate boundary conditions and
initial condition T = ϕk at time interval [0,ϑ] in order
to find T (θ , ·;ϕk); (ii) to solve problem (9) backwards in
time, that is, to determine gradient ∇ J (ϕk) of functional;
and (iii) to determine βk and then to find ϕk+1 from (8).
Computations are terminated, when condition J (ϕ̃k) < ε

is true, and ϕ̃k is then considered to be an approximate
solution to the backward heat equation. The parameter ε

depends on an accuracy of finite difference approximations
for the heat equation. Thus, the solution to the backward
heat equation with the appropriate boundary and initial
conditions was reduced to solutions of series of forward
problems, which are known to be well-posed.
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Fig. 1. Gravity advection problem. Forward and backward mod-
eling of a diapir evolution.

4. Results

To model the problem of gravity advection backwards in
time we consider a three-layered structure of viscous fluid
filling the model domain. The viscosities and densities are
µ = 1.0 and ρ = 0.85 for the middle layer, µ = 100.0 and
ρ = 1.0 for the lower and upper layers, respectively. Fig. 1
illustrates interfaces between the layers at the initial (a) and
final (b) times for the direct problem, and restorations of
the layers (c) from their positions illustrated in (b).

To model the backward thermal convection, we consider
that T0 = 1−x3/h, Ra ≈ 9×104, µ(T ) = exp(Q/(T +G)−
Q/(0.5 + G)), Q = 225/ ln(r ) − 0.25ln(r ), G = 15/ ln(r )
−0.5, and r = 20 is the viscosity ratio between the up-
per and lower boundaries of the model domain [7]. In the
forward model we prescribe a small thermal perturbation
at the initial time in x = (0.5,0.5,0.1) to generate insta-
bility and to evolve a thermal plume. We divide model
box into 32× 32× 32 rectangular elements to approximate

Fig. 2. Thermal convection problem. Forward and backward
modeling of a thermal plume evolution.

vector potential and viscosity. Temperature and density
were approximated on the grid 94 × 94 × 94. Time step
�t = dx/umax, umax = max

�
|u|, dx is diameter of the grid.

Fig. 2 presents the initial positions of the isotherms for
the direct problem of the thermal convection (a), the final
position of the isotherms (b), and their restorations (c).

5. Conclusion

We suggested new numerical approaches to solving the
inverse problems of gravity advection and thermal con-
vection. In the case of thermal convection we reduce the
ill-posed backward problem to iterative solving well-posed
direct and conjugated problems for the heat equation. The
solution algorithms are stable to small computational errors
and able to restore viscous flow, density, and temperature.
Our approach allows using parallelized computer codes
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developed for simulations of forward problems. The sug-
gested methodology opens a new possibility in problems of
restorations of geological structures.
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Abstract.

Modern seismic tomographic images of the Earth’s interior facilitate the inference

of the complex trajectories of present-day convective flow in the upper mantle.

Quantitative reconstruction of both the observed mantle structure and temperature

field backwards in time requires a numerical tool for solving the inverse problem of

thermal convection at infinite Prandtl number. In this paper we present a variational

approach to three-dimensional numerical restoration of thermoconvective mantle flow

with temperature-dependent viscosity. This approach is based on a search for the

mantle temperature and flow in the geological past by minimizing differences between

present-day mantle temperature derived from seismic velocities (or their anomalies)

and that predicted by forward models of mantle flow for an initial temperature guess.

The past mantle temperatures so obtained can be employed as constraints on forward

models of mantle dynamics. To demonstrate the applicability of this technique, we

restore numerically a fluid dynamic model of the evolution of upper mantle plumes and

show that the initial shape of the plumes can be accurately reconstructed. We then

model the evolution of the plumes forward in time (plume upbuilding) starting from the

restored state to the state they were before the restoration and demonstrate the high

accuracy of the model predictions. We also show that the neglect of thermal diffusion in

the backward modeling of thermal plumes (in order to simplify the numerical procedure)

results in erroneous restorations of the plumes.
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Introduction

The reconstruction of mantle plumes and lithospheric slabs to earlier stages of their

evolution is a major challenge in geodynamics. High-resolution seismic tomographic

studies open possibilities for detailed observations of present-day mantle structures

[e.g., Grand et al., 1997; van der Voo et al., 1999; Ritsema and Allen, 2003] and for

derivations of mantle temperature from seismic velocities or velocity anomalies [e.g.,

Sobolev et al., 1996; Goes et al., 2000]. An accurate reconstruction would allow the test

of geodynamic models by simulating the evolution of plumes or slabs starting from the

restored state and comparing the derived forward state to observations.

For clarity of subsequent discussion, we introduce a few mathematical definitions

used in the paper. A mathematical model for a geophysical problem has to be well-posed

in the sense that it has to have the properties of existence, uniqueness, and stability of

a solution to the problem [Hadamard, 1923]. Problems for which at least one of these

properties does not hold are called ill-posed. The requirement of stability is the most

important one. If a problem lacks the property of stability then its solution is almost

impossible to compute because numerical computations are polluted by unavoidable

errors. If the solution of a problem does not depend continuously on the initial data,

then, in general, the computed solution may have nothing to do with the true solution.

The inverse problem of thermal convection in the mantle is an ill-posed problem,

since the backward heat problem, describing both heat advection and diffusion through

the mantle backwards in time, possesses the properties of ill-posedness [Kirsch, 1996].
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In particular, the solution to the problem does not depend continuously on the initial

data. This means that small changes in the present-day temperature field may result

in large changes of predicted mantle temperatures in the past (see Appendix 1 for an

explanation of this statement in the case of the 1-D diffusion equation).

If heat diffusion is neglected, the solution of the advection equation backwards

in time does not present computational difficulties. A numerical approach to the

solution of the inverse problem of the Rayleigh-Taylor (gravitational) instability was

proposed by Ismail-Zadeh [1999] and was developed later for a dynamic restoration of

plume (diapiric) structures to their earlier stages [Ismail-Zadeh et al., 2001a]. Kaus

and Podladchikov [2001] and Korotkii et al. [2002] applied the approach to study 3D

Rayleigh-Taylor overturns forward and backward in time. Both direct (forward in time)

and inverse (backward in time) problems of the gravitational advection are well-posed.

This is because the time-dependent advection equation (for density or temperature)

has the same form of characteristics for the direct and inverse velocity field (the vector

velocity reverses its direction, when time is reversed). Therefore, numerical algorithms

used to solve the direct problem of the gravitational instability of the geological

structures can also be used in studies of the inverse problems by replacing positive

timesteps with negative ones.

Steinberger and O’Connell [1997, 1998] and Conrad and Gurnis [2003] modeled the

mantle flow backwards in time from present-day mantle density heterogeneities inferred

from seismic observations. However, they ignored thermal diffusion in the mantle (and

hence the respective term in the heat equation) and employed the advection equation in
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the modeling. We demonstrate that this approach (neglect of heat diffusion in backward

modeling) is not valid.

There is sizeable literature on the numerical solution of the backward heat equation

(e.g., Buzbee and Carasso [1973], Colton [1979], Elden [1982], Ames and Epperson [1997],

Lu [1997], Moszynski [2001]; see also Tikhonov and Arsenin [1977] and Kirsch [1996] for

additional references). These methods are based on a regularization of the numerical

solution. Bunge et al. [2003] and Ismail-Zadeh et al. [2003a,b] have independently

developed variational approaches for solving the inverse problem of mantle convection.

The major differences between the two approaches are that Bunge et al. [2003] applied

the variational method to a set of equations describing mantle convection, whereas

Ismail-Zadeh et al. [2003a] applied the variational method to the heat equation,

because time enters only into this equation and the backward heat problem is ill-posed.

Ismail-Zadeh et al. [2003a] determine the temperature in the geological past and then

the convective backward flow from the Stokes and continuity equations. (We will discuss

other differences between these two approaches to solving the inverse problem of mantle

convection later in the paper.)

In section 1 we present a mathematical statement of the three-dimensional direct

and inverse problems of thermal convection with temperature-dependent viscosity. In

section 2 we describe the variational approach to search for mantle temperature in the

geological past based on estimations of its present-day temperature. The approach is

based on reducing the problem to minimization of the objective functional describing

the difference between the present-day mantle temperature and that predicted by
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forward models of mantle flow for an initial temperature guess. The optimum solution

to the minimization problem is provided by iteratively solving coupled direct and

conjugate (adjoint) problems for the heat equation. The variational approach to solving

the backward heat problem has been known in applied mathematics and geophysics

(meteorology and oceanology), but so far has not been used in studies of mantle

thermoconvective flow. In section 3 we describe numerical techniques used in solving the

inverse problem of mantle convection. We demonstrate the applicability of the numerical

approach to restoration of mantle plumes and show the effect of heat diffusion on results

of the backward modeling in sect. 4. We discuss the physical and mathematical meaning

of the time-reversible processes in sect. 5 and present conclusions in sect. 6.

1. Mathematical Statement of the Problem

We assume that the mantle behaves as a Newtonian fluid at geological time scales

and consider the slow thermoconvective flow of a heterogeneous incompressible fluid at

infinite Prandtl number with a temperature-dependent viscosity in a three-dimensional

rectangular domain Ω = (0, x1 = l1) × (0, x2 = l2) × (0, x3 = l3 = h) heated from below;

x = (x1, x2, x3) are the spatial coordinates; the x3-axis is vertical and positive upward.

Thermoconvective flow is described by the heat, momentum (Stokes), and continuity

equations. In the Boussinesq approximation these dimensionless equations take the form

[Chandrasekhar, 1961]:

∂T/∂t + u · �T −�2T = 0, (1)
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−� P + � · [µ(T )(�u + (�u)Tr)] +RaT e = 0, (2)

� · u = 0, (3)

for x ∈ Ω and t ∈ (ϑ1, ϑ2), where T , u, P , µ, and t are temperature, velocity, pressure,

viscosity, and time respectively; superscript Tr means transpose; and e = (0, 0, 1) is the

unit vector. The Rayleigh number is defined as Ra = αgρ0 � Th3/µ0κ where α is the

thermal expansivity; g is the acceleration due to gravity; ρ0 and µ0 are the reference

typical density and viscosity, respectively; �T is the temperature contrast between

the lower and upper boundaries of the model domain; and κ is the thermal diffusivity.

In Eqs. (1)-(3) length, temperature, and time are normalized by h, �T , and h2/κ,

respectively. We do not consider the chemical convection in the mantle. The formulation

of the inverse problem of thermo-chemical convection and the numerical approach to

the solution of the problem are described by Ismail-Zadeh et al. [2003a].

At the boundary Γ of the model domain Ω we set the impenetrability and perfect

slip conditions: n · �utg = 0 and n · u = 0, where n is the outer normal vector and utg

is the tangential component of velocity. We assume the heat flux through the vertical

boundaries of Ω to be zero: n · �T = 0. The upper and lower boundaries are assumed

to be isothermal surfaces, and hence T = Tu at x3 = h, T = Tl at x3 = 0, where Tu and

Tl are constant, and ∆T = Tl − Tu > 0. To solve the direct and inverse problems of

thermal convection, we assume that the temperature is known at the initial time t = ϑ1

and at the final (in terms of the direct problem) time t = ϑ2, respectively.

Thus, the direct (or inverse) problem of the thermal convection is to determine
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velocity, u = u(t, x), pressure, P = P (t, x), and temperature, T = T (t, x), satisfying

Eqs. (1)-(3) at t ≥ ϑ1 (or t ≤ ϑ2), the prescribed boundary conditions, and the

temperature condition at t = ϑ1 (or t = ϑ2).

2. Variational Approach to Solving the Backward Heat

Problem

In this section we present a variational approach to an approximate solution to the

backward heat problem. Consider the following objective (quadratic) functional

J(ϕ) = ‖T (ϑ2, · ;ϕ) − χ(·)‖2 =
∫
Ω
|T (ϑ2, x;ϕ) − χ(x)|2dx, (4)

where T (ϑ2, x;ϕ) is the solution of the forward heat equation (1) with the appropriate

boundary and initial conditions at final time ϑ2, which corresponds to some (unknown

as yet) initial temperature distribution ϕ = ϕ(x); χ(x) = T (ϑ2, x;T0) is the known

temperature distribution at the final time for the initial temperature T0 = T0(x); and

‖ · ‖ is the norm in space L2(Ω). We seek a minimum of the objective functional with

respect to the initial temperature, ϕ. The functional has its unique global minimum

at value ϕ = T0, and J(T0) = 0, �J(T0) = 0. The uniqueness of the global minimum

of the objective functional follows from the uniqueness of the solution of the relevant

boundary value problem for the heat equation and a strong convexity of the functional

[Tikhonov and Samarskii, 1990].

To find a minimum of the objective functional we employ the gradient method
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[Vasiliev, 2002]

ϕk+1 = ϕk − αk � J(ϕk), ϕ0 = T∗, k = 0, 1, 2, ... , (5)

αk = min{1/(k + 1); J(ϕk)/‖ � J(ϕk)‖}, (6)

where T∗ is an initial temperature guess. It can be shown that the gradient of functional

J is represented as �J(ϕ) = Ψ(ϑ1, · ) (see Appendix 2), where Ψ is the solution to the

following boundary problem conjugated (adjoint) to the respective boundary problem

for Eq. (1):

∂Ψ/∂t + u · �Ψ + �2Ψ = 0, x ∈ Ω, t ∈ (ϑ1, ϑ2),

σ1Ψ + σ2∂Ψ/∂n = 0, x ∈ Γ, t ∈ (ϑ1, ϑ2),

Ψ(ϑ2, x) = 2(T (ϑ2, x;ϕ) − χ(x)), x ∈ Ω,

(7)

where σ1 and σ2 are some smooth functions or constants satisfying the condition

σ2
1 + σ2

2 �= 0. Selecting σ1 and σ2 we can obtain corresponding boundary conditions.

Problem (7) is ill-posed for positive timesteps and well-posed for negative timesteps.

The solution algorithm for the backward heat problem is based on the following

three steps (k = 0, 1, 2, ..., n, ...):

(i) solve the forward heat equation (1) in the time interval [ϑ1, ϑ2], x ∈ Ω, with the

boundary conditions defined and initial temperature T (ϑ1, x) = ϕk(x) in order to find

T (ϑ2, x;ϕk);

(ii) solve problem (7) backwards in time and determine �J(ϕk) = Ψ(ϑ1, x;ϕk); and

(iii) determine αk from (6) and then update the initial temperature, i.e., find ϕk+1 from

(5).



10

Computations are terminated when

δϕn = J(ϕn) + ‖ � J(ϕn)‖2 < ε, (8)

where ε is a small constant (in our numerical experiments we assumed ε = 10−8).

The temperature ϕn is then considered to be the approximation of the target value

of the initial temperature T0. If δϕn ≥ ε, we return to step (i) and make the next

iteration. Numerical tests demonstrate that if the initial guess for temperature is a

smooth function, than iterations converge rapidly (only 5 to 10 iterations); otherwise,

the iterations converge very slowly (100 and more iterations).

Thus, the solution of the backward heat problem is reduced to solutions of series of

forward problems, which are known to be well-posed [Tikhonov and Samarskii, 1990].

The algorithm can be used to solve the problem over any subinterval of time in [ϑ1, ϑ2].

3. Numerical Approach to Solving the Inverse Problem

of Mantle Convection

In this section we describe briefly the numerical methods we use in the study. See

Ismail-Zadeh et al. [2001b] for more detail.

3.1. Numerical Method for Solving the Stokes Equation

To facilitate computations, Eqs. (2) and (3) are simplified by introducing a

two-component representation of the vector velocity potential

u = curl �ψ, �ψ = (ψ1, ψ2, 0) . (9)
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We represent the vector velocity potential as a linear combination of tricubic

basis splines and apply the Eulerian finite element method to Eqs. (2) and (3) with

the appropriate boundary conditions. To simplify analysis, we rewrite the problem in

variational form. To solve the problem numerically, the model domain Ω is discretized

introducing the uniform rectangular grid

0 = x0
i < x1

i < ... < xni−1
i < xni

i = li, i = 1, 2, 3,

with grid points Ωijk = (xi
1, x

j
2, x

k
3), 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, and 0 ≤ k ≤ n3. At each

grid point Ωijk, we define a tricubic basis element ωl
ijk = ωl

ijk(x1, x2, x3), l = 1, 2 as

the tensor product of one-dimensional cubic basis elements (Ahlberg et al., 1967). The

construction of bases consisting of tricubic elements ωl
ijk is described by Ismail-Zadeh et

al. [1998].

The vector potential is approximated by the combinations

ψl(t, x1, x2, x3) ≈
∑
i,j,k

ψl
ijk(t) ω

l
ijk(x1, x2, x3), l = 1, 2. (10)

Density and viscosity are approximated by using trilinear basis elements φijk(x1, x2, x3):

ρ(t, x1, x2, x3) ≈
∑
i,j,k

ρijk(t) φijk(x1, x2, x3),

µ(t, x1, x2, x3) ≈
∑
i,j,k

µijk(t) φijk(x1, x2, x3).

The coefficients ψl
ijk are determined at each time step by solving a set of linear

algebraic equations with a symmetric positive definite band matrix. The set is solved

iteratively by conjugate gradient or Gauss–Seidel methods. The relevant software was
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designed for implementing the codes on parallel computers. A detailed analysis of

particular implementations of iterative methods for sets of linear algebraic equations is

presented by Tsepelev et al. [1999].

3.2. Numerical Method for Solving the Heat Equation

Temperature is computed by finite-difference methods. To do this, we define

a regular grid in Ω (we use a grid finer by a factor of three than that employed to

approximate the vector potential). The first and second order derivatives with respect

to coordinates in the heat equation are approximated by central finite differences. The

velocity in the heat equation is determined from (9) and (10).

We employ an implicit alternating-direction method [Marchuk, 1994] to compute

temperature. Essentially, temperature T n+1 at time t = tn+1 is found as

rn = τ �2 T n + u · �T n,

[
1 − τ

2

∂2

∂x2
3

]
T ∗ = rn,

[
1 − τ

2

∂2

∂x2
2

]
T ∗∗ = T ∗,

[
1 − τ

2

∂2

∂x2
1

]
T ∗∗∗ = T ∗∗, T n+1 = T n + T ∗∗∗,

where τ is the time step. In the modeling, the parameter τ is chosen in such a way as

to guarantee the stability of the finite difference method, namely:

τ =
1

8

dx

umax
, dx = [h2

1 + h2
2 + h2

3]
1/2, umax = max{|ui(x)| : x ∈ Ω, i = 1, 2, 3},

where hk = xi
k − xi−1

k . To compute T n+1, n2n3 + n1n3 + n1n2 tridiagonal systems

are solved, and the corresponding number of independent modules can be organized

to perform parallel computations of these systems by a tridiagonal method. The
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representation of the vector velocity potential based on cubic splines employed here

makes it possible to compute both advection and diffusion of temperature simultaneously

by finite-difference methods.

3.3. The Algorithm for Numerical Solution of the Inverse Problem

of Mantle Convection

We define a uniform partition of the time axis at points tn = ϑ2 − τn, where τ is

the time step, and n successively takes integer values from 0 to some natural number

m = (ϑ2 − ϑ1)/τ . At each subinterval of time [tn+1, tn], the solution of the problem

backwards in time consists of the following basic steps.

Step 1. Given the temperature T = T (tn, ·) at t = tn we solve a set of linear

algebraic equations derived from Eqs. (2) and (3) and the appropriate boundary

conditions to find the velocity potential �ψ = �ψ(tn, ·).

Step 2. Eq. (9) is used to determine the velocity u = u(tn, ·;T ), corresponding to

temperature T = T (tn, ·), from the vector potential.

Step 3. The ’advective’ temperature Ta = Ta(tn+1, ·) is determined by solving the

advection heat equation (neglecting the diffusion term) backwards in time, and steps 1

and 2 are then repeated to find the velocity ua = u(tn+1, ·;Ta), corresponding to the

’advective’ temperature.

Step 4. The velocities ua and u are used in the direct problem (Eq. (1) combined

with the boundary conditions) and the conjugate problem (7), respectively, to find

temperature T = T (tn+1, ·) at t = tn+1.
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Compared to our previous algorithm (Ismail-Zadeh et al., 2003a), step 3 is

introduced here to accelerate the convergence of temperature iterations in solving the

direct and conjugate heat problems (to satisfy inequality (8) in a few iterations at fixed

ε).

After these algorithmic steps, we obtain temperature T = T (tn, ·), velocity potential

�ψ = �ψ(tn, ·), and velocity u = u(tn, ·) corresponding to t = tn, n = 0, ..., m. Based

on the obtained results, we can use interpolation to reconstruct, when required, the

entire process on the time interval [ϑ1, ϑ2] in more detail. The time step is chosen

automatically so that the maximal displacement of material points does not exceed a

sufficiently small preset value.

Thus, at each subinterval of time we apply the variational method to the heat

equation only, iterate the direct and conjugate problems for the heat equation in order

to find temperature, and determine backward flow from the Stokes and continuity

equations twice (for ’advective’ and ’true’ temperatures). Compared to the variational

approach by Bunge et al. [2003], our numerical approach is computationally less

expensive, because we do not involve the Stokes equation into the iterations between

the direct and conjugate problems (the numerical solution of the Stokes equation is

the most time consuming calculation). Moreover, our approach admits the use of

temperature-dependent viscosity.
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4. Restoration model of mantle plumes

In the modeling, we consider thermal plumes to be formed at the depth of 648 km,

approximately the boundary between the lower mantle and upper mantle. To verify the

validity of our numerical approach, we start our simulations by computing a forward

model of the evolution of the thermal plumes and then we restore the evolved plumes to

their earlier stages.

We assume the following dimensional model parameters: α = 3 × 10−5 K−1,

∆T = 2000 K, ρ0 = 3.4× 103 kg m−3, and κ = 0.8× 10−6 m2 s−1 [Schubert et al., 2001];

the reference mantle viscosity is µ0 = 1021 Pa s [Forte and Mitrovica, 2001]; h = 720

km, and l1 = l2 = 3h, and therefore, the Rayleigh number is Ra = 9.5 × 105. At initial

time t = 0 we assume that the upper mantle temperature increases linearly with depth.

We consider the mantle viscosity µ to be temperature-dependent [Busse et al.,

1993]:

µ(T ) = exp[Q/(T +G) −Q/(0.5 +G)],

where Q = [225/ln(r)] − 0.25ln(r), G = [15/ln(r)] − 0.5, and r = 20 is the effective

viscosity ratio between the upper and lower boundaries of the model domain. The

temperature dependence of this viscosity function is shown in Figure 1. We adopt

this viscosity law for the sake of simplicity in the model and for benchmarking of

our numerical codes [Busse et al., 1993], although the methodology described here is

valid for more general viscosity relationships [Ismail-Zadeh et al., 2003a]. The chosen

temperature (and depth) dependent viscosity profile has no minimum associated with
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the asthenospheric layer, while an inversion of the main convection-related geophysical

data (free-air gravity, plate divergence, r.m.s. topography) suggests the existence of a

low-viscosity channel at depths of 100 to 300 km with an average viscosity of about 1020

Pa s [Forte and Mitrovica, 2001]. A more realistic viscosity profile will influence the

evolution of mantle plumes, but it will not affect results of the restoration of mantle

plumes.

In order to initiate the growth of thermal plumes, we prescribe a small thermal

perturbation on the horizontal plane x3 = 0.1 (depth 648 km) at the initial time. The

time the plumes take to develop depends on the amplitude of the initial perturbation.

Hence, we computed the evolution of plumes to the stage presented in Fig. 2a and

considered this stage as an initial configuration of the plumes in our forward modeling.

The model domain was divided into 37 × 37 × 29 rectangular finite elements. The

vector potential is approximated by tricubic splines on the elements, while temperature,

velocity, and viscosity are represented on a more refined grid 112 × 112 × 88. The

evolution of the thermal plumes was modeled forward in time (Fig. 2, a-e). We

interrupted the computations at a certain time (at 75 Myr), when the plumes had

developed a mushroom geometry (Fig. 2e). The final state of the plumes in the forward

model was used as the initial state of the plumes in backward (or restoration) models.

In the following we refer to the final state of the thermal plumes in the forward modeling

as the ’present’ state of the plumes.

We apply the suggested numerical approach to restore the plumes from their

’present’ state to the state they were in Late Cretaceous times (75 My ago). To achieve
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the accuracy ε = 10−8 (see Eq. 8) we performed up to 10 iterations at each subinterval

of time depending on the choice of the initial temperature guess, T∗. Despite the number

of necessary iterations, a performance analysis demonstrated that the total execution

time for the numerical restoration of the evolution of the plumes was only about a

factor of 3 (depending on the number of iterations) larger than the time required for

the forward modeling of the plumes. The restoration method developed by Bunge et al.

[2003] is an order of magnitude more computationally expensive.

Figure 3 (left panel) shows the restored states of the plumes and the temperature

residuals δT

δT (x1, x2) =

[ l3∫
0

(
T (x1, x2, x3) − T̃ (x1, x2, x3)

)2

dx3

]1/2

between the temperature T̃ predicted by the forward model and the temperature T

restored to the same age. The temperature residuals are within a thousandth of a degree

for the initial restoration period (from present to about 26 Myr), and the maximum

residual reaches about δT = 25◦ at the restoration time of 75 Myr. The computations

show that the errors (temperature residuals) get larger the farther restorations move

backwards in time. For the heat problem, it was shown that the size of time domain

enters into the estimation of the rate of convergence, and hence this size influences the

errors.

To demonstrate effects of heat diffusion (and its absence) on the temperature

restoration, we computed the thermal plumes backwards in time using the heat advection

equation (with no heat diffusion). The right panel of Fig. 3 presents the results of the
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modeling. The shapes of the restored mantle plumes become notably different from

that of ’true’ plumes (plumes modeled forwards in time) after 26 My. The temperature

residuals (with no heat diffusion considered) are one to three orders of magnitude larger

than those when heat diffusion is considered, and the minimum residual is about 100 K

at the restoration time of 75 My. Thus, we have demonstrated that the neglect of heat

diffusion in the backward modeling leads to an inaccurate restoration of mantle plumes.

Even though the coefficient of heat diffusion is small, the neglect of diffusion in the

heat equation results in a different solution to the heat problem because of the reduction

in the order of the differential equation [Tikhonov and Samarskii, 1990]. Moreover,

when mantle convection is computed forwards in time using the heat diffusion equation

and diffusion is ignored in the backward modeling of the same mantle convection, results

are inconsistent and even unphysical.

The comparison between ’true’ (modeled forwards in time) and restored (modeled

backwards in time) plumes is quite natural from the computational point of view,

but not from the geophysical point of view, because the mantle structure in the past

(initial ’true’ plumes) is unknown. Hence, we perform another numerical experiment

on the accuracy of the restoration technique. We start from the ’present’ structure of

the plumes, apply the suggested technique to restore the past structure, run a forward

model of the restored plumes, and compare the ’present’ structure and the one recovered

after the forward modeling. Figure 4 presents the results of this modeling which show

that the restoration works quite well: temperature residuals (difference between the

temperature of the restored mantle plumes and that of the plumes of the same age in
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the forward model) are within hundredths of a degree.

We have also performed similar computations with the heat diffusion equation

replaced by the heat advection equation during the backward modeling. Figure 5

shows the results of restoration of the ’present’ state of the plumes to 75 Myr ago

and upbuilding of the restored plumes to the present time. The temperature residuals

are larger (by several orders of magnitude) than those for the case when diffusion is

considered in the backward modeling. Remarkably, the upbuilt ’present’ state of the

plumes in these two cases (with and without diffusion in backward modeling) are very

similar in appearance, giving the false impression that reconstructions are satisfactory

even with zero diffusion. Our analysis demonstrates that (i) the ’present’ structures

restored to the past are different for these two cases and (ii) the restoration errors

(temperature residuals) are large when diffusion is neglected compared to when diffusion

is included in the heat transfer.

5. Discussion

Conduction and convection are two major mechanisms for the transfer of heat.

Conductive heat transfer in the mantle is a diffusion process occurring due to collision

of molecules which transmit their kinetic energy to other molecules. Convective heat

transfer is associated with the mantle motion due to gravity and plays a dominant part

in the general transport of heat from the deep interiors of the Earth to the surface.

If the heat diffusion is negligible, the thermal convection in the mantle is

time-reversible. ”If you have a lot of particles doing something, and then you suddenly
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reverse the speed, they will completely undo what they did before ... If I reverse the

time, the forces are not changed, and so the changes in velocity are not altered at

corresponding distances. So each velocity then has a succession of alterations made in

exactly the reverse of the way that they were made before, and it is easy to prove that

the law of gravitation is time-reversible”. With these words, the famous physicist R.

Feynman introduced the time reversibility in gravity problems during the Messenger

lectures on the character of physical laws he delivered at Cornell University in 1964

(Feynman, 1965).

The conductive heat transfer (heat diffusion) is a more complicated phenomenon.

It is practically impossible to collect diffused heat back to the place from where it was

diffused. Consider a simple example. If a ’cold’ room is heated by a heater installed in

the room, it becomes warmer in a few hours in the room. If the heater is switched off, it

is ridiculous to expect that the diffused heat will return back to the heater or we could

estimate the initial temperature of the heater from the current room’s temperature.

Similar processes occur in the Earth. The mantle is heated from the core and

from inside due to decay of radioactive elements. Since mantle convection is described

by heat advection and diffusion, one can ask: is it possible to tell, from the ’present’

temperature estimations of the Earth, something about the Earth’s temperature in the

geological past?

Even though heat diffusion is irreversible in the physical sense, we can accurately

predict the heat transfer backwards in time using mathematical description of backward

heat advection and diffusion without contradicting the basic thermodynamic laws. In



21

this paper we have suggested a numerical method for modeling the backward heat

equation in order to solve the inverse problem of thermal convection in the mantle. We

do not solve directly the approximate backward heat equation, but rather we search for

initial temperature conditions for the approximate forward heat equation.

There is a major physical limitation of the restoration of mantle plumes. If a

thermal feature created, let say, a billion years ago by a boundary layer instability has

completely diffused away by the present, it is impossible to restore the feature which

was more prominent in the past. The time to which a present thermal structure in the

upper mantle can be restored should be restricted by the characteristic thermal diffusion

time, the time when the temperatures of the evolved structure and the ambient mantle

are nearly not distinguished: τdif = d2
dif/36κ, where ddif is the diffusion distance (see

Turcotte and Schubert (2002); p. 155, Eq. 4-113 at T → T1, where T1 is the ambient

temperature). Given ddif=650 km (the upper mantle thickness), the time of restoration

should be limited to about 470 My.

A part of the geophysical community may maintain a skepticism about the inverse

modeling of thermal convection. This skepticism may partly have its roots in our poor

knowledge of the Earth’s present structure and its physical properties which cannot allow

for rigorous numerical paleoreconstructions of the Earth’s evolution. Even considering

simplified present-day structure and thermal state of the Earth, the backward modeling

of thermomechanical evolution of the Earth is a computational challenge and several

numerical problems (e.g., restorations to the deep past, about 400 My; more realistic

rheology; temperature-dependent thermal diffusivity; etc.) should be solved before the
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technique become applicable for whole mantle convection reconstruction. An increasing

accuracy of seismic tomography inversions and geodetic measurements, improving

knowledge of gravity and geothermal fields, and precise laboratory experiments on

physical and chemical properties of mantle rocks lead to better knowledge of the Earth,

its structure and properties.

Physicists like to think that all you have to do is say: ’These are the conditions,

now what happens next?’ (Feynman, 1965), and hence the physicists prefer a forward

modeling of phenomena. On the other hand, geologists like to predict a geological

evolution based on discoveries on the Earth’s surface, and therefore they prefer a

modeling backwards in time. In geophysics these two approaches (forward and backward

modeling) can be combined using applied mathematics as a tool in numerical modeling

of the thermoconvective evolution of the Earth.

We have shown in this paper that a prominent present-day thermal feature in

the mantle can be traced back into the geological past. A mathematical model of the

thermal convection in the Earth’s mantle is described by a set of equations, and we

have demonstrated here that the set of equations can be solved numerically backwards

in time. Our restoration methodology works well for the mathematical model, and we

show its efficiency in the framework of this model.

6. Conclusions

The essential motivation for this research comes from the rapid progress made

by seismic tomographers in imaging deep Earth structure. Restoration of seismically
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imaged structures backwards in time could provide an important way to test a range

of geodynamic hypotheses. We have suggested a variational approach to the numerical

solution of the inverse problem of thermal convection with infinite Prandtl number. We

have tested the numerical approach by restoring a model of thermal plumes. The results

of the restoration models together with the error estimates demonstrate the practicality

of the suggested technique. We have also demonstrated that restored ’present’ structures

are different when heat diffusion is neglected. The restoration errors (temperature

residuals) are large when diffusion is neglect.

The current solution algorithm for the inverse modeling of thermal convection

allows us to restore temperature for about a hundred million years into the past based

on the knowledge of the present temperature distribution in the mantle. This algorithm

does not allow for the thermal restoration of the upper mantle to an age of several

hundred million years (within the limit of the characteristic thermal diffusion time).

This is associated with a coarseness of the grid used in modeling of the heat equation,

and we are working on improvement of the algorithm in this part.

Besides the applicability of the backward modeling technique to problems of mantle

plume and lithospheric slab restorations, the technique can be employed in predictions of

paleotemperatures in sedimentary basins. The temperature estimations in the geological

past can help in the forecasting of hydrocarbon generation, maturation, migration, and

location in the basins.

The suggested numerical algorithm can be incorporated into many existing mantle

convection codes in order to simulate the evolution of mantle structures backwards
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in time. The methodology opens a new possibility for restoration of mantle plumes,

subducting lithosphere, plate movements, and thermoconvective mantle flow in general.

Of course, real mantle plumes display more complex patterns and evolution, but our

simple models represent an essential step in understanding how mantle plumes (and

other mantle structures) might be reconstructed to the past.
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Appendix 1. On the stability of the solution to the

one-dimensional backward diffusion equation

Consider the following boundary-value problem for the 1-D backward diffusion equation:

∂u(t, x)/∂t = ∂2u(t, x)/∂x2, 0 ≤ x ≤ π, t ≤ 0,

u(t, 0) = 0 = u(t, π), t ≤ 0,

u(0, x) = φn(x), 0 ≤ x ≤ π.

At the initial time we assume that the function φn(x) takes the following two forms:

φn(x) =
1

4n+ 1
sin((4n+ 1)x)

and

φ0(x) ≡ 0.

Note that

max
0≤x≤π

|φn(x) − φ0(x)| ≤ 1

4n+ 1
→ 0 at n→ ∞.

The following two solutions of the problem correspond to the two chosen functions of

φn(x), respectively:

un(t, x) =
1

4n+ 1
exp(−(4n+ 1)2t) sin((4n+ 1)x) at φn(x) = φn.

and

u0(t, x) ≡ 0 at φn(x) = φ0

At t = −1 and x = π/2 we obtain

un(−1, π/2) =
1

4n+ 1
exp((4n+ 1)2) → ∞ at n→ ∞.
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At large n two closely set initial functions φn and φ0 are associated with the two

strongly different solutions at t = −1 and x = π/2. Hence, a small error in the initial

data can result in very large errors in the solution to the backward problem, and

therefore the solution is unstable, and the problem is ill-posed.

Appendix 2. Derivation of the gradient of objective functional J

We consider the objective functional defined by (4) and determine the gradient of

the functional (see Ismail-Zadeh et al. [2003a] for more details). An increment of the

functional can be represented in the form:

J(ϕ + h) − J(ϕ) =
∫
Ω
|T (ϑ2, x;ϕ+ h) − χ(x)|2dx−

∫
Ω
|T (ϑ2, x;ϕ) − χ(x)|2dx =

= 2
∫
Ω
(T (ϑ2, x;ϕ) − χ(x))z(ϑ2, x)dx+

∫
Ω
z(ϑ2, x)

2dx,

where h(x) is a small heat increment to the unknown initial temperature ϕ(x), and

z = T (t, x;ϕ+ h) − T (t, x;ϕ) is the solution to the following forward heat problem

∂z/∂t + u · �z −�2z = 0, x ∈ Ω, t ∈ (ϑ1, ϑ2),

σ1z + σ2∂z/∂n = 0, x ∈ Γ, t ∈ (ϑ1, ϑ2),

z(ϑ1, x) = h(x), x ∈ Ω.

(11)

We show below that

2
∫
Ω
(T (ϑ2, x;ϕ) − χ(x))z(ϑ2, x)dx =

∫
Ω

Ψ(ϑ1, x)h(x)dx,

where Ψ(t, x) = 2(T (t, x;ϕ) − χ(x)) is the solution to the conjugate boundary problem

(7). Indeed,

∫
Ω

Ψ(ϑ2, x)z(ϑ2, x)dx =
∫
Ω

∫ ϑ2

ϑ1

∂

∂t
(Ψ(t, x)z(t, x)) dxdt+

∫
Ω

Ψ(ϑ1, x)h(x)dx.
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Considering the fact that Ψ = Ψ(t, x) and z = z(t, x) are the solutions to (7) and (8)

respectively, and the velocity u satisfies Eq.(3) and the boundary conditions specified,

we obtain

∫
Ω

∫ ϑ2

ϑ1

∂

∂t
(Ψ(t, x)z(t, x))dtdx =

∫ ϑ2

ϑ1

∫
Ω

{
∂

∂t
Ψ(t, x)z(t, x) + Ψ(t, x)

∂z(t, x)

∂t

}
dxdt =

=
∫ ϑ2

ϑ1

∫
Ω
z(t, x)

[
−u · �Ψ −�2Ψ

]
dxdt+

∫ ϑ2

ϑ1

∫
Ω

Ψ(t, x)

[
−u · �z + �2z

]
dxdt =

=
∫ ϑ2

ϑ1

∫
Γ
{Ψ � z · n − z ∇Ψ · n} dΓdt+

∫ ϑ2

ϑ1

∫
Ω
{�Ψ · �z −�z · �Ψ} dxdt+

+
∫ ϑ2

ϑ1

∫
Ω
{zΨ ∇ · u + Ψ u · �z − Ψ u · �z} dxdt−

∫ ϑ2

ϑ1

∫
Γ
zΨu · n dΓdt = 0.

Hence, we can derive that:

J(ϕ+ h) − J(ϕ) =
∫
Ω

Ψ(ϑ1, x)h(x)dx+
∫
Ω
z(ϑ2, x)

2dx =
∫
Ω

Ψ(ϑ1, x)h(x)dx+ o(‖h‖).

And therefore, we obtain that the gradient of the objective functional is represented as

�J(ϕ) = Ψ(ϑ1, ·).
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Figure 1. Temperature-dependent viscosity used in the modeling.

Figure 2. Mantle plumes in the forward modeling at successive times: from 75 Myr ago

(a) to the ’present’ state of the plumes (e). The plumes are represented here and in Figs.

3 to 5 by isothermal surfaces at 1840 K.

Figure 3. Restored mantle plumes in the backward modeling and restoration errors

(temperature residuals) at successive times: from the ’present’ to 75 Myr ago. The left

two panels present the model results in the case when diffusion is included in the heat

transfer, and the right two panels are for the case in which diffusion is neglected.

Figure 4. Mantle plumes restored from the ’present’ to 75 Myr ago (left panel), upbuilt

plumes back to their ’present’ state (central panel), and the restoration errors (right

panel) in the case when diffusion is included.

Figure 5. Mantle plumes restored from the ’present’ to 75 Myr ago (left panel), upbuilt

plumes back to their ’present’ state (central panel), and the restoration errors (right

panel) in the case when diffusion is neglected.
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